
SynBOLD-DisCo: Synthetic BOLD images for distortion 
correction of fMRI without additional calibration scans

Tian Yua,*, Leon Y. Caib,*, Victoria L. Morganb,c,d,f, Sarah E. Goodaleb, Dario J. Englotb,c,d,e,f, 
Catherine E. Changa,b,d,e, Bennett A. Landmana,b,c,d,e, Kurt G. Schillingc,d

aDepartment of Computer Science, Vanderbilt University, Nashville, TN, USA;

bDepartment of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA;

cDepartment of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 
Nashville, TN, USA;

dVanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 
Nashville, TN, USA;

eDepartment of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA;

fDepartment of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA

Abstract

The blood oxygen level dependent (BOLD) signal from functional magnetic resonance imaging 

(fMRI) is a noninvasive technique that has been widely used in research to study brain 

function. However, fMRI suffers from susceptibility-induced off resonance fields which may cause 

geometric distortions and mismatches with anatomical images. State-of-the-art correction methods 

require acquiring reverse phase encoded images or additional field maps to enable distortion 

correction. However, not all imaging protocols include these additional scans and thus cannot 

take advantage of these susceptibility correction capabilities. As such, in this study we aim to 

enable state-of-the-art distortion correction with FSL’s topup algorithm of historical and/or limited 

fMRI data that include only a structural image and single phase encoded fMRI. To do this, we 

use 3D U-net models to synthesize undistorted fMRI BOLD contrast images from the structural 

image and use this undistorted synthetic image as an anatomical target for distortion correction 

with topup. We evaluate the efficacy of this approach, named SynBOLD-DisCo (synthetic BOLD 

images for distortion correction), and show that BOLD images corrected using our approach are 

geometrically more similar to structural images than the distorted BOLD data and are practically 

equivalent to state-of-the-art correction methods which require reverse phase encoded data. Future 

directions include additional validation studies, integration with other preprocessing operations, 

retraining with broader pathologies, and investigating the effects of spin echo versus gradient 

echo images for training and distortion correction. In summary, we demonstrate SynBOLD-DisCo 

corrects distortion of fMRI when reverse phase encoding scans or field maps are not available.
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1. INTRODUCTION

The blood oxygen dependent (BOLD) signal in functional magnetic resonance imaging 

(fMRI) is an established way of assessing neuronal activity in the brain by measuring 

the coupling of such activity with associated hemodynamic responses [1]. By evaluating 

changes in blood flow in different parts of the brain, fMRI BOLD images allow researchers 

to investigate associations of localized brain activity with cognition, sensation, and overall 

health [1], [2]. Further, by evaluating how BOLD signals correlate across different regions of 

the brain, fMRI BOLD images provide investigators a picture of the functional connections 

in the brain, both at rest and in response to tasks [1], [3]. These advances have yielded 

significant discoveries in neuroscience, such as the identification of the default mode 

network and an improved understanding of brain changes due to neurological conditions, 

including Alzheimer’s disease and epilepsy [4]–[7].

One critical limitation of fMRI BOLD images arises due to the echo planar imaging (EPI) 

acquisition schemes used to capture them. These schemes suffer from increased sensitivity 

to susceptibility-induced off resonance fields and magnetic field inhomogeneity, particularly 

in the phase encoding direction [8]–[10]. The result of this is that fMRI BOLD images 

acquired with EPI acquisitions can contain geometric distortions that result in inaccurate 

localization of voxels and subsequently confound spatial hemodynamic findings in the brain 

[8].

Reducing or correcting EPI distortions generally requires sequence modification (i.e., 

parallel imaging, increased bandwidth, improved shimming protocols) or post-acquisition 

image processing [8], [11]–[17]. While there are several strategies to correct distortions 

in image processing pipelines, including using b0 field maps or nonlinear registration to 

structural images, one technique that has risen to prominence in recent years is the use of 

reverse phase encoded images (i.e. using two scans with opposite phase encoding direction 

and hence equal and opposite distortions) in order to estimate and correct distortions [16]. 

For example, to correct distortions in an image phase encoded in the anterior-to-posterior 

(AP) direction, a reverse phase encoded image in the posterior-to-anterior (PA) direction 

is required. This type of correction is implemented in various software packages, (i.e., 

the topup algorithm in the FSL toolkit) and has several advantages over field maps and 

nonlinear registrations, including direct empirical estimates of distortion and appropriate 

signal intensity corrections [16], [17]. Additionally, correction with reverse phase encoded 

images, though typically recommended for spin echo images [18], may also be performed 

on gradient echo BOLD images directly where susceptibility fields can cause both distortion 

and unrecoverable signal loss [19].

