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Abstract

With the confounding effects of demographics across large-scale imaging surveys, substantial 

variation is demonstrated with the volumetric structure of orbit and eye anthropometry. Such 

variability increases the level of difficulty to localize the anatomical features of the eye organs 

for populational analysis. To adapt the variability of eye organs with stable registration transfer, 

we propose an unbiased eye atlas template followed by a hierarchical coarse-to-fine approach to 

provide generalized eye organ context across populations. Furthermore, we retrieved volumetric 

scans from 1842 healthy patients for generating an eye atlas template with minimal biases. Briefly, 

we select 20 subject scans and use an iterative approach to generate an initial unbiased template. 

We then perform metric-based registration to the remaining samples with the unbiased template 

and generate coarse registered outputs. The coarse registered outputs are further leveraged to 

train a deep probabilistic network, which aims to refine the organ deformation in unsupervised 

setting. Computed tomography (CT) scans of 100 de-identified subjects are used to generate and 

evaluate the unbiased atlas template with the hierarchical pipeline. The refined registration shows 

the stable transfer of the eye organs, which were well-localized in the high-resolution (0.5 mm3) 

atlas space and demonstrated a significant improvement of 2.37% Dice for inverse label transfer 

performance. The subject-wise qualitative representations with surface rendering successfully 

demonstrate the transfer details of the organ context and showed the applicability of generalizing 

the morphological variation across patients.
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1. INTRODUCTION

Significant effort has been invested by the Human BioMolecular Atlas Program (HuBMAP) 

to relate the molecular findings in organ anatomy across scales (from cellular to organ 
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system level). Previous efforts have been focused mapping the organization and molecular 

profiles at cellular resolution [3], while several studies have been focused on generating an 

initial imaging template to adapt contextual information on an organ scale. Medical imaging 

such as computed tomography (CT) and magnetic resonance imaging (MRI) provided the 

imaging platform to visualize organ anatomy at a systematic level. Contrast enhancement is 

leveraged to emphasize the structural and anatomical context between neighboring organs 

with the injection of a contrast agent and guide to extract information from regions of 

interest (ROIs). However, the morphology of organs varies significantly across different 

demographics, especially in eye organs. The orbital shape and the length of the optic nerve 

vary with age and sex [4]. To adapt and generalize the population profiles of eye organs, 

it is important to contextualize the variable anatomy of organs in well-defined reference 

templates (atlas) to act as a common framework for mapping correspondence across patients 

[5, 6]. From a technical perspective, current studies have shown the opportunity to adapt 

the anatomical variability to one single atlas template with image registrations. However, the 

anatomical transferred context is biased to the chosen template subject and the registration 

algorithm is limited to by the large deformation field for localizing the organ anatomy [7]. 

Therefore, we aim to adapt the conventional information of eye organs with minimal biases 

and adapt the contextual variability across large scale of patients with robust registration 

algorithms following the work of [2, 8, 9].

Previous works have been developed an atlas platform in neuroimaging [10, 11]. Aging 

brain atlases are built to visualize the variability of brain organs in both adults and infants 

populations [12–14]. Apart from looking into the anatomical characteristics, a single atlas 

reference is chosen to perform segmentation with unsupervised settings [15, 16]. Also, 

multiple atlas references are randomly picked and registration is performed between the 

subject moving scans and the multiple atlases’ platform [17]. Segmentation predictions 

are computed with joint label fusion using the guidance of multiple registered outputs. 

Apart from the applicational usage of the atlas template, an organ-specific atlas template 

has been proposed to adapt the multi-contrast characteristics and the significant shape 

variability across a large scale of patients. A contrast-specific substructure template has also 

been proposed to look into the fine-grained anatomical details of kidney substructure and 

stably generalize the variation of small substructures in a single template. Furthermore, 

unbiased template brain atlases have been proposed using brain MRI to reveal the 

anatomical characteristics of populations across different perspectives such as ages and 

disease conditions. However, none of such works have been proposed in generating unbiased 

atlas frameworks for the eye organs. Apart from the limited work in generating organ-

specific unbiased atlas, challenges are also raised for the robustness of registration pipelines. 

