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Abstract

Background: Demand for prostate MRI is increasing, but scan times remain long even 

in abbreviated biparametric MRIs (bpMRI). Deep learning can be leveraged to accelerate T2-

weighted imaging (T2WI).

Purpose: To compare conventional bpMRIs (CL-bpMRI) with bpMRIs including a deep 

learning-accelerated T2WI (DL-bpMRI) in diagnosing prostate cancer.

Study Type: Retrospective.

Population: Eighty consecutive men, mean age 66 years (47–84) with suspected prostate cancer 

or prostate cancer on active surveillance who had a prostate MRI from December 28, 2020 to 

April 28, 2021 were included. Follow-up included prostate biopsy or stability of prostate-specific 

antigen (PSA) for 1 year.

Field Strength and Sequences: A 3 T MRI. Conventional axial and coronal T2 turbo spin 

echo (CL-T2), 3-fold deep learning-accelerated axial and coronal T2-weighted sequence (DL-T2), 

diffusion weighted imaging (DWI) with b = 50 sec/mm2, 1000 sec/mm2, calculated b = 1500 

sec/mm2.

Assessment: CL-bpMRI and DL-bpMRI including the same conventional diffusion-weighted 

imaging (DWI) were presented to three radiologists (blinded to acquisition method) and to a deep 

learning computer-assisted detection algorithm (DL-CAD). The readers evaluated image quality 
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using a 4-point Likert scale (1 = nondiagnostic, 4 = excellent) and graded lesions using Prostate 

Imaging Reporting and Data System (PI-RADS) v2.1. DL-CAD identified and assigned lesions of 

PI-RADS 3 or greater.

Statistical Tests: Quality metrics were compared using Wilcoxon signed rank test, and area 

under the receiver operating characteristic curve (AUC) were compared using Delong’s test. 

Significance: P = 0.05.

Results: Eighty men were included (age: 66 ± 9 years; 17/80 clinically significant prostate 

cancer). Overall image quality results by the three readers (CL-T2, DL-T2) are reader 1: 3.72 

± 0.53, 3.89 ± 0.39 (P = 0.99); reader 2: 3.33 ± 0.82, 3.31 ± 0.74 (P = 0.49); reader 3: 3.67 

± 0.63, 3.51 ± 0.62. In the patient-based analysis, the reader results of AUC are (CL-bpMRI, 

DL-bpMRI): reader 1: 0.77, 0.78 (P = 0.98), reader 2: 0.65, 0.66 (P = 0.99), reader 3: 0.57, 0.60 (P 
= 0.52). Diagnostic statistics from DL-CAD (CL-bpMRI, DL-bpMRI) are sensitivity (0.71, 0.71, P 
= 1.00), specificity (0.59, 0.44, P = 0.05), positive predictive value (0.23, 0.24, P = 0.25), negative 

predictive value (0.88, 0.88, P = 0.48).

Conclusion: Deep learning-accelerated T2-weighted imaging may potentially be used to 

decrease acquisition time for bpMRI.

Evidence Level: 3.

Technical Efficacy: Stage 2.

Multiparametric MRI (mpMRI) of the prostate has been established as a tool in the 

diagnosis and management of prostate cancer especially after the development of Prostate 

Imaging Reporting and Data System (PI-RADS).1–3 It is used not only to detect prostate 

cancer but also to improve the targeting of prostate lesions on biopsy and to monitor 

posttreatment patients and patients with low-risk prostate cancer on active surveillance.4

A typical mpMRI protocol includes axial and coronal T2-weighted turbo spin echo (TSE), 

diffusion-weighted image (DWI), apparent diffusion coefficient (ADC) map, and dynamic 

contrast-enhanced (DCE) imaging as prescribed by PI-RADS.3 The entire mpMRI may 

require 30–45 minutes of image acquisition time. The long scan time impinges on patient 

comfort and also limits patient access to the MRI as fewer patients are able to be imaged.

A few strategies have been employed to decrease scan time. One solution is to remove 

DCE from the protocol as its use is secondary in PI-RADS.3 This biparametric MRI 

(bpMRI) protocol has been shown to have similar diagnostic capabilities as the full mpMRI 

and requires half the scan time.5–7 Another strategy is to accelerate individual sequence 

acquisitions.