One key limitation of this approach is that reverse phase encoded images are not always 

acquired due to time constraints, acquisition difficulties or artifacts, or unawareness of these 
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processing techniques. Additionally, these images were not always acquired in historical 

datasets. Thus, there is a gap in the field where a method for correcting susceptibility-

induced geometric distortions without these additional calibration scans is needed.

In this study, we aim to enable topup-like processing with historical and/or limited 

fMRI data that includes only the distorted forward phase encoded functional data and 

an associated structural image. Inspired by image synthesis in both diffusion [20], [21] 

and functional MRI literature [22], we leverage deep learning to synthesize an undistorted 
BOLD image from the acquired distorted BOLD image and a T1 weighted (T1w) structural 

scan. This undistorted, synthetic image with BOLD contrast can be used as a calibration 

scan to perform distortion correction of a distorted BOLD image by inputting both into 

topup and informing the algorithm that the synthesized image has an infinite bandwidth in 

the phase encoding direction (i.e., it is undistorted). We name this pipeline SynBOLD-DisCo 

(synthetic BOLD images for distortion correction). We show that this pipeline corrects 

image geometry in regions most susceptible to distortions, results in better matching to 

the structural image, and is practically equivalent to running topup with both forward and 

reverse phase encoded data.

2. METHODS

Figure 1 depicts our proposed pipeline based on our prior related work in diffusion MRI, 

Synb0-DisCo [20], [21]. The objective is to use an averaged distorted BOLD signal and 

a T1w anatomical MRI to generate a synthetic undistorted BOLD signal with appropriate 

geometry and contrast. This synthetic volume can then serve the role of a reverse phase 

encoded scan or field map with infinite bandwidth, providing state-of-the-art correction 

methods (i.e., FSL’s topup) the necessary information to correct the distorted image [16], 

[17].

2.1 Data

Our aim is to train our network using a range of datasets, acquired on different scanners, 

with varying resolutions, contrasts, and distortion magnitudes. To this end, we utilize de-

identified data from 9 different datasets (Table 1), each with a varying number of subjects, 

sessions, and complementary phase encoded image pairs (i.e., one forward and one reverse 

phase encoded scan) per session. This results in a total of 265 subjects and 805 fMRI BOLD 

image pairs that we subsequently use for training, validation, and testing.

Eight of the datasets are open-source and downloaded directly from OpenNeuro.org, while 

one dataset was acquired at the Vanderbilt University Institute of Imaging Science (VUIIS) 

under Institutional Review Board (IRB) 182089 and 181231. Importantly, these datasets 

were selected based on an exhaustive review of datasets available on OpenNeuro.org that 

contain the necessary complementary phase encoded BOLD data to train our model against 

gold standard distortion correction. The digital object identifier (DOI) for OpenNeuro.org 

dataset ds123456 version 7.8.9 follows doi:10.18112/openneuro.ds123456.v7.8.9.

In addition, to externally validate SynBOLD-DisCo on a dataset with no constituent data 

included in training, we leverage a cohort acquired at the National Institutes of Health under 
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protocol 00-N-0082 and analyzed at VUIIS under IRB 181540. These data, referred to as 

the “external validation” cohort, consist of 13 subjects with T1w MRI and fMRI BOLD 

images (either resting state, task-based, or both) without reverse phase encoded scans. Thus, 

these data cannot undergo traditional distortion correction and serve as an initial external 

validation of the efficacy of the proposed pipeline. The T1w MRI were acquired with a 

TE/TR of 4.25/2200ms at 1mm isotropic resolution and the fMRI were acquired with a 

TE/TR of 29.4/2100ms at 3×3×4mm or 3.2×3.2×4mm resolution.

2.2 Preprocessing

To prepare for training, we preprocess each complementary phase encoded BOLD image 

pair and associated T1w MRI to obtain a normalized T1w MRI and distorted mean BOLD 

signals as well as undistorted mean BOLD signals estimated by topup to act as training 

targets. These images are all registered and transformed to Montreal Neurological Institute 

(MNI) atlas space [23].

