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Abstract

Whether left ventricular noncompaction (LVNC) is a distinct cardiomyopathy or a morphologic 

trait shared by different cardiomyopathies remains controversial. Current guidelines from 

professional organizations recommend different strategies for diagnosing and treating patients with 

LVNC. This state-of-the-art review discusses new insights into the basic mechanisms leading to 

LVNC, its clinical manifestations, and treatment modalities, anatomy and pathology, embryology, 

genetics, epidemiology, and imaging. Three markers currently define LVNC: prominent left 

ventricular trabeculae; deep intertrabecular recesses; and a thin compacted layer. While new 

genetic data from mice and humans supports LVNC as a distinct cardiomyopathy, evidence 

for LVNC as a shared morphological trait is not ruled out. Criteria supporting LVNC as a 

shared morphological trait may depend on consensus guidelines from the multiple professional 

organizations. Enhanced imaging and increased use of genetics are both predicted to significantly 

impact our overall understanding of the basic mechanisms causing LVNC, and its optimal 

management.
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Introduction

Left ventricular noncompaction (LVNC) is defined by 3 markers: prominent left ventricular 

(LV) trabeculae; deep intertrabecular recesses; and the thin compacted layer (1). The 

spectrum of morphologic variability is extreme, ranging from hearts with a nearly absent 

compacted layer and an almost exclusively trabecular component in the LV apex, to hearts 

with prominent trabeculae and deep alternating recesses, but a well-represented compacted 

layer. Whether LVNC is a distinct cardiomyopathy or a morphologic trait shared by different 

types of cardiomyopathies is still debated. LVNC can be isolated or associated with 

cardiomyopathies, congenital heart diseases, and complex syndromes involving the heart. 

The American Heart Association classifies LVNC as a genetic cardiomyopathy (2) while the 

European Society of Cardiology classifies LVNC as an unclassified cardiomyopathy (3). The 

World Heart Organization’s International Classification of Diseases also reports LVNC as 

an unclassified cardiomyopathy. This state-of-the-art review includes data from embryology, 

genetic studies, epidemiology, and imaging studies (as outlined in a recent editorial on the 

evolution of translational medicine (4)), and provides an up-to-date view of current findings 

on the controversial topic of LVNC. Each of the authors selected published reports for this 

review on the basis of the most up-to-date criteria.

The LVNC trait may be familial (inherited) or nonfamilial (sporadic). Nonfamilial forms are 

diagnosed when LVNC is proven absent in relatives (5). Sporadic, LVNC can be acquired, 

as in highly trained athletes (6), sickle cell anemia patients (7), and in pregnancy (8). In the 

pregnancy study by Gati, 73% of affected women demonstrated complete resolution of the 

trabeculation during post-partum follow-up (8). In some cases, the trabeculation phenotype 

may occur in response to a mechanical load, and may disappear as the mechanical load 

dissipates. It is not known if there is a genetic underpinning to the disease in these cases 

(6) (7) (8). Cases in children suggest that 75% have ECG abnormalities, and most have 

depressed systolic function (9). Some children have transient recovery, followed by later 

deterioration, suggesting that these cases in children are genetic in nature. The genetic bases 

of familial LVNC are still a matter of research. Most familial cases identified to date are 

associated with mutations in the same genes that cause other types of cardiomyopathies 

(10,11). Whether these disease genes cause the cardiomyopathy or the LVNC phenotype 

remains to be clarified (12). A limitation of many (but not all) of these genetic studies is that 

most only screened genes associated with other cardiomyopathies, such as sarcomeric genes, 

which are also associated with hypertrophic, restrictive, and dilated cardiomyopathies.

Although there is no current gold standard for LVNC diagnosis, cardiac imaging is the 

best tool currently available. Pathoanatomic investigation in autopsy hearts or in hearts 

excised at transplantation provides data for pathoimaging correlations and assessment 

of imaging-based diagnoses (13). The most commonly used imaging modalities include 

echocardiography and cardiac magnetic resonance (CMR). Echocardiography provides 

the basic tool for diagnosis (14), while CMR adds anatomic details, and functional 

information on kinesis of the noncompacted versus compacted segments and fibrosis 

(15). The limitations of imaging will be discussed. Clinical management is based on the 

functional phenotype and related complications. The management of atrial and ventricular 

arrhythmias, device implantation, resynchronization, ablation procedures, and even LV 
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surgical remodeling has been a matter of specific attention, raising the question of whether 

LVNC deserves specific medical strategies (4,16).