Several MR acceleration techniques such as parallel imaging (PI) have been employed 

since the advent of MRI to ensure clinically feasible.8 Another example of a more recent 

novel imaging acceleration technique is compressed sensing (CS).9 Both PI and CS leverage 

under-sampling of k-space as the main time-saving strategy and rely on reconstruction 

techniques to recover image quality as under-sampling causes aliasing from not meeting 

Nyquist criteria.10 A commercial proprietary prototype sequence inspired by PI and CS 

was created, which under-samples k-space, but uses a deep learning-based reconstruction 
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algorithm instead of traditional PI and CS techniques to create an image of diagnostic 

quality.

An unrolled variational network was used in the deep learning-based image reconstruction, 

which performs an iterative optimization inspired by compressed sensing.11,12 The 

algorithm alternates between data consistency and image regularization steps, with step 

sizes and image regularizations through convolutional neural networks having trainable 

parameters. It receives under-sampled k-space data, coilsensitivity maps and a normalization 

field as input, and provides the reconstructed TSE image as output. Since the reconstruction 

is designed to keep the original image contrast and to improve signal to noise ratio, the 

acquisition parameters determining image contrast between CL-T2 and DL-T2 are nearly 

identical, including echo time, repetition time, and echo train length.

This study aimed to compare the diagnostic ability of a prototype deep learning-accelerated 

T2-weighted image (DL-T2) against the conventional clinical T2-weighted image (CL-T2) 

in both a reader study and a study utilizing a commercially developed prototype deep 

learning-based computer-assisted detection (DL-CAD).

Materials and Methods

This retrospective study was approved by the institutional review board, was HIPAA 

compliant, and informed consent was waived. Authors associated with industry provided 

only technical support of maintaining and trouble-shooting DL-T2 acquisition and DL-CAD 

software and did not have access to data from the study.

Patients

The picture archiving and communication system (PACS) was searched for consecutive 

patients who had an MRI of the prostate from December 28, 2020 to April 28, 2021 with 

the indications of suspected prostate cancer or a diagnosed low-risk prostate cancer on active 

surveillance. Patients were included if their imaging protocol had both the conventional axial 

T2-weighted image (CL-T2) and the deep learning-accelerated axial T2 (DL-T2). DL-T2 

sequence was routinely included in our clinical scan as a backup T2-weighted image in 

case of artifact. Other exclusion criteria included the presence of a hip arthroplasty, prior 

treatment of prostate cancer, or no adequate follow-up. Adequate follow up was defined as 

a prostate biopsy within 1 year of the MRI or stability of PSA of at least 1 year if mpMRI 

was prospectively determined to be PI-RADS 1 or 2. Patients on active surveillance were 

included if they demonstrated imaging stability since baseline imaging with associated MR 

targeted biopsy. Histopathology results were obtained either through MR-targeted transrectal 

ultrasound fusion biopsy or MR-targeted transperineal ultrasound fusion biopsy. In addition 

to the targeted biopsies, a 12 core sextant biopsy was also obtained at the same time. Core 

samples were evaluated by a clinical pathologist utilizing Gleason Grade Group (GG) scores 

with “clinically significant” prostate cancer (csPCa) defined as GG 2 or greater.13,14

A total of 137 patients were initially included in this retrospective study. The following 

patients were excluded: 15 for missing DL-T2, 28 for inadequate follow up, 13 for prior 
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prostate cancer treatment, and 1 for presence of hip implant (Fig. 1). Eighty patients were 

included in the study (mean age 66 years, range 47–84 years), with details in Table 1.

Imaging Protocol

All images were acquired on a 3 T MR imaging system, MAG-NETOM Prisma (Siemens 

Healthcare, Erlangen, Germany). Patients were scanned in supine position with an 18-

channel body phased-array coil placed overlying the pelvis. From our institution’s clinical 

multiparametric prostate MRI protocol, the following sequences were acquired: axial T2 

TSE, coronal T2 TSE, axial diffusion-weighted image (DWI) including b = 50 sec/mm2 and 

1000 sec/mm2, and calculated DWI b = 1500 sec/mm2. Parameters of the sequences are 

provided in Table 2.