First, each image in the complementary phase encoded pair is motion corrected and 

averaged with FSL’s mcflirt, generating distorted complementary mean BOLD signals 

[24]. Second, we utilize the state-of-the-art distortion correction tool, topup, to take these 

complementary mean BOLD signals and generate a distortion correction field map [16], 

[17]. Undistorted mean BOLD signals (i.e., the training targets) are obtained by applying the 

correction field maps to the original complementary phase encoded images and taking the 

average volume, producing two corrected images from each complementary BOLD image 

pair.

Next, N3 bias field correction and intensity normalization are performed on the input T1w 

MRI image using the FreeSurfer library [25], [26]. To ensure the network inputs (i.e., the 

distorted mean BOLD image and normalized T1w MRI) and target (i.e., the undistorted 

mean BOLD image) are in the same space, FSL’s epi_reg, a rigid-body 6 degree of freedom 

transformation, is used to register both BOLD images to the T1w MRI [17]. The T1w MRI 

is then affine registered using the ANTS library to the 1.0 mm isotropic MNI ICBM 152 

asymmetric template [27]. Subsequently, all images are transformed to MNI space at 2.5 

mm isotropic resolution.

To prepare for training, the intensities of the normalized T1w MRI and the undistorted and 

distorted mean BOLD signals are scaled. We map the Freesurfer normalized T1w MRI 

intensities between 0 and 150 to between −1 and 1. An intensity of 0 and the 99th percentile 

intensity of the distorted and undistorted mean BOLD signals are mapped to between −1 and 

1.

Of note, the preprocessing pipeline at deployment differs slightly: undistorted mean BOLD 

signals estimated by topup from complementary phase encoded image pairs (i.e., the training 

targets) are not needed. However, the T1w MRI and distorted BOLD series undergo the 

same preprocessing described herein (Figure 1).
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2.3 Network architecture, training protocol, and loss definition

Following Synb0-DisCo, a 3D U-net is used to generate a synthetic, undistorted image with 

BOLD contrast in 2.5 mm atlas space from the distorted mean BOLD signal and the T1w 

MRI, leveraging the topup undistorted mean BOLD images as targets [20], [21]. In brief, 

the network is based on the original U-net implementation with a dual channel input, leaky 

ReLU activations, and instance normalization instead of batch normalization layers.

The data are partitioned by subject for the test, validation, and training sets. We randomly 

withhold 12% of subjects for each dataset, resulting in 30 subjects (81 image pairs) and 

utilize the remaining 235 subjects (724 image pairs) in 5-fold cross validation for training 

and validation. Of note, since there are only 3 subjects in ds003752, this dataset is omitted 

from the testing set.

Each fold is trained for 120 epochs with a learning rate of 0.0001. Beta values of 0.9 and 

0.999 are used with the Adam optimizer. A weight decay rate of 0.00001 is applied. After 

each epoch, the validation loss is computed, and the weights of the model are saved if it 

improves. This results in five trained networks, one for each fold. NVIDIA GeForce GTX 

1080 Ti and Quadro RTX 5000 GPUs are used for training, requiring about 9GB of memory.

During each iteration, the following loss computation occurs. First, both the forward and 

reverse distorted mean BOLD signals (xf and xr, respectively) are passed through the 

network with the associated normalized T1w MRI to produce two synthetic, undistorted 

images with BOLD contrast (yf, and yr, respectively). Next, we compute three losses, 

denoting the forward and reverse state-of-the-art undistorted mean BOLD signals (i.e., the 

targets) as zf and zr, respectively: MSE(yf, zf), MSE(yr, zr), and MSE(yf, yr), where MSE is 

the mean squared error across the image voxels. We sum these three terms to produce the 

final loss. The rationale behind this is to enforce (1) that the synthesized images be similar 

to their respective undistorted targets and (2) that the forward and reverse images produce 

similar synthetic scans, similar to Siamese and null space network designs [20], [21].

2.4 Distortion correction leveraging the synthetic volume

All five networks (one from each fold) are used to make an inference. The final synthetic 

BOLD image is determined by the ensemble average of the predictions of the five networks. 

Inverse transformation is then applied to move the synthetic BOLD image back to the 

original BOLD space. The synthetic BOLD image is then passed into topup along with the 

forward or reverse mean distorted BOLD signal to generate a distortion correction field map 

which is subsequently used to correct the entire distorted BOLD signal. This results in the 

final output of the pipeline.

