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Abstract

In lung cancer screening, estimation of future lung cancer risk is usually guided by demographics 

and smoking status. The role of constitutional profiles of human body, a.k.a. body habitus, is 

increasingly understood to be important, but has not been integrated into risk models. Chest 

low dose computed tomography (LDCT) is the standard imaging study in lung cancer screening, 

with the capability to discriminate differences in body composition and organ arrangement in 

the thorax. We hypothesize that the primary phenotypes identified using lung screening chest 

LDCT can form a representation of body habitus and add predictive power for lung cancer 

risk stratification. In this pilot study, we evaluated the feasibility of body habitus image-based 

phenotyping on a large lung screening LDCT dataset. A thoracic imaging manifold was estimated 

based on an intensity-based pairwise (dis)similarity metric for pairs of spatial normalized chest 

LDCT images. We applied the hierarchical clustering method on this manifold to identify the 

primary phenotypes. Body habitus features of each identified phenotype were evaluated and 

associated with future lung cancer risk using time-to-event analysis. We evaluated the method 

on the baseline LDCT scans of 1,200 male subjects sampled from National Lung Screening 

Trial. Five primary phenotypes were identified, which were associated with highly distinguishable 

clinical and body habitus features. Time-to-event analysis against future lung cancer incidences 

showed two of the five identified phenotypes were associated with elevated future lung cancer 

risks (HR=1.61, 95% CI = [1.08, 2.38], p=0.019; HR=1.67, 95% CI = [0.98, 2.86], p=0.057). 

These results indicated that it is feasible to capture the body habitus by image-base phenotyping 

using lung screening LDCT and the learned body habitus representation can potentially add value 

for future lung cancer risk stratification.
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1. INTRODUCTION

Body habitus refers to the physical and constitutional characteristics of human body, 

which includes the body composition profiles (e.g., muscle and adipose tissues) and organ 

arrangement [1]. In addition to a reflection of genetics, body habitus can depict the 

underlying macro conditions of the body, including nutrition level [2], metabolic status 
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[3], and hormone condition [4], which influence the strength of immune system [5, 6]. 

Abnormal body habitus can serve as an indicator of progression of certain diseases. For 

instance, depending on evolvement of the disease, the ‘pink puffer’ and ‘blue bloater’ are 

two common phenotypes of chronic obstructive pulmonary disease (COPD) [7]. Under the 

context of lung cancer screening, body habitus is commonly assessed by body mass index 

(BMI), which is inversely associated with the risk of future lung cancer incidence and has 

been included as a predictor variable in existing risk estimation models, e.g., PLCOm2012 

[8]. However, BMI has been long criticized for its lack of capability to differentiate muscle, 

fat, and skeletal mass, or depict the detailed organ arrangement, implying that individuals 

with similar BMI may have dramatically different body habitus [9–11]. All indicate the 

necessity to study the representation for body habitus and its predictive power in lung cancer 

risk stratification.

Chest low dose computed tomography (LDCT) is the standard practice in lung cancer 

screening [12]. In addition to the lung parenchyma, these thoracic computed tomography 

(CT) images can provide high resolution depictions of other anatomical structures in the 

thorax, including body compositions, bones, cardiovascular system, and overall thoracic 

cavity morphology. This makes chest LDCT an ideal modality to study the representation for 

body habitus in the context of lung cancer risk prediction. Figure 1 shows two examples 

with dramatically different body habitus, which is clearly depicted by lung screening 

LDCT. Current methods for body habitus evaluation using CT images are mainly based 

on quantitative measurement of certain organs. For example, the body composition profiles 

were depicted by the measured cross-sectional areas of muscle and adipose tissue on axial 

CT slices selected at certain landmarks [13]. The thoracic cavity morphology was described 

by the dimensions of lung regions on given anatomical directions [14]. However, these 

quantitative measures can only capture the anatomical information from certain aspects and 

lack the capability to utilize the entirety of the rich anatomical information encoded in the 

imaging data.

In this study, we considered the unsupervised image-based phenotyping approach that 

captured the body habitus subpopulations using the chest LDCT images of large-scale 

lung screening cohort. We followed the method described in [15] to approximate the 

anatomical manifold by defining an intensity-based pairwise (dis)similarity measurement for 

spatially normalized chest LDCT images, which was followed by hierarchical agglomerative 

clustering analysis to identify similar groups. The differences in identified phenotypes 

were characterized using demographic information, thoracic cavity morphology, body 

composition, emphysema involvement, and lung cancer incidence rate. In addition, we 

studied the association of identified phenotypes with future lung cancer risk with time-

to-event analysis. Some preliminary results of this work have been presented in prior 

conference proceedings [16, 17]. In this paper, we include more detailed description for 

the technique, and additional materials for the characterization of the identified phenotypes.

