Skip to main content
. 2023 Jul 17;23:94. doi: 10.1186/s12880-023-01050-1

Table 5.

Performance of the best MRI- and CT-based machine learning classification model

Data ICG-R15 Cohort AUC (95%CI) Accuracy Sensitivity Specificity model
MRI ICG-R15 ≤ 10% vs. ICG-R15>10% Training 0.996(0.989–1.000) 0.987 0.980 1.000 XGBoost
Test 0.899(0.784–1.000) 0.853 0.875 0.833 XGBoost
ICG-R15 ≤ 20% vs. ICG-R15>20% Training 0.995(0.986–1.000) 0.962 0.929 0.980 Random Forest
Test 0.979(0.941–1.000) 0.882 1.000 0.857 Random Forest
ICG-R15 ≤ 30% vs. ICG-R15>30% Training 0.997(0.991–1.000) 0.962 1.000 0.951 XGBoost
Test 0.961(0.890–1.000) 0.941 1.000 0.968 XGBoost
CT ICG-R15 ≤ 10% vs. ICG-R15>10% Training 0.998(0.995–1.000) 0.970 0.957 1.000 XGBoost
Test 0.822(0.700–0.944) 0.842 0.917 0.714 XGBoost
ICG-R15 ≤ 20% vs. ICG-R15>20% Training 0.866(0.781–0.951) 0.842 0.872 0.830 SVM
Test 0.860(0.758–0.963) 0.842 0.840 0.844 SVM
ICG-R15 ≤ 30% vs. ICG-R15>30% Training 0.997(0.991–1.000) 0.992 1.000 0.991 XGBoost
Test 0.938(0.824–1.000) 0.965 0.800 0.981 XGBoost

ICG-R15: indocyanine green retention rate at 15 min, AUC: Area under the ROI curve, ACC: Accuracy