Deep Learning Acceleration Sequence

The deep learning acceleration sequence used in this study is a commercial proprietary 

prototype sequence trained and developed by Siemens (Erlangen, Germany). The deep 

learning-based reconstruction algorithm was trained in a supervised manner using more 

than 10,000 slices of fully sampled T2 TSE acquisitions obtained from volunteers using 

1.5 T and 3 T MR scanning systems (MAGNETOM scanners, Siemens Healthcare) of 

various regions of the body, including head, pelvis, and knee. Different image contrasts 

were also used to increase the generalization of the obtained training parameters to a 

broad range of applications. The accelerated training dataset was created retrospectively by 

under-sampling k-space by a factor of 4 with phase resolution of 75%. The loss function 

was encompassed by L1-norm and multiscale version of structural similarity (SSIM) content 

between network prediction and ground truth. The training was implemented in PyTorch 

and performed using a commercially available GPU cluster with 32 GB of memory. The 

obtained trained parameters were then converted for prospective use in a scanner integrated 

inference framework. In actual deployment, there is an average 3 seconds inference time for 

CPU and 0.5 seconds for GPU. There is an overall ~3-fold acceleration of the axial DL-T2 

vs. CL-T2 acquisition (1:08 minutes vs. 3:46 minutes), and a ~2-fold acceleration of the 

coronal DL-T2 vs. CL-T2 acquisition (1:17 minutes vs. 2:34 minutes).

Deep Learning-Based Computer-Aided Detection

A commercially developed proprietary deep learning-based prototypical computer-aided 

detection algorithm (DL-CAD) (MR Prostate AI, version 1.3.2, build July 07, 2021, front 

end build November 06, 2019, Siemens Healthcare) was used as an objective evaluator of 

both CL-bpMRI and DL-bpMRI. The DL-CAD receives the input of axial T2 TSE and axial 

DWI with two acquired b values. Preprocessing steps are first performed: 1) constructing 

a high b = 2000 sec/mm2 and the ADC map from the inputted DWI, 2) segmenting the 

prostate gland based on a deep learning algorithm, and 3) aligning the T2 and DWI/ADC 

images.15 Finally, the DL-CAD identifies lesions and produces a heat map of suspicious 

regions in the prostate. A false positive reduction algorithm is applied. The DL-CAD outputs 

a final heat map of any worrisome lesions and a PI-RADS-based assessment of 3–5 for each 

lesion identified. The DL-CAD does not identify PI-RADS 2 lesions as they are presumed to 

be likely benign.
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The DL-CAD is a convolutional neural network based lesion identification and classification 

tool, which is detailed in the study by Yu et al.16,17 In summary, it was trained and tested 

on 2170 prostate exams with and without lesions. The training was performed with a hybrid 

ground truth model either provided through prostate biopsy results if available or PI-RADS 

grading from radiology reports if prostate biopsy results were not available.17

Image Evaluation

Two studies were created from each patient for a total of 160 studies evaluated by each 

radiologist reader and by DL-CAD. One of the two studies per patient contained axial 

and coronal CL-T2 (CL-bpMRI) and the second contained axial and coronal DL-T2 (DL-

bpMRI). All exams also included DWI (b = 50 sec/mm2, 1000 sec/mm2), calculated high b 
= 1500 sec/mm2 image, and an ADC map. All studies were anonymized and randomized.

Radiologist Reader Evaluation

The 160 studies, scrubbed of acquisition method (80 CL-bpMRI and 80 DL-bpMRI), 

were randomly ordered and presented to three abdominal fellowship trained radiologists 

(6 [A.V.], 4 [P.S.], and 2 [R.P.] years of experience) via the institutional clinical PACS 

(Visage Imaging, Berlin, Germany). Readers were asked to identify and grade prostate 

lesions according to Prostate Imaging Reporting and Data System (PI-RADS) v2.1.3 

Readers reported lesion locations based on sextant locations. The lesion locations were then 

correlated with biopsy results, either with the targeted lesion location or 12 core standard 

biopsy location.

Readers were also asked to evaluate both axial and coronal CL-T2 and DL-T2 for image 

quality based on a 4-point Likert scale (1: nondiagnostic, 2: fair, 3: good, 4: excellent) on the 

following metrics: overall quality, clarity of capsule, clarity transition and peripheral zone 

boundary, and clarity of periurethral area.18 A 4-point Likert scale was used to force readers 

to make a decision between favorable and unfavorable quality.

DL-CAD Image Evaluation

Axial images of the 160 studies including 80 with CL-T2 and 80 with DL-T2 were inputted 

into the DL-CAD for evaluation. The output of the system was lesion location and grade. 

This was collected for each case.