Significant efforts have been demonstrated in image registration with metric-based and deep 

learning-based approaches [1, 2]. VoxelMorph has been proposed as the current network 

basis to perform deformable registration in unsupervised settings [2]. However, the input 

for the network is needed to be affinely aligned and such a basis structure is limited to 

provide diffeomorphism for inverse transformation [8]. It is challenging to well align the 

correspondence between the atlas template and the moving image [9]. Therefore, a robust 

pipeline is demanded to generate an eye-specific template with minimal biases.
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In this study, we propose a hierarchical registration approach to construct an unbiased atlas 

template in an unsupervised setting and aim to increase the generalizability of adapting 

eye organ context across populations. With a total of 100 contrast-enhanced head CT 

scans without known for ocular diseases, we initially performed iterative registration to 

generate an unbiased average mapping with a small portion of subject scans (~20 scans). 

We further performed a hierarchical registration pipeline to leverage the coarse output from 

metric-based registration for further registration refinement with a deep learning network. 

Furthermore, we introduce the probabilistic estimation to model the diffeomorphism and 

compute accurate transformation to enhance the stability of the registration across patients. 

The generated atlas target and moving subject scans are downsampled to input for the 

deep registration pipeline. The predicted deformation field is upsampled back to the atlas 

resolution and inverse transformation is performed with the atlas label for label evaluation as 

quantitative measures. Qualitative visualization is further demonstrated the convergence of 

unbiased templates and the proposed registration performance at image level.

2. METHODS

2.1 Initial Unbiased Template Generation

To adapt the variability of eye organs across patients, image registrations are performed 

to match the anatomical context to the single spatial-defined template using different 

registration tools such as ANTs [1] and NiftyReg [18]. However, the contextual information 

of each organ from the registered output is then biased and has a similar anatomical 

structure to the single template. Here, we introduce an unbiased template generation 

module to generate an initial coarse atlas with small portion of data samples and minimize 

the registration bias instead of using a single fixed template. Specifically, we first input 

20 samples and directly generate an average map to coarsely align the morphological 

structure of the head. Hierarchical metric-based registration (following with rigid, affine, 

and deformable registrations) is performed with ANTs and computes an average template 

with all registered outputs. We use the computed average template in each epoch as the 

next fixed template and iteratively perform the same hierarchical procedures to the average 

template until the registration loss across all samples is converged. We hypothesize that 

such a template has the minimal biases and is beneficial to further adapt the population 

characteristics of eye organs.

2.2 Hierarchical Registration Refinement

After generating the initial template with minimal bias, we perform registration to the 

remaining samples and aim to generalize the anatomical characteristics of eye organs across 

populations. However, with the visualization of the checkerboard overlay in Figure 3, we 

found that the metric-based registration is limited to perform significant deformation to align 

the head boundaries and the orbital anatomy. Motivated by VoxelMorph and probabilistic 

network, we introduce a deep probabilistic model defw (a, f) that leverages convolutional 

neural network (CNN) with diffeomorphic integration and spatial transform layers. Such a 

registration model is trained in an unsupervised setting and demonstrates better ability to 

generate significant deformation towards specific organ anatomies. We define a and m as 

the 3D volumetric atlas image and moving images, and z as the latent representation that 
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parametrizes the transformation function φz   :   ℝ3 ℝ3. In our registration scenario, the 

deformation field is defined as the following differential equation (ODE):

∂φt

∂t = v φt , (1)

where φ0 = Id is the identity transformation and t corresponds to time. We compute the 

stationary velocity field v over t = [0,1] and output the deformation field that is differentiable 

and invertible [8]. To model the diffeomorphism with CNN, we model the prior probability 

of z as follows:

p z = M z; 0,   ∑z
, (2)

where M(·; μ, ∑) is the multivariate normal distribution that models with mean μ and 

covariance ∑. In our registration scenario, the representation z is defined as the stationary 

velocity field that correlates the diffeomorphism through equation 1. With the basis of 

the above modeling, we can then convert equation 2 to estimate the posterior registration 

probability with the fixed template and moving image as follows:

p z a; m = M a; m ∘ φz , (3)

With Equation 3, we can approximately predict the diffeomorphic registration field φz to 

warp moving image m to the atlas template a via MAP estimation. Furthermore, to evaluate 

p(z|a; m), a variational approach is used and introduces an approximate estimation of the 

posterior probability qφ(z|a; m) parameterized by φ. We aim to minimize the difference 

in the predicted posterior probability p(z|a; m) and qφ(z|a; m) through KL divergence for 

unsupervised training as follows:

ℒ = min
φ

KL qφ z a; m ∥ p z a; m .
= min

φ
Eq log qφ z a; m − log p z a; m

= min
φ

Eq[log qφ z a; m − log p z, a; m ] + logp a; m
= min

φ
KL qφ z a; m ∥ p z − Eq   log p z a; m

(4)

3. DATA AND EXPERIMENTS

3.1 Data and Parameters

To evaluate the unbiased atlas template and our proposed hierarchical registration pipeline, 

head CT volumetric scans from 1842 patients were retrieved in de-identified form from 

ImageVU with the approval of the Institutional Review Board (IRB 131461). 100 subjects 

were retrospectively selected to generate and evaluate the atlas template. All selected subject 

scans consist of 4 organs ground-truth label, which corresponds to optic nerve, rectus 

muscle, globe and orbital fat. To generate the unbiased atlas, we selected 20 subject scans 

and resampled them to isotropic resolution (0.8 mm × 0.8 mm × 0.8 mm) for iterative 

registration with a dimension of 512 × 512 × 224. The criteria for choosing subjects 
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for unbiased template generation are based on the morphological characteristics of eye 

organs and the high-resolution characteristics of the volumetric image. For the probabilistic 

registration, both the atlas template and moving subject scans are downsampled to an 

isotropic voxel resolution of (1.0 mm × 1.0 mm × 1.0 mm) with a dimension of 256 × 256 

× 224. The batch size is 1 and the learning rate is 0.0001 for the network initialization. The 

predicted deformation field is upsampled back to the original atlas resolution and computed 

inverse transform for label evaluation.

3.2 Experiments

3.2.1 Iterative Template Comparison—We performed a conventional registration 

algorithm ANTs as our registration baseline and leverage a small portion of subject scans 

to use the template generation tool (antsMultivariateTempalteConstruction) for coarse atlas 

construction. We initially applied both rigid and affine registration to align the anatomical 

location of the head skull and eye organs. SyN registration is then performed for deformable 

registration with the similarity metric of cross-correlation (CC). In total, there are 4 

resolution levels for registration and the number of iterations is defined as 100 × 100 × 

70 × 20. The registration losses become converged when the templates is updated with 

6 iterations. Figure 2 further demonstrates the qualitative visualization of the unbiased 

template in tri-planar view.

3.2.2 Hierarchical Registration Refinement—After we generate the unbiased 

template, we further leverage the unbiased template to register the remaining samples for 

adapting the eye organ context and evaluate the registration pipeline. We first perform ANTs 

registration with the remaining 80 subjects following with the same hierarchical manner in 

atlas generation (rigid, affine and deformable). We then perform a deep learning registration 

algorithm to enhance the contextual matching in eye organs and the skull boundaries. We 

perform VoxelMorph as our baseline network to concentrate on enhancing the registration 

performance. We further integrate the probabilistic ideas with the basis of VoxelMorph to 

smooth the deformable field and prevent the over-deformation across the eye organs. We 

compare the registration performance by computing the inverse transform of the atlas label 

with the predicted deformation field and transforming back to the moving image space. Dice 

Coefficient is used to measure the overlapping regions between the transferred label and 

ground truth labels.

4. RESULTS

To minimize the biases of using a single atlas template for registration, we want to first 

investigate the quality and following with the effectiveness of the unbiased atlas template. 

We evaluate the quality of the unbiased template with qualitative visualization. From Figure 

3, with the increase in registration iterations, significant changes can be seen in particular 

anatomies within the orange bounding boxes. The skull boundaries become clearer and the 

contrast of boundaries is enhanced to provide better guidance to localize the head skull 

after several iterations. Furthermore, some of the eye organs, especially the retus muscle and 

the globe, being demonstrated with enhanced contrast level in both the boundaries and the 
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morphology of the organ structure. Regions near the eye organs also appear to be stably 

localized with clear structural characteristics compared with the initial iterations.