Embryogenic and nonembryogenic hypotheses

There can be multiple etiologic bases of LVNC: it may occur as an isolated trait or disease 

(I-LVNC); or in association with genetic diseases and congenital defects; or be sporadic and 

acquired in physiological (6) or pathologic conditions (7); or be permanent or transient (8). 

Therefore, LVNC can originate during embryonic development or be acquired later in life.

Nonembryogenic hypothesis.

Emerging evidence supports the hypothesis that the pathogenetic mechanisms leading to 

noncompaction or increased trabeculation may occur in adult life, leading to acquired 

LVNC. In young athletes, increased LV trabeculation may represent the effect of cardiac 

remodeling (6); in this case, trabeculation becomes more prominent, but the compacted 

layer is well represented. It has been suggested that “following ECG and echocardiography, 
0.9% of highly trained athletes demonstrate concomitant T-wave inversion and reduced 
baseline indices of systolic function that may be considered diagnostic of LVNC” (6). 

The de novo LV trabeculations observed in a significant proportion (>25%) of pregnant 

women suggest that LV trabeculations may occur in response to increased LV loading 

conditions or other physiological adaptation mechanisms related to pregnancy (8). The 

increased trabeculation observed in individuals with sickle cell anemia may represent an 

exaggerated myocardial response to the increased cardiac preload (7). In sum, this evidence 

supports the hypothesis that particular phenotypic characteristics of LVNC are identified in 

cases including pregnancy, sickle cell anemia and athletes.

Embryogenic hypothesis.

Most data supporting the embryogenic hypothesis of LVNC come from experimental 

studies. Fetal echocardiographic studies may contribute to elucidation of the embryogenic 

mechanisms of LVNC and its association with other cardiac diseases. In a very elegant 

study by Arunamata et al., 22 of 24 fetuses with LVNC had congenital heart disease, and 

15 had complete heart block (17). Studies in identical twins may further expand the routes 

of investigation, especially when identical phenotypes are expected, but not observed (18). 

Studies in experimental models suggest that the process of cardiac trabeculation begins after 

the cardiac looping stage. Trabeculae formation begins with the emergence of myocytes 

through delamination (migration) from the compacted myocardium (19). Emerging evidence 

suggests that the myocytes forming the trabeculae arise from a different clonal origin in 

the heart wall (19,20). Myocytes project radially into the cavity and are covered by the 

endocardial layer. This array guarantees the best perfusion of the myocytes by increasing the 

contact surface between the left ventricular cavity and the myocytes, while the coronary tree 

is not yet developed. Intertrabecular spaces are transformed into capillary vessels. Failure 

at this stage corresponds to the formation of thin elongated trabecular projections separated 

by deep recesses. The compact layers of myocytes proliferate and the epicardium enters the 

myocardial wall and forms the coronary vasculature (21,22). Recent studies in zebrafish and 

mice suggest that cardiac trabeculation is mediated by endocardial neuregulin 1 through the 
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ErbB4 and ErbB2 receptor complex (19,23–27). Deletion or mutation of the homologs of 

Drosophila Mindbomb 1, Notch1, Neuregulin 1, Erbb4, or Errb2 in zebrafish or mice results 

in the absence of trabecular formation. ErbB3 activation by Neuregulin 1 phosphorylates 

focal adhesion kinase (FAK). Systemic deletion of FAK in mouse also results in a phenotype 

similar to LVNC (28,29). Thus, Neuregulin 1 signaling through ErbB4 and ErbB2 leading 

to FAK phosphorylation appears integral to cardiac trabecular formation. Moreover, Notch 

signaling in the endocardium is also critical for cardiac trabecular formation (30,31).