Notably, the synthetic image is considered to have infinite bandwidth (readout time of 0) for 

topup while the distorted can have arbitrary bandwidth relatively. Last, in order to match the 

smoothness of the synthetic image, the distorted image is smoothed slightly with a Gaussian 

kernel with standard deviation 1.15 mm prior to topup [20], [21]. The smoothness of the 

synthetic image originates from the network operating at a slightly lower resolution (2.5 

mm isotropic) due to GPU memory constraints and interpolation while resampling back to 

subject space.
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2.5 Quantitative evaluation of pipeline

To evaluate the effectiveness of our pipeline, metrics such as mean absolute percent 

difference and mutual information are used. For all subjects in the testing set, we 

calculate the mean absolute percent difference by comparing the distorted mean BOLD 

signals (“Distorted”), corresponding synthetic BOLD signals (“Synthetic”), and resulting 

undistorted mean BOLD signals from the pipeline (“SynBOLD”) with state-of-the-art topup 
correction with complementary phase encoded images (“Topup”) to assess both distortion 

correction accuracy and contrast accuracy. Second, mutual information is calculated by 

comparing the “Distorted”, “Topup”, “Synthetic”, and “SynBOLD” images with N3 bias 

corrected T1w weighted MRI to assess geometric similarity. For both experiments, all 

images are rigidly registered to T1w MRI image space and all metrics are computed within 

a brain mask. For the “SynBOLD” images, the mean undistorted BOLD signal is used to 

maintain comparisons in 3 dimensions. Pair-wise Wilcoxon sign rank tests with Bonferroni 

correction at 0.05 significance are used to determine statistical significance.

3. RESULTS

3.1 Network convergence and loss curves

We determine convergence of the dual channel U-net across all 5 folds through analysis 

of the loss curves (Figure 2). We observe a deep descent of the training loss within the 

first 30 folds and small improvements afterwards. Looking at the final 30 folds, we observe 

continued descent of the training loss with no improvement in the validation loss, suggesting 

convergence. The testing loss at the end of training was in line with the validation loss, 

suggesting appropriate generalizability.

Additionally, the plotted loss is a combination of three MSE losses, and the square root of 

the observed loss for the testing and validation sets hovers around 0.1. As the target images 

were normalized to between −1 and 1, we note the overall validation and testing error on the 

image level falls around of 5% or less of the image range, suggesting appropriate agreement.

3.2 Quantitative performance

We plot the mean absolute percent difference of the “Distorted”, “Synthetic (Intermediate)”, 

and “SynBOLD (Final)” BOLD signals in the withheld test set against the corresponding 

“Topup (State-of-the-art)” volumes to determine contrast and intensity accuracy after 

correction with our pipeline (Figure 3a). We find both the intermediate synthetic volume 

generated by the neural network and the final corrected mean BOLD signal leveraging 

the synthetic volume obtain statistically significant smaller differences against the state-of-

the-art but not between each other, suggesting that both the synthetic network output and 

final undistorted fMRI data from our pipeline match the state-of-the-art distortion correction 

generated from complementary phase encoded images.

To assess geometric similarity to structural scans, we plot the mutual information within 

the brain between the N3 bias corrected T1w MRI and each of the BOLD images used 

in the pipeline, “Distorted”, “Topup (State-of-the-art)”, “Synthetic (Intermediate)”, and 

“SynBOLD (Final)”, for each sample in the withheld test set to assess geometric accuracy 
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(Figure 3b). We find the synthetic volume has the highest mutual information, followed by 

the SynBOLD-DisCo output, the state-of-the-art, and finally the distorted volume.

3.3 Qualitative performance

To visually understand the effects of the pipeline against structural imaging and the state-of-

the-art, we visualize a representative sample in the withheld test set (Figure 4). We observe 

visually appreciable and comparable improvements in distortion correction with both our 

pipeline and the state-of-the-art as well as increased similarity to structural T1w MRI. We 

also confirm structural similarity of the synthetic intermediate volume produced by the 3D 

U-net with the T1w MRI.

Additionally, we provide representative examples from each of the 8 datasets included 

in the withheld cohort in Figure 5. Importantly, our approach visually generalizes well 

across independent datasets, with results similar to state-of-the-art processing and geometry 

matching the anatomical images.

3.4 External validation

We apply our pipeline to the external validation cohort acquired without phase encoded 

scans to evaluate its ability to correct images that are unable to undergo traditional state-of-

the-art distortion correction with topup. We find in a representative sample that our pipeline 

produces images that are more geometrically similar to anatomical T1w MRI than the 

distorted input (Figure 6).