Statistics

Diagnostic statistics, including sensitivity, specificity, positive predictive value (PPV), 

and negative predictive value (NPV), were obtained by evaluating performance of the 

readers and DL-CAD by study and by lesion. For patient-based analysis, true positive 

was designated if there was csPCa diagnosed at pathology in a patient where a lesion 

was identified on imaging as PI-RADS ≥3. For lesion-based evaluation, true positives 

were designated if an identified PI-RADS ≥3 lesion was in the same sextant as the csPCa 

on biopsy. In the reader study, the dominant lesion was assessed. All lesions identified 

by DL-CAD were included in the lesion-based assessment. In addition, the diagnostic 

statistics (sensitivity, specificity, positive predictive value [PPV], and negative predictive 

value) were modeled and tested individually by generalized estimating equation (GEE) with 
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logit link and group effect as predictor, and the cluster effect of patient or lesion was 

adjusted as appropriate. Area under the curve (AUC) of the receiver operating curve (ROC) 

was obtained for radiology reader study and compared by Delong’s test. The difference 

and bootstrap confidence interval were calculated for diagnostic statistics with a 5% 

noninferiority margin. Light’s Kappa was reported for interreader reliability. Quality metrics 

were compared utilizing two-sided Wilcoxon signed-rank test, and the null hypothesis was 

that the DL-CAD had equal or higher scores. The significance level of this study was set to 

be 0.05.

Results

Radiology Reader Results

Image quality results are presented in Table 3. There was no significant difference in overall 

image quality for readers 1 (axial CL-T2: 3.72 ± 0.53, axial DL-T2: 3.89 ± 0.39, P = 0.99; 

coronal CL-T2: 3.86 ± 0.35, coronal DL-T2: 3.94 ± 0.25, P = 0.99) and 2 (axial CL-T2: 3.33 

± 0.82, axial DL-T2: 3.31 ± 0.74, P = 0.49; coronal CL-T2: 3.39 ± 0.71, coronal DL-T2: 

3.31 ± 0.71, P = 0.20). Reader 3 rated CL-T2 with significantly higher overall image quality, 

though the difference was small (axial CL-T2: 3.67 ± 0.63, axial DL-T2: 3.51 ± 0.62; 

coronal CL-T2: 3.73 ± 0.52, coronal DL-T2: 3.48 ± 0.62). Figures 2 and 3 show a peripheral 

zone (PZ) and a transition zone (TZ) lesion, respectively, on both CL-T2 and DL-T2.

Patient- and lesion-based analysis results are presented in Table 4. There was no significant 

difference in AUC of the ROC curve between CL-bpMRI and DL-bpMRI in all readers in 

patient-based analysis: (CL-bpMRI, DL-bpMRI) – reader 1 (0.77, 0.78, P = 0.98); reader 2 

(0.65, 0.66, P = 0.95); reader 3 (0.57, 0.60, P = 0.52); lesion-based (CL-bpMRI, DL-bpMRI) 

– reader 1 (0.71, 0.70, P = 0.92); reader 2 (0.58, 0.62, P = 0.70); reader 3 (0.57, 0.60, 

P = 0.70). In patient-based analysis, there was no significant difference in AUC of ROC 

between CL-bpMRI and DL-bpMRI: (CL-bpMRI, DL-bpMRI) – reader 1 (0.71, 0.70, P = 

0.92); reader 2 (0.58, 0.62, P = 0.70); reader 3 (0.57, 0.60, P = 0.70). Light’s kappa was fair, 

measuring 0.35 for interreader variation. In lesion-based analysis results, reader 1 identified 

a total of 34 lesions on CL-bpMRI (29 PZ, 5 TZ) and 27 lesions on DL-bpMRI (21 PZ, 6 

TZ). Reader 2 identified a total of 44 lesions on CL-bpMRI (33 PZ, 11 TZ) and 51 lesions 

on DL-bpMRI (32 PZ, 19 TZ). Reader 3 identified a total of 17 lesions on CL-bpMRI (16 

PZ, 1 TZ) and 15 lesions on DL-bpMRI (12 PZ, 3 TZ).