As cardiac development progresses, myocytes compact by organizing into ordered bundles 

that progressively generate the compacted myocardial walls (more prominent in the left than 

in the right ventricle). The trabecular portion of the myocardial wall is tiny and thinner in the 

LV than in the right, and the compacted wall is more prominent in the thicker LV wall. Two 

embryologic morphogenetic hypotheses were formulated as potential explanations of LVNC 

pathogenesis. Hypothesis 1 states that arrested or abnormal myocardial morphogenesis 

leading to LVNC occurs during heart development, when myocyte organization fails to 

evolve from the embryonic spongiform condition to the compacted, mature state. Although 

both ventricles may be involved, the LV is generally affected (32). Hypothesis 2 states 

that LVNC occurs as a result of inhibiting the regression of embryonic structures (33). 

Sponginess would result from the looseness of cells or of cell bundles. LVNC describes a 

macroscopic mismatch between the noncompacted trabeculae and the compacted myocyte 

layers. Myocytes in the trabeculae do not show histologic differences from those forming 

the compacted layer, explaining why LVNC histology (i.e., endomyocardial biopsy) does 

not specifically contribute to the diagnosis. The diagnostic hallmark of LVNC is the 

macroscopic appearance that correlates with imaging findings.

Anatomy and Pathology

In hearts excised at transplantation or at autopsy, LVNC diagnosis is on the basis of 

the prominent appearance of LV trabeculae and the ratio between the compacted and 

noncompacted LV wall (13). Sectioning of formalin-fixed hearts provides the best way 

of measuring compacted and noncompacted layers (34). Prominent trabeculae and thin, 

compacted myocardial layers can be described either as suggestive for LVNC or as increased 

trabeculation when the noncompacted/compacted ratio does not meet that commonly used 

(2.3) in imaging diagnosis (35). The pathologic diagnosis should not be forced in imaging 

criteria, but should provide data for pathology-imaging correlation (Figure 1). Imaging is 

especially useful for identifying mural thrombi wedged within the intertrabecular recesses 

(especially common in hypokinetic LVs)(Figure 2).

LV dilation and LV hypertrophy can be present or absent and do not influence LVNC 

diagnosis. Given the common localization of the noncompacted areas in the apex and 

the common localization on LV hypertrophy at the septum, the 2 diagnoses, HCM and 

LVNC can coexist. The topographic distribution of LVNC does not typically extend to the 

interventricular septum, although the septum may be involved in rare cases. LVNC has also 

been described in association with restrictive cardiomyopathy (RCM). In pure RCM, the 

enlarged atria and the small nonhypertrophic ventricles support the pathologic diagnosis. 

The “restriction” is a functional diagnostic clue that can be inferred in pathologic studies by 
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the atrial/ventricular size mismatch in the absence of significant LV hypertrophy. LVNC may 

also coexist with arrhythmogenic right ventricular cardiomyopathy (ARVC). In classical 

ARVC without involvement of the LV, the presence of LVNC is independent of the right 

side cardiomyopathy. In this context, the causes of ARVC and LVNC may not coincide. 

In biventricular and predominantly left arrhythmogenic cardiomyopathies, the presence of 

LVNC may be either considered as an independent trait or as part of the arrhythmogenic 

cardiomyopathy involving the LV. The pathology study should contribute to characterization 

of LVNC as an isolated finding or as a trait present in cardiomyopathy in autopsied hearts 

and in hearts excised at transplantation. Finally, fibrous endocardial thickening can be 

present; it may reflect the effect of volume overload in LVNC in dilated cardiomyopathy 

(DCM), or the organization pattern of mural thrombi. Overall, LVNC can be observed in all 

types of cardiomyopathies.