4. DISCUSSION

In this work, we demonstrate that distorted fMRI BOLD images and T1w MRI can be 

used to learn synthetic, undistorted volumes that facilitate susceptibility-induced distortion 

correction using established state-of-the-art methods without the need for reverse phase 

encoded scans or additional field maps. We determine this qualitatively by visualizing 

the distorted inputs, the synthetic volumes, and the pipeline outputs against both images 

corrected using reverse phase encoded scans and structural T1w MRI. These qualitative 

findings are supported quantitatively by reduced error between our pipeline outputs and the 

state-of-the-art as well as increased structural similarity between our pipeline outputs and 

T1w MRI. Importantly, we also demonstrate that our pipeline produces visually improved 

distortions in fMRI data unable to undergo traditional distortion correction techniques. 

Overall, this represents a distinct step forward toward improving the quality of fMRI BOLD 

images prior to subsequent analysis without the need for potentially complex or unreliable 

calibration scans.

This pipeline was inspired by recent advances in image synthesis for diffusion MRI 

distortion correction [20], [21], using the same network architecture described here to 

synthesize undistorted images for topup-like correction. These techniques have provided the 

ability to reliably correct diffusion MRI data [28] in cases where field maps and reverse 

phase encoded scans were unavailable [29]–[33], as is the case for legacy datasets or 

intra-operatively during surgery [34]. We imagine similar use cases for the current pipeline 

to investigate functional findings in areas prone to susceptibility-induced distortions.

Yu et al. Page 7

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2023 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Similar pipelines using synthesized images for fMRI do exist. For example, the recent study 

by Montez et al. uses T1- and T2-weighted contrast to synthesize a high resolution and 

high signal-to-noise ratio BOLD contrast image for use as a template for nonlinear warping 

for distortion correction [22]. Outputs from their pipeline perform similarly (or outperform) 

other approaches utilizing field mapping. In our study, rather than using the synthesized 

image as a reference for nonlinear warping, we have chosen to use the synthesized image 

for topup-like processing where the distortions are estimated from the data based on physical 

principles (distortion directions, magnitude, signal intensity variations). While nonlinear 

registration is certainly commonly performed, it may not be optimal as it attempts to match 

BOLD contrast (with both distortions and signal dropout) to structural images and may not 

appropriately address signal intensity variation (signal pileup or signal stretching) due to 

distortions.

Our technique will also face similar challenges in areas of signal dropout due to the use of 

gradient echo images in the training set. The use of gradient echo versus spin echo images to 

calculate the topup field maps may result in poor estimates in areas with little to no signal. 

However, no signal will be available to shift even if field maps are perfectly estimated [18]. 

For this reason, we train our network to estimate the corrected gradient echo images directly, 

which in theory should be images that are distortion corrected but suffer from the same 

signal dropout (allowing topup to disentangle dropout from distortion). Further, recent work 

suggests that using gradient echo images directly for distortion correction of other gradient 

echo images may be beneficial [19].

Another prominent limitation is the inclusion of data only phase encoded in the AP or 

PA directions and data without obvious lesions, such as tumors or plaques. This could 

potentially result in SynBOLD-DisCo being not applicable to data that do not fit these 

assumptions. Another limitation is that the assessments of distortion correction done herein 

were performed after rigid registration to T1w MRI space. We pursued this approach 

to minimize confounding of these metrics due to improper alignment between images. 

However, registration processes are imperfect and may introduce biases in evaluation. Last, 

despite statistically significant improvements in distortion with SynBOLD-DisCo, we note 

the distortion correction capacity of topup is imperfect, thus introducing a performance 

ceiling for SynBOLD-DisCo.

There are many additional directions this work could take to improve the research landscape. 

One is further external validation of distortion correction findings on independent, unrelated 

datasets. This could take the shape of direct geometric- and intensity-based assessments like 

those included presently, or an investigation of improvement in effect size or significance 

among studies of disease. Additionally, the integration of SynBOLD-DisCo into other fMRI 

preprocessing pipelines to address distortion correction as well as motion and normalization 

concerns would be beneficial for the field. As mentioned previously, retraining of our model 

with consideration for images phase encoded in different directions or on a population that 

include lesioned brains may be helpful in promoting SynBOLD-DisCo’s applicability to 

broader audiences. Last, investigating differences in spin echo versus gradient echo images 

for distortion correction would improve understanding of how these acquisitions impact 

fMRI BOLD analyses.
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We make the SynBOLD-DisCo source code and trained weights available at github.com/