DL-CAD Results

DL-CAD did not have significantly different sensitivity in patient-based evaluation or lesion-

based evaluation when assessing CL-bpMRI compared to DL-bpMRI but had significantly 

lower specificity when evaluating DL-bpMRI (Table 5). On lesion-based analysis, DL-CAD 

identified 22 PZ lesions on CL-bpMRI and 24 PZ lesions on DL-bpMRI and 30 TZ lesions 

on CL-bpMRI and 41 TZ lesions on DL-bpMRI. Two csPCa were missed on the CL-bpMRI 

but detected on DL-bpMRI and both were located in the TZ. An example of TZ lesion 

identified on DL-bpMRI and not on CL-bpMRI can be seen in Fig. 3.
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Discussion

In this study, we assessed a 3-fold accelerated prototype DL-T2 sequence. We compared 

the image quality and diagnostic ability of CL-bpMRI and DL-bpMRI to identify csPCa in 

a reader study and with prostate DL-CAD. Two of the three readers rated no significant 

difference between the overall image quality of CL-T2 and DL-T2. The third reader 

rated slightly increased overall image quality of CL-T2 over DL-T2. All three readers 

demonstrated no significant difference in sensitivity, specificity, positive predictive value, 

negative predictive value, and AUC of the ROC when assessing CL-bpMRI and DL-bpMRI 

both on a patient-based analysis and lesion-based analysis. DL-CAD demonstrated only 

slightly increased specificity assessing CL-bpMRI when compared to DL-bpMRI on lesion-

based analysis and no significant difference in the remaining diagnostic statistics on patient-

based analysis or lesion-based analysis.

Although there was no significant difference in most of the comparisons, when assessing 

for noninferiority, the difference in diagnostic results between CL-bpMRI and DL-bpMRI 

were greater than the 5% noninferiority margin set. This indicates that the study may be 

under-powered. However, these promising preliminary results suggest optimistic results for 

larger noninferiority studies.

In the last few years, there has been an increase in the number of published studies on 

deep learning algorithms to decrease MR acquisition time.19 Only a few small studies 

have focused on the prostate. Gassenmaier et al investigated the image quality and T2 

PI-RADS scores of a similar DL-T2 sequence on 30 patients and then on 60 patients 

with similar results.12,20 The readers in their studies rated the DL-T2 to have significantly 

higher of overall quality than CL-T2 and no significant difference between the T2 TSE for 

PI-RADS rating. Our study was more clinically focused and presented readers with full 

bpMRIs demonstrating no significant difference in the diagnostic abilities of DL-bpMRI and 

CL-bpMRI for all readers.12,20 Kim et al investigated two versions of a DL-T2 sequence 

including a high-resolution version (3-fold acceleration) and a low-resolution version (4-fold 

acceleration). Both demonstrated similar qualitative and quantitative quality and PI-RADS 

ratings between the two sequences compared to the conventional T2 TSE.21

Johnson et al developed a deep learning-accelerated T2 TSE with 4-fold acceleration; 

however, they also included a 3-fold accelerated DWI with a fully deep learning-accelerated 

bpMRI requiring less than 4 minutes of total acquisition time.18 Their pilot study was 

small including only 20 patients for evaluation image quality and an additional 10 patients 

evaluating lesion assessment. Three of four readers rated no significant difference in overall 

quality between DL and CL images, and there was no significant difference in the number of 

PI-RADS 3 or greater lesions rated in either DL-bpMRI or CL-bpMRI.18

In the current study, the DL-CAD was used as an additional evaluator. Since the DL-CAD 

was trained only on conventional T2-weighted images and not DL-T2, it is a unique 

opportunity to assess whether DL-T2 could pass for CL-T2. Only specificity in the lesion-

based assessment was significantly higher in CL-bpMRI when compared with DL-bpMRI.
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On further investigation of the lesions identified, it was noted that DL-CAD identified 

more TZ lesions on the DL-bpMRI than the CL-bpMRI, while DL-CAD identified similar 

numbers of PZ lesions. The discrepancy of the number of TZ lesions identified may 

potentially be related to the noise profile difference between the two sequences. Since 

malignant lesions in the TZ are often described as homogeneous moderate T2 hypointense 

and with an “erased charcoal” appearance, a smoother, decreased noise profile may 

potentially increase sensitivity to TZ lesions and account for the decreased specificity on 

evaluating DL-bpMRI.3,22 All readers identified more TZ lesions on DL-bpMRI compared 

to CL-bpMRI but were more similar in range. Dithering may be a possible solution to 

achieve similar noise levels, which is under investigation.23

Our DL-T2 can be compared to PI and CS, especially as it draws inspiration and elements 

