Table 2. Attributes and public preferences on ai-enabled technologies.
No Controls | With Controls | |||
Support | Trust | Support | Trust | |
(Intercept) | 3.265*** | 3.096*** | 3.392*** | 3.201*** |
(0.063) | (0.064) | (0.132) | (0.133) | |
Armed drones | 0.052 | 0.037 | 0.054 | 0.039 |
(0.055) | (0.054) | (0.054) | (0.053) | |
General surgery | 0.067 | 0.079 | 0.080 | 0.093+ |
(0.053) | (0.054) | (0.051) | (0.052) | |
Police surveillance | 0.150** | 0.113* | 0.155** | 0.117* |
(0.055) | (0.054) | (0.054) | (0.053) | |
Social media content moderation | -0.002 | 0.019 | -0.011 | 0.012 |
(0.055) | (0.054) | (0.053) | (0.052) | |
Full autonomy and no human oversight | -0.128** | -0.114** | -0.132** | -0.117** |
(0.043) | (0.042) | (0.042) | (0.042) | |
Mixed autonomy (human-in-the-loop) | 0.021 | 0.027 | 0.024 | 0.031 |
(0.041) | (0.041) | (0.040) | (0.040) | |
Maximum precision (correct 99% of the time with 1% false positives) | 0.386*** | 0.366*** | 0.394*** | 0.374*** |
(0.041) | (0.042) | (0.040) | (0.041) | |
Substantial precision (correct 90% of the time with 10% false positives) | 0.122** | 0.086* | 0.108** | 0.074+ |
(0.040) | (0.040) | (0.039) | (0.039) | |
Private industry | 0.016 | 0.002 | 0.015 | 0.001 |
(0.039) | (0.040) | (0.038) | (0.039) | |
Public government agencies | 0.038 | -0.004 | 0.039 | -0.004 |
(0.041) | (0.041) | (0.041) | (0.041) | |
Male | 0.188** | 0.213*** | ||
(0.057) | (0.057) | |||
Conservatism | -0.041* | -0.037* | ||
(0.018) | (0.019) | |||
Income | 0.040+ | 0.027 | ||
(0.022) | (0.022) | |||
Education | 0.069** | 0.067** | ||
(0.023) | (0.023) | |||
White | -0.094 | -0.074 | ||
(0.062) | (0.065) | |||
Age | -0.008*** | -0.008*** | ||
(0.002) | (0.002) | |||
Num.Obs. | 5040 | 5040 | 5040 | 5040 |
R2 | 0.024 | 0.021 | 0.071 | 0.062 |
R2 Adj. | 0.022 | 0.019 | 0.068 | 0.059 |
RMSE | 1.16 | 1.16 | 1.13 | 1.14 |
Std.Errors | by: id | by: id | by: id | by: id |
+ p < 0.1
* p < 0.05
** p < 0.01
*** p < 0.001
Caption: Conjoint average marginal component effects (AMCE) per attribute level. We use cars, human only autonomy, 85% precision, and community and individual regulations as referents for domain, autonomy, precision, and regulator respectively. The dependent variable is a 5-point Likert scale.