Epidemiology

LVNC occurs in infants (0.81 per 100,000 infants/year), children (0.12 cases per 100,000 

children (21) and adults (prevalence 0.014%)(33). It can occur as an isolated myocardial trait 

or associated with cardiomyopathies (hypertrophic, restrictive, dilated and arrhythmogenic), 

congenital heart diseases (36) and complex syndromes affecting multiple organs and 

tissues including mitochondrial diseases caused by mutations in both nuclear (23) and 

mitochondrial genes (24). In isolated LVNC, the intertrabecular recesses communicate with 

the LV cavity. LVNC was first described in 1984, in Engberding and Bender’s description of 

the first echocardiographic diagnosis of persistence of isolated myocardial sinusoids (37). In 

patients with LVNC associated with other congenital heart diseases, the deep intertrabecular 

recesses communicate with both the LV cavity and the coronary circulation (33). LVNC 

was first described by Bellet and Gouley in 1932, when they observed abnormally “spongy” 

myocardial walls associated with aortic atresia and coronary-ventricular fistula in an autopsy 

of a newborn with congenital heart disease (38).

By itself, “LVNC” does not necessarily describe a disease; it describes an anatomic variant 

of LV structure (39,40). There is wide variability in the ratio between trabeculated and 

compacted layers of the LV. At one extreme, severe forms of LV apex noncompaction 

and inferior/lateral walls are typically seen in children with Barth syndrome. In these 

patients, LVNC is associated with LV dilation and dysfunction (41). At the other extreme, 

hypertrabeculation with prominent (but less pronounced) trabeculations and intertrabecular 

recesses associated with a preserved, compacted layer is more common. Ethnic differences 

in the amount of trabeculation have been observed; Gati et al. suggested prominent LV 

trabeculation was more prevalent in African American subjects (6).

Genetics

This paper’s title posed the question of whether LVNC is a, “distinct cardiomyopathy or a 

trait shared by different cardiac diseases.” Human genetic studies suggest that several genes 

are associated with LVNC (see Table 1).
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Nearly all of the genes associated with LVNC are associated with additional phenotypes, 

like cardiomyopathies or congenital heart defects. However mutations in 1 gene, the 

homolog of Drosophila Mindbomb 1 (MIB1), segregated with autosomal dominant LVNC 

in 2 Spanish families and a conditional loss of function allele in a mouse also led to 

LVNC (30). The hypertrabeculation and noncompaction seen in the Mib1 mouse was 

mimicked in a mouse with inactivation of Jagged1 in the myocardium or Notch1 in the 

endocardium, suggesting that the Notch1 signaling pathway was, indeed, involved (30). 

Chen and colleagues recently reported an important role in trabeculation for endocardial 

expression of a Notch ligand, Fkbp1a (31). These findings firmly support the hypothesis 

that in some circumstances, LVNC is a cardiomyopathy and dysregulated Notch signaling 

in the endocardium leads to disrupted trabeculation. Barth syndrome is an X-linked 

recessive disorder diagnosed either prenatally or in infants that is characterized by failure 

to thrive, growth retardation, and cardiovascular abnormalities including LVNC (5,42). 

It is probably 1 of the few cardiomyopathies that can be prenatally recognized with 

imaging (42), and typically includes hypokinetic dilated cardiomyopathy with LVNC that 

can cause death in early infancy. Barth syndrome is associated with the gene, G4.5, encoding 

tafazzin (TAZ), a mitochondrial protein critical for remodeling of the phospholipid, 

cardiolipin. TAZ knockdown mice die embryonically with cardiomyopathy characterized 

by hypertrabeculation and noncompaction (43). The mouse model and together with human 

TAZ and Barth syndrome data provide additional evidence that genetic pathways can lead 

directly to hypertrabeculation and noncompaction, suggesting that in some instances, LVNC 

is a cardiomyopathy (30,44).

Other LVNC-associated genes in Table 1 are also associated with additional phenotypes, 

including cardiomyopathies (45). LVNC lacks genome-wide association studies (GWAS) for 

LVNC, which would be challenging, given that patients present with pleiotropic phenotypes 

(46). Additional limitations include that most studies reported to date are underpowered, 

limiting their strength. While whole-genome and whole-exome sequencing permit the 

discovery of a new complexity of genotypes (46), many studies reported to date do not 

report clinical whole-genome or whole-exome sequencing, but instead sequence candidate 

genes. Pairing new complex genotypes with complex phenotypes like LVNC requires 

criteria for phenotyping and quality control for genotyping. Thus, at this early stage, we 

can not rule out modifier genes or the potential for several genes to influence the LVNC 

phenotype. Epigenetic (i.e., DNA methylation) or environmental causes, such as increased 

mechanical load or stress that may induce the phenotype, are additional possibilities. A 

recent study using high-resolution episcopic microscopy and 3D reconstruction shows (with 

high sensitivity and quantification) hypertrabeculation in the Mib1 loss-of-function allele 

mouse, compared to a wild type mouse (47).

