Skip to main content
. 2023 Jul 17;23:94. doi: 10.1186/s12880-023-01050-1

Table 4.

Performance comparison among machine learning models

Data ICG-R15 SVM RF ExtraTrees XGBoost LightGBM
MRI ICG-R15 ≤ 10% vs. ICG-R15>10% Test set ACC 0.824 0.765 0.824 0.853 0.794
Test set AUC (95%CI) 0.802(0.639–0.965) 0.839(0.703–0.974) 0.873(0.743–1.000) 0.899(0.784–1.000) 0.806(0.650–0.962)
ICG-R15 ≤ 20% vs. ICG-R15>20% Test set ACC 0.824 0.882 0.735 0.824 0.824
Test set AUC (95%CI) 0.893(0.780–1.000) 0.979(0.941–1.000) 0.878(0.739–1.000) 0.946(0.866–1.000) 0.833(0.632–1.000)
ICG-R15 ≤ 30% vs. ICG-R15>30% Test set ACC 0.882 0.618 0.882 0.941 0.794
Test set AUC (95%CI) 0.922(0.802–1.000) 0.789(0.481–1.000) 0.945(0.866–1.000) 0.961(0.890–1.000) 0.891(0.743–1.000)
CT ICG-R15 ≤ 10% vs. ICG-R15>10% Test set ACC 0.772 0.632 0.667 0.842 0.702
Test set AUC (95%CI) 0.734(0.590–0.879) 0.661(0.514–0.807) 0.723(0.576–0.870) 0.822(0.700–0.944) 0.741(0.610–0.872)
ICG-R15 ≤ 20% vs. ICG-R15>20% Test set ACC 0.842 0.667 0.702 0.684 0.684
Test set AUC (95%CI) 0.860(0.758–0.963) 0.722(0.591–0.853) 0.634(0.478–0.789) 0.709(0.570–0.847) 0.692(0.552–0.832)
ICG-R15 ≤ 30% vs. ICG-R15>30% Test set ACC 0.982 0.912 0.807 0.965 0.982
Test set AUC (95%CI) 0.865(0.600–1.000) 0.871(0.683–1.000) 0.783(0.471–1.000) 0.938(0.824–1.000) 0.925(0.776–1.000)

The performance of the best model is in boldface