from both. DL-T2 undersamples in a similar fashion to parallel imaging and also requires 

the same coil sensitivity maps.8 Compared to CS, DL-T2 utilizes similar iterative processes 

but has several advantages. In CS, certain imaging parameters are used, and calibrations are 

performed on “average” patients or phantoms to be applied in all acquisitions.9 Because of 

the wide range of patient body habitus and other physical factors specific to each patient, 

the sequence may not be optimized to produce the best image for every patient.9 DL-T2 

is more flexible and is able to adjust in a wider range of inputs correlating with the range 

of the training dataset. In addition, CS reconstruction requires heavy computing at time of 

image acquisition, necessitating accessibility to powerful computational hardware at time of 

scanning.9 Again, the computational heavy portion of DL-T2 is conducted during training, 

leaving a faster more manageable reconstruction at time of image acquisition.

Replacing conventional axial and coronal CL-T2 with DL-T2 can save 3–4 minutes on a 

prostate MRI. Although 3–4 minutes may seem small, if compounded over many exams, it 

can be quite profound. Our institution performs more than 6000 prostate mpMRIs per year 

and this change would save more than 24,000 minutes equaling 800 full 30 minutes prostate 

mpMRIs. In societies with long wait times for prostate mpMRIs, this would greatly increase 

access and impact prostate cancer care.

Limitations

The overall reader results demonstrated lower than expected sensitivity and specificity. This 

may be attributed to experience level and especially less experience at reading bpMRI 

studies rather than full mpMRI, as nearly all of the prostate MRIs at our institution are 

performed with intravenous contrast. The aim of the study, however, was to study the 

difference between CL-bpMRI and DL-bpMRI, which was demonstrated in our results. 

In a similar vein, the diagnostic results from DL-CAD were lower than reported in other 

studies. This may be due to suboptimization of the algorithm to the studies presented as the 

algorithm was not trained on studies from this institution.

To adequately assess a full range of patients with and without csPCa, we included studies 

that were prospectively assessed as PI-RADS 1 or 2. Not all of these patients had subsequent 

associated biopsies; however, those who did not have subsequent biopsies did demonstrate 

stability in PSA or subsequent MRI. A few studies were of patients in our active surveillance 

program, and these patients also did not undergo subsequent biopsy but also demonstrated 
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PSA stability This is a single institution study performed on a single scanner type from a 

single vendor, which limits the evaluation of universal applicability.

Conclusion

This preliminary study demonstrated no significant difference in diagnostic evaluation by 

readers. DL-T2 may potentially replace CL-T2 in bpMRI, thus decreasing the acquisition 

time of prostate MRI.
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FIGURE 1: 
Patient inclusion flowchart. A total of 80 patients were included in the study.
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FIGURE 2: 
Conventional (a) and deep learning reconstructed (b) axial T2-weighted images of the 

prostate with an equally well-visualized T2 hypointense lesion in the left posterolateral 

prostate (black arrow) later biopsied to be a grade group 2 lesion. The adjacent 

neurovascular bundles can be seen on both clinical and deep learning reconstructed images. 

Clinical (c) and deep learning reconstructed (d) coronal T2 turbo spin echo with clear 

prostatic capsule and BPH capsules.
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FIGURE 3: 
Conventional (a) and deep learning reconstructed (b) T2 turbo spin echo of the prostate 

with a left lateral transition zone lesion, which was identified with deep learning computer-

assisted detection only on deep learning reconstructed T2 as denoted by the heat map (c).
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TABLE 1.

Clinical and Demographic Characteristics

Variable Total Patients (n = 80)

Mean age (years) 66 ± 9

Number with MRI-targeted biopsies 51 (64)

Number of patients on active surveillance with GG1 prostate cancer 5 (6)

Number of patients classified as PI-RADS 1 with stable or decreasing PSA at 1 year follow-up 24 (30)

Number with csPCa 17 (21)

Number with grade group 2 prostate cancer 10 (12)

Number with grade group 3 prostate cancer 1 (1)

Number with grade group 4 prostate cancer 5 (6)

Number with grade group 5 prostate cancer 1 (1)

Except where indicated, data are numbers of participants with percentages in parentheses.

csPCa = clinically significant prostate cancer (Grade Group 2 or greater). GG = grade group. PI-RADS = Prostate Imaging Reporting and Data 
System v2.1.
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