2. METHOD

In this section, we introduce the technical details of this study. This includes the preprocess 

of the lung screening LDCT scans, the build of imaging manifold, clustering analysis, and 
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evaluate method to characterize the clustering results. The overall study design is given in 

Figure 2.

2.1 Image Pre-processing

The chest LDCT scans were converted into Hounsfield Units (HU). We first identified the 

specific regions in the image, which included the lung masks, using the published pretrained 

model given in [18], and the body masks, using a morphology-based method developed in 

[19]. The extraneous information like the scan tables and clothes were removed. To further 

normalize the images and reduce the variations introduced by different body positioning, the 

processed images were rigidly registered to a common reference space using the NiftyReg 

toolbox [20].

2.2 Imaging Manifold of Lung Screening LDCT

Imaging manifold provides an effective approach to reason and describe the anatomical 

variations in medical images [21–23]. The images can be regarded as points in the abstract 

manifold, with similar cases grouped closely and dissimilar cases arranged more far apart. 

With the high complexities and variations of anatomical structures in the thoracic space, 

explicit modeling of the anatomical manifold is almost infeasible. However, the structure 

of the anatomical manifold can be depicted empirically given the pairwise (dis)similarity 

between cases in the study cohort. Thus, the problem of defining the anatomical manifold 

can be simplified as formulating the (dis)similarity measurement between pairs of cases.

In this work, we followed the validated practice described in [15] and formulated the 

(dis)similarity measurement as intensity-based mean absolute difference (MAD) between 

two spatially normalized LDCT scans. The invalid regions and the regions outside the body 

were excluded from the MAD calculation, which mitigated the unrelated variations caused 

by FOV differences. The MAD (dis)similarity between two spatially normalized images A 
and B was given by

ϕ A, B = ∑p ∈ R A ∪ R B A p − B p
R A ∪ R B , (1)

where R(·) refers to the set of pixels inside the body region of given image.

2.3 Cluster Analysis

Data-driven phenotype discovery is an effective technique to characterize the structure of 

a study cohort and expose unknown covariance in relation to certain disease of interest 

[24, 25]. Instead of using structured clinical features, we employed the anatomical manifold 

of lung screening LDCT to identify the homogeneous subgroups of the population. Like 

[15], we split the study cohort into phenotype groups using the intensity-based Hierarchical 

Agglomerative Clustering (HAC) method. Starting from single element clusters, the method 

iteratively merged closest cluster pairs until a single cluster status was reached. The 

pairwise similarity measurement was given by the intensity-based MAD. For the distance 

definition between clusters, we employed the complete-linkage strategy. This guaranteed the 

compactness of the resulting clusters as the intra-cluster pairs always have higher similarities 
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than the inter-cluster pairs. The optimal number of clusters was identified by the elbow 

location of Residual Dissimilarity (RD) [15] with definition

γ n = ∑i = 1
n μ P i

n σ P i
n

n , (2)

where n is the number of clusters and P i
n  represents the ith cluster. μ and σ refer to the mean 

and standard deviation of in-group pairwise (dis)similarity metric.

2.4 Result Characterization

To characterize the identified phenotypes, we retrieved multiple quantitative measurements 

from the lung screening LDCT image, including:

• Thoracic cavity morphology. We measured the lung volume and the 

dimensions of the lung in transverse (T), anterior-posterior (AP), and inferior-

superior (IS) directions in the spatially normalized space. These dimensions and 

the ratios between them can form an assessment for morphology of thoracic 

cavity.

• Body composition. We applied the multi-level body composition assessment 

tool developed in [13]. The cross-sectional areas of subcutaneous adipose tissue 

(SAT) and skeletal muscle tissue (SMT) were measured on the axial slices at the 

fifth, eighth, and 10th vertebral locations. We also calculated the ratio between 

SAT and SMT.

• Emphysema severity. The evolvement of emphysema was characterized by the 

percentage of lung with intensity less than −950 HU following the practice in 

[26].

In addition to these measurements, the identified phenotypes were characterized by 

demographics, smoking status, and lung cancer incidences. We assessed the significance 

across identified clusters using the Kruskall-Wallis test [27] for continuous variables and 

z-test for the proportional variables. We studied the time to lung cancer diagnosis for each 

cluster using the Kaplan-Meier (KM) estimation [28] and applied the log-rank test to assess 

for a difference in survival curves between the clusters. To study the effect of each cluster 

on future lung cancer risk, we used the Cox proportional hazards model [29] with the 

cluster with lowest index as reference. For all analyses, we specified an a priori significance 

threshold of 0.05 for each of our analyses. As this analysis was hypothesis generating, we 

did not adjust for multiple comparisons.