The Central Illustration outlines LVNC management. In the left-hand panel, under diagnosis, 

we suggest imaging for the initial diagnostic tool in the proband. To confirm diagnosis or 

determine potential involvement in family members, family history and echocardiographic 

screening are 2 potential options. In cases of suspected syndromes, such as Barth Syndrome 

(an X-linked recessive disorder) genetic testing in probands is suggested, given the relatively 

high fatality rate.. Genetic testing in relatives is an additional option identification options 

after the mutation in the proband is identified (Central Illustration).
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Clinical monitoring options in probands (middle panel) include physical exam, 

electrocardiogram, echocardiogram, and creatine kinase MM isoform. For monitoring 

of first-degree relatives, options include clinical screening every 3 years beginning in 

childhood, and, if a mutation is identified, annual clinical screening in children and every 

1 to 3 years in adults. Treatment and management options are listed in the far right panel 

and depend entirely on the patient’s phenotype and clinical needs, and the corresponding 

guidelines (see Management section). Three topics will be touched on: oral anticoagulation 

medicine, cardioverter defibrillator implantation, and cardiac resynchronization therapy 

(Central Illustration).

Imaging and diagnosis

Echocardiography.

Standard echocardiography is the first diagnostic tool for LVNC in both index patients 

and family members. 2D grayscale echocardiography is the most common and useful for 

LVNC diagnosis, showing both broad trabeculae and deep intertrabecular recesses in the 

LV myocardium, typically located in the LV apex and the midinferior and lateral walls. In 

contrast, the basal and midinterventricular septum scanned by an apical 4-chamber view is 

typically free of trabeculae (Figure 3). In most patients, it is necessary to image the LV, 

not only with standard defined imaging views, but also with atypical views to image the 

more apical segments of the LV and detect the prominent trabeculae (Figure 4). Several 

echocardiographic diagnostic criteria for isolated LVNC are available (48–51), but none can 

be considered the gold standard for LVNC diagnosis. Furthermore, the criteria are indirect, 

assessing morphological abnormalities. After careful evaluation of all criteria, the most 

important echocardiographic criterion remains the ratio of noncompacted/compacted >2.0 in 

end-systole (49,50). However, when using this ratio to diagnose LVNC, one must keep its 

quite high interobserver and intraobserver variability in mind as a limitation. Importantly, 

for LVNC diagnosis, the aforementioned imaging criteria may be considered together with 

family history and genetics.

In addition to morphological abnormalities, systolic dysfunction is frequently present in 

LVNC hearts. It was hypothesized that small vessel “dysfunction” with impaired coronary 

flow reserve and microcirculatory defects, together with a primary myocardial disease, 

is responsible for the functional abnormalities (52). Thus, in classical LVNC cases, 

especially in advanced stages, both hypokinetic and akinetic regions can be detected in 

the diseased segments by wall motion analysis. Recent studies suggest that deformation 

imaging could better reveal systolic impairment in patients with LVNC, even in those 

with preserved LV ejection fraction (53,54). In addition, a tissue Doppler-derived strain 

rate study demonstrated a distinct deformation pattern in LVNC, with significantly higher 

longitudinal systolic strain rate and strain in the basal segments than in the apex, which 

could help differentiate LVNC from dilated cardiomyopathy (55). Diastolic dysfunction is 

another typical echocardiographic feature of LVNC. Thus, most patients (even children) 

present with abnormal diastolic filling parameters (56). Diastolic dysfunction is attributed in 

part to abnormal relaxation resulting from extensive trabeculation (57).
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Contrast Echocardiography.