After generating the minimal biased atlas template from a small portion of data, we want to 

further enhance the generalizability of the atlas template and adapt the anatomical context 

with the remaining samples using different registration approaches. We first compare the 

registration performance qualitatively and manually visualize the quality of the registered 

eye organs. As shown in Figure 3, the registered outputs from ANTs demonstrate a fair 

registration quality that localizes the boundaries of the head skull and can align some of 

the morphological characteristics in eye organs. However, when we further perform the 

checkerboard overlay to the atlas template, the boundaries of eye organs are not well 

aligned, especially for the globe and the orbital muscle nearby. The deformable registration 

of ANTs is limited to generating significant deformation to match the atlas context when 

significant differences in eye organs morphology or skull shape. By using the hierarchical 

registration refinement, the anatomical context of both the head skull and eye organs is 

comparable to the atlas-defined space without over-deformation. The checkerboard with our 

proposed registration method demonstrates a more distinctive appearance and alignment 

to the eye organs and matches the boundaries well. The contrastive and morphological 

characteristics can be well transferred with stability across all populations. Apart from 

the qualitative measures, we further inversely applied the predicted deformation field to 

the atlas label and transformed it back to the original moving image space for label 

similarity evaluation. By using ANTs registration only, the transferred label across all 

organs demonstrates with a mean Dice of 0.727 compared to the atlas label. After we 

add the second stage process for registration refinement, the label transferred performance 

significantly increase from 0.727 to 0.758 across all organs with the basis of VoxelMorph 

network. Such significant increases demonstrate the possibility of refining coarse output 

from metric-based registration and further performed deformation to adapt the variability 

of organs across the population. Furthermore, by introducing the probabilistic estimation 

into the registration network, the label transfer performance outperforms VoxelMorph and 

demonstrates another significant increase of Dice 0.758 to 0.776.

5. DISCUSSION AND CONCLUSION

With the qualitative and quantitative representation above, the contrastive and morphological 

context of the eye organs are stably localized with minimal bias using the hierarchical 

registration pipeline. The label transfer performance in all sub-organ regions of the eye 

demonstrates significant improvement with a decrease of variance in trend. The deep 

learning registration network in the second stage is trained in an unsupervised setting 

and leverages the estimation of probability distribution to enhance the accuracy of the 

predicted deformation field. With the opportunity of integrating metric-based registration 

and deep learning registration as a hierarchical pipeline, we leverage the characteristics of 

deep learning network characteristics to generate large deformation and solve the limitation 

of metric-based registration to adapt morphological variability of both eye organs and 

the head skull. Furthermore, the probabilistic estimation for registration demonstrates the 

diffeomorphism in deep learning networks and enhances the stability by comparing the 

probabilistic representation in the latent space. In this paper, we constructed an unbiased 
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anatomical reference to localize the context of eye organs and further propose a hierarchical 

registration pipeline integrating both metric-based and deep learning registration. The 

unbiased average mapping demonstrated the contrastive characteristics of both eye organs 

and well localized with skull morphology across patients. The atlas target stably adapted 

the eye organs information with the illustration of checkerboard overlay and demonstrate 

significant improvement in label transfer performance with our proposed registration 

pipeline. We aim to create a minimal bias average template that adapts multi-modality 

imaging for eye organs as our future long-term goal and analyzes variability across 

demographics.
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Figure 1. 
The complete pipeline for generating an unbiased eye atlas template can be divided into two 

stages: 1) initial unbiased template generation and 2) hierarchical registration refinement. 

We leverage the small portion of samples to generate an unbiased template with iterative 

registration. The average template generated in each iteration is used as the fixed template 

for the next registration iteration. After the registration loss is converged, we further use the 

generated template to perform metric-based registration for the remaining samples. As the 

coarse output is limited to adapt the significant variability of organ structure, a probabilistic 

refinement network is used to generate large deformation and further aligned the anatomical 

details across eye organs and head skull.
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Figure 2. 
The qualitative representations to visualize the convergence of anatomical details across eye 

organs and the boundaries of head skull in the generation process of unbiased template.
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Figure 3. 
The qualitative representation that demonstrates the registration performance comparing 

with metric-based method as coarse output and the final output with our proposed 

hierarchical registration pipeline. The checkerboard overlay shows that the second stage 

refinement allows to further deform significantly and adapt the variability in boundaries and 

anatomical structure of organs.
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Table 1.

Quantitative evaluation of inverse transferred label for eye organs across all patients (*: p < 0.001)

Methods Optic Nerve Rectus Muscle Globe Orbital Fat Mean Organ

ANTs [1] 0.586 ± 0.0532 0.634 ± 0.0339 0.904 ± 0.0253 0.782 ± 0.0362 0.727 ± 0.132

VoxelMorph [2] 0.635 ± 0.0420 0.687 ± 0.0420 0.920 ± 0.0274 0.790 ± 0.0343 0.758 ± 0.140

Ours 0.651 ± 0.0358 0.712 ± 0.0301 0.931 ± 0.0227 0.810 ± 0.0319 0.776 ± 0.115*
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