3. EXPERIMENTS AND RESULTS

3.1 Lung screening LDCT dataset

The study was conducted on a cohort selected from the CT arm of the National 

Lung Screening Trial (NLST) [30]. All image files and the patient specific information 

were obtained from the National Cancer Institute Cancer Data Access System (https://

cdas.cancer.gov/nlst/). In this pilot study, we only considered male subjects in order to 

simplify the body habitus variation. Specifically, 1,200 male subjects were included, with 
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200 cases with lung cancer incidence during follow-up period. Both the follow-up time of 

non-cases and the time-to-diagnosis of lung cancer cases were available from the dataset 

repository. A characterization of this cohort is given in Table 1.

In NLST, each subject had at most three longitudinal LDCT scans. Only the baseline scans 

were included in this study. The image preprocess and spatial normalization procedure 

described in Section 2.1 was applied on each scan. We reviewed each case and excluded 

those with non-standard body positioning, missing part of lung in field-of-view, or 

registration failure. This review process filtered out 14 problematic cases.

3.2 Image-based Phenotyping

We calculated the pairwise MAD (dis)similarity for the remaining 1,186 scans following 

Section 2.2, which was followed by the HAC analysis described in Section 2.3. Five primary 

clusters were identified following this procedure. To visualize the anatomical manifold, 

we employed the Uniform Manifold Approximation and Projection (UMAP) method [31]. 

UMAP seeks to learn the manifold structure of the data and find a low dimensional 

embedding, e.g., in 2-dimensional (2D) space, that preserves the essential topological 

structure of the manifold. UMAP can operate on a pre-defined distance matrix. For this 

study, we formulated this distance matrix using the pairwise MAD (dis)similarity. The 

resulting 2D visualization with clustering labels is shown in Figure 3 (a). We also obtained 

the average intensity maps for each identified cluster, which are demonstrated in Figure 3 

(b). Systematic body habitus differences across clusters can be identified on these intensity 

maps, indicating the effectiveness of the image-base phenotyping approach.

3.3 Characterization of Identified Phenotypes

We obtained the imaging measurements as described in Section 2.4, including descriptions 

for thoracic cavity morphology, body composition measurements, and per cent emphysema 

for characterization of emphysema evolvement. The statistics of these quantitative 

characteristics, together with demographics, smoking status, and lung cancer incidences 

across identified phenotypes, are given in Table 2. DTT, DTAP, and DTIS represent the 

lung dimensions measured in transverse, anterior-posterior, and inferior-superior directions, 

respectively. The KM estimation for lung cancer free rate and cluster-wise hazard ratios are 

given in Figure 4.

The differences across the identified phenotypes were significance for all included variables 

except for age (Table 2). The characteristics of each phenotype were highly distinguishable 

and associated differently with future lung cancer risk. The detailed interpretations are given 

as follow:

• Cluster-1. This cluster represented a phenotype with rounded (low DTT-DTAP 

ratio) and shallowed (low DTIS-DTT ratio) thoracic cavity. The estimated tissue 

mass for SAT and SMT were both higher than other phenotypes. The SAT was 

also account for a larger portion in body composition. The BMI for this group 

was the highest among the identified phenotypes. This phenotype was protective 

against future lung cancer risk (Table 2).
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• Cluster-2. The phenotype represented by cluster-2 was associated with more 

flattened thoracic cage shape (high DTT-DTAP ratio), with lowered diaphragm 

location (high DTIS-DTT ratio). The SAT accounted for a smaller portion of 

the body composition. BMI was also lower than averaged value (Table 1). The 

percentage of current smoker was significantly higher than the average level. 

This phenotype was associated with elevated risk of future lung cancer (HR = 

1.61, 95% CI = [1.08, 2.38]; p = 0.019).

• Cluster-3. This cluster represented a population with larger lung volume and 

slightly increased evolvement of emphysema. The other characteristics, including 

lung dimensions and dimension ratios, BMI, proportion of current smokers, and 

body composition profiles, all fell between the other two dominated clusters 

(cluster-1 and cluster-2), representing a ‘normal’ status. Even though emphysema 

was a known contributing factor for lung cancer risk, we did not observe 

increased future lung cancer incidence rate for this population.