In obese patients or patients with lung disease who may have poor acoustic windows, 

conventional echocardiography has diagnostic limitations. In these cases, the diagnosis 

is often missed because of imaging quality limitations, especially in the more apical 

region of the heart. Echocardiographic contrast imaging with various contrast agents 

enhances endocardial border definition and could improve detection of this rare 

cardiomyopathy, which could otherwise be misdiagnosed (58,59). Thus, when conventional 

echocardiographic images are poor or diagnosis is uncertain, contrast echocardiography can 

be helpful.

Cardiac magnetic resonance (CMR).

CMR may help to accurately describe and diagnose LVNC and distinguish true LVNC 

from the prominent hypertrabeculation that can be seen in normal hearts and individuals 

(Figure 5)(60). The major advantage of CMR is that a 3-dimensional data set with 

equal image quality can be acquired. Thus, potential trabeculae at any region cannot be 

missed. The major marker is (as for echocardiography) the presence of several, prominent 

trabeculations in the LV with topographic involvement of apical and mid segments of the 

lateral and inferior walls. Prior studies were performed in small clinical series (61,62). A 

noncompacted/compacted ratio >2.3 on CMR is considered the cutoff for LVNC diagnosis 

(Figure 6)(61). This criterion yielded >43% of positive subjects in the Multi-Ethnic Study 

of Atherosclerosis (39). Importantly, to avoid misdiagnosis, compact papillary muscle 

should be distinguished from prominent trabeculations, which is quite easy to do with the 

3-dimensional dataset acquired during CMR.

Fractal analysis was also used to quantify LV trabeculae (15). In a recent study of 30 

patients, the combination of end-diastolic measurements at basal, mid, and apical segments 

was found to be the best selector of LVNC cases from the normal population (63). When 

grouping patients according to normal and reduced EF, interpretation of the data was 

challenged by the unanswered question of whether normal and low EF groups simply 

represent 2 phases of the same condition diagnosed at different evolutionary stages, or 

whether they represent the phenotypes of different diseases. The authors concluded that “A 
gold standard for the diagnosis of LVNC continues to be lacking as no imaging or pathology 
signature has yet been agreed” (64). While waiting for the ideal definition and diagnostic 

criteria, a descriptive diagnosis including both LVNC and the LV morphofunctional 

phenotype (e.g., DCM-like, HCM-like) can be adopted in order to collect data from 

emerging series.

The typical 2-layered structure of the LV wall can be better measured in CMR, where 

the thinner, compacted layer can be precisely measured in affected ventricular segments. 

As in echocardiography, functional data (hypokinesis of the noncompacted segments vs. 

normal kinesis of unaffected segments) may further strengthen the diagnostic hypothesis. 

Advanced CMR modalities can provide additional information. For example, high-intensity 

endocardial T2 signals, subendocardial perfusion defects, and delayed enhancement 

of the subendocardial layer can add information about function and fibrosis of the 

affected segments and the possibility of assessing whether abnormalities coincide with 
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noncompacted versus compacted segments (65,66). Advances in imaging are contributing 

to the ability to distinguish pathologic LVNC from nonpathologic hypertrabeculation. The 

correct diagnosis may prevent unneeded restrictions for athletes (61). A current gap is the 

inability to establish the thickness and functionality of the thin, compacted LVNC heart 

layers. This knowledge may lead to improved clinical management.

Management of LVNC

There are no specific guidelines for management of LVNC. Management includes 

confirmation of the echocardiographic or CMR diagnosis. Differential diagnoses include 

prominent hypertrabeculation with normal compacted LV layer, apical hypertrophic 

cardiomyopathy, dilated cardiomyopathy, endocardial fibroelastosis, and LV apical 

thrombus.

Clinical management of LVNC depends on the presence or absence of cardiac dysfunction 

or arrhythmias. Patients with normal LV size and function undergo clinical monitoring, 

while symptomatic patients with LV dilation and dysfunction or hypertrophy may be 

clinically managed according to phenotype. Guidelines suggest that familial LVNC should 

be diagnosed by echocardiographic screening of family members (45). Echocardiographic 

screening is recommended for family members, given that the symptoms are variable and 

the risks include heart failure and sudden cardiac death. Genetic testing for LVNC does 

not change clinical management of the disease; however, it may be helpful for confirming 

diagnoses in family members and/or determining potential development in family members 

to aid in the timing of screening (see Central Illustration)(67).