MASILab/SynBOLD-DisCo along with containerized implementations to promote further 

investigation in the field.
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Figure 1. 
The SynBOLD-DisCo pipeline. (a) A distorted fMRI BOLD series and a T1w MRI are 

preprocessed and transformed to atlas space, (b) where a 3D U-net synthesizes a synthetic, 

undistorted fMRI BOLD image. (c) This synthetic image can be used with existing state-of-

the-art distortion correction methods, like FSL’s topup, to compute field maps that allow the 

entire fMRI BOLD sequence to be corrected.
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Figure 2. 
Training, validation, and withheld testing set losses. The mean and standard deviation of the 

losses for each dataset across the 5-folds are plotted and suggest network convergence and 

appropriate generalizability to withheld data by the end of training (120 epochs). Each of the 

five folds fulfilled early stopping criteria and the final models were saved between the 90th 

and 120th folds. The testing loss was computed once at the end of training.
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Figure 3. 
Quantitative evaluations of pipeline accuracy. (a) Mean percent difference between the 

“Distorted”, “Synthetic (Intermediate)”, and “SynBOLD (Final)” volumes used in our 

pipeline and the “Topup (State-of-the-art)” volume. Lower mean percent difference 

indicates increased similarity with the state-of-the-art. (b) Mutual information between the 

“Distorted”, “Topup (State-of-the-art)”, “Synthetic (Intermediate)”, and “SynBOLD (Final)” 

volumes and a corresponding N3 bias corrected T1w MRI. Higher mutual information 

indicates increased geometric similarity with the structural image. **** p < 0.0001 

(Wilcoxon sign rank test with Bonferroni correction), ns = not significant.
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Figure 4. 
Visualization of a representative sample in the withheld test set, including the “Distorted”, 

“Topup (State-of-the-art)”, “Synthetic (Intermediate)”, and “SynBOLD (Final)” volumes 

and a corresponding structural T1w MRI. The yellow lines denote the anterior borders of 

the corresponding distorted sulci highlighted by the yellow circles. The blue arrows denote 

geometrically similar areas with improved signal intensities with distortion correction.
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Figure 5. 
Visualization of a representative sample from each of the 8 withheld datasets, including the 

“Distorted”, “Topup (State-of-the-art)”, “Synthetic (Intermediate)”, and “SynBOLD (Final)” 

volumes and a corresponding structural T1w MRI. Blue lines indicate tissue interfaces 

computed on the T1w MRI. Yellow arrows denote examples of geometrically improved 

distortions with our pipeline.
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Figure 6. 
Visualization of a representative sample in the external validation set, including the 

“Distorted” input and “SynBOLD (Final)” output of our pipeline as well as a corresponding 

structural T1w MRI. Blue lines indicate tissue interfaces computed on the T1w MRI. 

The yellow boxes denote corresponding frontal gyri with improved geometric similarity to 

T1w MRI after SynBOLD. The “Topup (State-of-the-art)” volume is omitted because these 

data were acquired without reverse phase encoded images and thus are unable to undergo 

traditional distortion correction.

Yu et al. Page 17

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2023 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yu et al. Page 18

Table 1.

Datasets used for training, validating, and testing SynBOLD-DisCo.

Dataset Version Subjects Sessions Images Vendor
TE/TR (ms) Resolution (mm)

T1w MRI fMRI T1w MRI fMRI

ds002603 1.0.0 23 1 92 Philips 3.70/8.10 25–35/550–2000 1 iso 2–3 iso

ds002606 1.1.0 10 2 20 Siemens 3.40/2.60 22/1228 0.8 iso 1.6 iso

ds002655 1.0.1 35 1 35 Siemens 2.26/1900 45.2/2200 0.97×0.97×1 1.8 iso

ds002685 1.3.1 12 2–14 363 Siemens 3.16/2300 27/2000 1 iso 1.5 iso

ds002738 1.0.2 33 1 33 GE –/– 30/680 0.9 iso 2.2 iso

ds002878 2.0.0 35 1 35 Siemens 2.10/– 30/1400 0.875 iso 2.5 iso

ds003037 1.0.1 53 1–6 138 Philips 3.50/7.00 30/2000 1 iso 3×3×3.33

ds003752 1.0.0 3 1 15 Siemens 2.20/2.40 37/800 0.8 iso 2 iso

VUIIS – 61 1–2 74 Philips 3.00/8.00 23/2000 1 iso 2.5 iso

iso = isotropic, – = not applicable or not given.
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