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ABSTRACT We report the complete genome sequence of Legionella cardiaca strain
H63T, which had been isolated from aortic valve tissue from a patient with native endo-
carditis. The genome assembly contains a single 3,477,232-bp contig, with a G1C content
of 38.59%, and is predicted to encode 2,948 proteins.

Among the extrapulmonary manifestations of Legionella infection is endocarditis (1, 2).
Our laboratory previously described a novel isolate that had been obtained by plating

material from resected aortic valve tissue on buffered charcoal yeast extract (BCYE) agar at
37°C and was named Legionella cardiaca strain H63T (ATCC BAA-2315) (3, 4). Because prior
genotypic analysis of L. cardiaca involved only DNA-DNA hybridization and phylogenetic
analyses of three loci (4) and the mechanisms of Legionella endocarditis are unknown, we
determined the complete genome of L. cardiaca H63T.

Using the Promega Maxwell 16 system, DNA was isolated from H63T, which had been
grown from a single colony to confluence on BCYE agar at 37°C for 3 days. DNA was
sequenced using Illumina and Pacific Biosciences (PacBio) platforms. For Illumina sequencing,
short-read libraries were generated with a KAPA HyperPrep kit (Roche) and sequenced using
150-bp paired-end reads on a NovaSeq 6000 system. For PacBio sequencing, genomic DNA
(gDNA) was fragmented to an average size of ;11 kb with a Covaris g-TUBE. DNA was
cleaned with SPRIselect beads, followed by library construction using the SMRTbell Express
template preparation kit v2.0 (PacBio), which includes single-strand DNA overhang removal,
DNA damage repair, end repair/A-tailing, and barcoded overhang adaptor ligation. The
library was pooled with other libraries on an equimolar basis and subsequently size
selected on a BluePippin instrument with an 8-kb cutoff value. The library pool was purified
with SPRIselect beads, quantified with a Qubit 4.0 fluorometer, and assessed with an Agilent
fragment analyzer. The final library pool was sequenced with PacBio Sequel II v2.0 chemistry
and a single-molecule real-time (SMRT) Cell 8M on a Sequel II instrument at an on-plate con-
centration of 85 pM. Illumina reads were quality filtered using a combination of Illumina RTA
v1.8.70.0 and Trimmomatic v0.38.0 (5). PacBio reads were quality filtered using FastQC v0.72
(6). For Illumina sequencing, 5,802,382 reads were generated, with ;250� coverage; for
PacBio sequencing, 1,609,389 reads (N50, 11,074 bp) were generated. The resulting raw
sequencing reads were processed using PacBio SMRTLink v9.0, including demultiplexing
by Lima v1.11.0 (7). Genome assembly was performed using the PacBio HGAP4 assembler,
which includes overlap determination, followed by consensus polishing with Pilon v1.24
(8) using Illumina 150-bp paired-end reads generated from the same gDNA. Rotation of the
chromosome was performed using the IGS automated prokaryotic annotation pipeline (9).
The assembly yielded a single closed circular chromosome. Gene annotation was performed
using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) v6.4 (10–12).

The H63T genome assembly contains a single 3,477,232-bp contig (;4,411� coverage),
with a G1C content of 38.593%, and is predicted to encode 2,948 proteins. A rooted spe-
cies tree based on the concatenated amino acid alignment of 219 single-copy orthologous
proteins was generated using OrthoFinder v2.5.4 (13–16), and strain H63T was most closely
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FIG 1 Relationships of L. cardiaca H63T with 63 other sequenced species of Legionella. In the rooted species tree, L. cardiaca is high-
lighted in red and the other Legionella species and their corresponding strain names appear in black. Appearing at the top of the tree
are non-Legionella species (in brown) that belong to other genera within the order Legionellales. Bar, 0.1 amino acid substitutions per site.
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related to Legionella brunensis (Fig. 1). Pairwise average nucleotide identity (ANI) comparisons
(17–21) confirmed that L. cardiaca is a distinct species within the L. brunensis-containing clade
(Table 1), which is linked to disease (4, 22–29). Consistent with H63T being virulent in infection
models (4), its genome has genes encoding a type IVB secretion system and a type II secretion
system and genes linked to iron assimilation (30–38).

Data availability. The assembly of the genome is available under GenBank accession
number CP119078, and raw reads have been submitted to the NCBI SRA under accession
numbers SRR23636844 and SRR23636845.
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