Clinical monitoring may include clinical history, physical examination, echocardiography, 

Holter monitoring, and measurement of high-sensitivity troponin (Central Illustration).

Currently, there are no specific treatments for LVNC. Depending on the phenotype, patients 

are managed according to their clinical needs and corresponding guidelines (e.g., for 

congestive heart failure, arrhythmias). Oral anticoagulation is a debated issue in subjects 

with normal LV function and absence of LV hypertrophy: patients are either treated on 

the basis of the phenotype (oral anticoagulation given independently on arrhythmias or 

LV dysfunction for primary prevention of embolic episodes) or in the presence of LV 

dysfunction, arrhythmias, prior embolic events, or proven atrial or ventricular thrombi.

Complications with LVNC include heart failure, arrhythmias including sudden cardiac 

death, and systemic embolic events (16). Atrial tachycardia and fibrillation are common. 

Ventricular tachyarrhythmias have been reported in up to 47% of symptomatic patients 

referred to a tertiary referral center, and SCD has been reported in 13% to 18% of (mostly 

adult) patients with LVNC. Whether the risk of ventricular arrhythmias is higher than that 

seen in patients with corresponding functional phenotypes (DCM, HCM, and so forth) 

is not clear. As anticipated (68), LVNC has been considered a reason to restrict athletic 

participation (33,69,70). However, a 48.6 ± 14.6-month follow-up in athletes fulfilling 

LVNC criteria did not reveal adverse events (6), thus advising caution before introducing 

restrictions based on isolated LVNC.
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It is unknown whether or not the small compacted layer and the deep recesses of the heart in 

patients with LVNC increases the risk of complications, such as ventricular perforation 

in interventional occasions or implantation of devices. This issue is not governed by 

guidelines, and decisions may be eventually supported by tailored evaluations of families, 

including evidence of sudden death in affected relatives. In 30 patients with LVNC 

who underwent implantable cardioverter defibrillator (ICD) implantation for secondary or 

primary prevention, 11 patients (37%) had appropriate ICD therapies in a mean follow-up 

period of 40 ± 34 months: 3 with antitachycardia pacing, 4 with ICD shocks, and 4 with both 

antitachycardia pacing and ICD shocks (69). Although clinical predictors for appropriate 

ICD therapy are not available, this single study suggests that ICD therapy may be effective 

in patients with LVNC.

Cardiac resynchronization therapy improves functional NYHA class in patients with LVNC 

and may hence be considered in patients with a LV ejection fraction ≤35% and signs of 

ventricular dyssynchrony (71,72). More studies need to be completed to determine the safety 

and efficacy of the use of ICDs in patients with LVNC.

Summary and Conclusions

In summary, evidence that LVNC is a cardiomyopathy includes the following: 1) specific 

mutations in genes in the Notch1 pathway in mice and humans leading to dysregulated 

signaling and hypertrabeculation and noncompaction; and 2) specific mutations in G4.5 

in mice and humans disrupting the TAZ protein leading to dysregulated remodeling of 

cardiolipin and Barth syndrome, characterized by hypertrabeculation and noncompaction 

in utero and failure to thrive. In contrast, evidence that LVNC is a trait shared by 

multiple cardiac diseases has not been ruled out. The data presented on mechanical 

load from pregnancy and athletes is compelling. However, Notch1 signaling is involved 

in mechanosensation (73–75), suggesting that individuals who develop LVNC may have 

an underlying mutation in a gene that disrupts Notch signaling or in other endocardially-

expressed mechanosensing genes. In these patients, an additional modifier, such as stress or 

increased load, may be needed for the phenotype to present. Although echocardiography 

and CMR are useful for LVNC diagnosis, these approaches are indirect and present 

limitations of interobserver and intraobserver variability. Guidelines for clinical management 

of LVNC suggest that familial LVNC should be diagnosed by echocardiographic screening 

of family members. Genetic testing does not change clinical management of the disease, but 

may be helpful for confirming diagnosis in family members and/or determining potential 

development in family members to aid in the timing of screening. Anticoagulation is 

the only medication that can be administered in addition to therapies commonly used in 

phenotype-based management of cardiomyopathies. We suggest that the AHA, WHO, and 

the ESC form a working group in the near future, and agree on guidelines to specifically 

define:

1. LVNC as primary pathology, which can be isolated or associated with 

cardiomyopathy. It may be clinically useful to indicate the cardiomyopathy 

phenotype and the LVNC (HCM-LVNC, RCM-LVNC, DCM-LVNC, ARVC-

LVNC) to distinguish I-LVNC with normal LV size and function.
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2. the role of LVNC as a marker for addressing clinical and genetic diagnostic 

hypotheses.

3. reproducible and unified imaging-based diagnostic criteria for LVNC.

4. the risk of thrombosis in patients with I-LVNC, especially when LV size and 

function are normal.

In parallel, to establish real-world data and outcomes in LVNC patients, we recommend 

increased collection of LVNC electronic health record data, with imaging data and genetic 

information, if possible (76).
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Central Illustration. A Clinical Management Outline for Left Ventricular Noncompaction 
(LVNC).
Diagnosis and screening strategies for probands and relatives are listed in the left panel, 

clinical monitoring guides are listed in the middle panel, and treatment options are outlined 

in the right panel. Data for this table was selected from the Online Mendelian Inheritance in 

Man URL, established as a collaboration between the Institute of Genetic Medicine, Johns 

Hopkins Medicine, and the National Human Genome Research Institute.
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Figure 1. Two Hearts Depicting the Variability In Both Extension and Depth Of Trabeculae and 
Recesses
A) In this high magnification view of the apical wall of the heart, the noncompacted area is 

limited to a few apical trabeculae. The patient harbored mutations p.(Arg495Trp) in Myosin 
Binding Protein Cardiac 3 (MYBPC3) and p.(Asp117Asn) in Lim domain binding protein 
3 (LDB3) genes [MH+D OH GAD EG-MYBPC3[p.Arg495Trp]+LDB3 [p.Asp117Asn]SC-IV]. Although 

LBD3 is a candidate gene for LVNC, in this family, the disease segregated with the mutation 

in MYBPC3.

B) In this heart, the prominent trabeculations (blue line) and deep recesses (red line) involve 

the entire LV apex. LV = left ventricle.
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Figure 2. High Magnification View of Intertrabecular (BLUE →) and Endocardial (GREEN→) 
Thrombotic Stratification.
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Figure 3. Echocardiographic 4-chamber views distinguishing prominent trabeculation (A) vs. 
hypertrabeculation (B).
(A) An echocardiographic 4-chamber view from a patient with a dilated cardiomyopathy 

presenting with prominent trabeculation in the LV apex and lateral wall. In this case the 

criteria for LVNC are not fulfilled. (B) An echocardiographic 4-chamber view from a patient 

with a typical LVNC presenting with hypertrabeculation in the LV apex and lateral wall. LV 

= left ventricle; LVNC left ventricular noncompaction.
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Figure 4. A) An echocardiographic image from a patient with LVNC.
An atypical 4-chamber view was used to better illustrate the non-compaction in the LV 

apex. B) The same view with color Doppler imaging. This view highlights perfusion of 

intertrabecular recesses from the left ventricular cavity. Abbreviations as in Figure 3.
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Figure 5. Cardiac magnetic resonance (CMR) from a patient with ischemic heart disease and 
ejection fraction = 27%.
Apart from the ischemic heart disease history, this patient does not meet the CMR criteria 

for LVNC cardiomyopathy. A) Short axis view showing the papillary muscle with prominent 

trabeculation in mid left ventricle segments. B) Long axis view showing trabeculation 

mainly in left ventricular lateral segments. Other abbreviations as in Figure 3.
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Figure 6. CMR from a patient with LVNC.
A) Short axis view showing the hypertrabeculation in all mid LV segments apart from the 

interventricular septum. B) Long axis view showing the hypertrabeculation mainly in the 

apical and mid LV segments. LV = left ventricular.
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