• Cluster-4. This cluster represented a smaller subpopulation with shared but 

strengthened characteristics of cluster-2, associated with extremely low BMI, 

higher rate of current smokers, more flattened thoracic cage, lower diaphragm 

position, decreased body composition mass, and decreased proportion of SAT 

in body composition. We observed an increased future lung cancer risk in 

this population (HR = 1.67, 95% CI = [0.98, 2.86]; p =0.057). Even though 

the p-value is above the priori significance threshold of 0.05, we believe this 

was caused by the limited size of the population considering the shared and 

strengthened characteristics against cluster-2.

• Cluster-5. This cluster represented another smaller subpopulation but with 

unique characteristics against the other phenotypes. While the BMI, body 

composition profiles, and the horizontal ratio of thoracic cage were all fell in 

normal range, the phenotype was characterized by the decreased proportion 

of current smokers, decreased lung volume, elevated diaphragm position, and 

decreased evolvement of emphysema. We did not observe increase in lung cancer 

risk for this phenotype.

4. CONCLUSION

In this pilot study, we evaluated the feasibility for unsupervised image-based phenotyping 

using lung screening chest LDCT and its association with future lung cancer risk 

stratification. A pairwise intensity-based (dis)similarity metric was defined to approximate 

the anatomical manifold of chest LDCT. This was followed by hierarchical clustering 

analysis to identify the primary phenotypes. On an NLST subset, the algorithm identified 

five primary phenotypes. We characterized the identified phenotypes using demographics, 

smoking status, thoracic cavity morphology, body composition, emphysema evolvement, 

and lung cancer incidence rate. This characterization indicated that the approach could 

effectively capture clinically relevant phenotypes in the study population. With time-to-event 

analysis, we revealed that two of the identified phenotypes were associated with elevated 

risk of lung cancer. These results indicate that the unsupervised image-based phenotyping 
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using lung screening LDCT is feasible and can potentially reveal novel imaging biomarkers 

with predictive power for future lung cancer risk stratification.
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Figure 1. 
Lung screening LDCT is capable of distinguishing subjects with different thoracic body 

habitus. For the two examples, the lung masks and thoracic cavity bounding boxes are 

overlayed with axial slices at T8 vertebral level and coronal slices at the tracheal bifurcation. 

The overlap is displayed in both 3D (top row) and planar (bottom row) views. (A) shows a 

subject with barrel chest and elevated diaphragm position, indicated by the increased ratio in 

anterior-posterior and transverse dimensions, and decreased ratio between inferior-superior 

and transverse dimensions of thoracic cage. (B) shows a subject with flattened thoracic cage, 

with lowered diaphragm position.
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Figure 2. 
The overall design of this study. A pairwise (dis)similarity relationship is defined 

to approximate the thoracic imaging manifold. Phenotyping is conducted by applying 

hierarchical clustering algorithm on the approximated imaging manifold. We characterize 

the identified phenotypes for the demographic and imaging properties and the association 

with future lung cancer risk.
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Figure 3. 
The algorithm described in Section 2 estimates five clusters. These clusters represent the 

primary phenotypes identified on the imaging manifold. (a) shows the UMAP display of 

the sample data distribution in imaging manifold with cluster labels. (b) shows the coronal 

views at tracheal bifurcation location of averaged intensity maps in the common space for 

each identified phenotype.
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Figure 4. 
The left plot shows the Kaplan-Meier estimation of lung cancer free rate for each cluster, 

and the right plot shows the cluster-wise hazard ratio with 95% CI using cluster-1 as 

reference. Cluster-2 and cluster-4 are associated with elevated risk of lung cancer. These 

two phenotypes represent a cohort with increased percentage of current smoker, increased 

thoracic cavity dimension ratio in both anterior-posterior / transverse and inferior-superior / 

transverse directions, and decreased ratio between subcutaneous adipose tissue and skeletal 

muscle tissue.
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Table 1.

Characteristics of the NLST subset.

Characteristic Value

No. of subject 1,200

Age (y) 62.5 ± 5.2

BMI (kg/m2) 27.9 ± 4.4

Packyear 62.1± 28.8

Current smoker 573 (47.8%)

Follow-up period (y) 5.7 ± 2.0

Lung cancer incidence 200 (16.7%)
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Table 2.

Characterization of identified phenotypes. All continuous properties are shown in mean values together with 

standard deviation (SD). The proportional properties are demonstrated in the number of incidences and 

percentage (%) in each phenotype group. The p-values are based on the equivalence test across phenotype 

groups, using Kruskall-Wallis test for continuous variables and z-test for the proportional variables.

Characteristic 1, N = 263 2, N = 439 3, N = 294 4, N = 109 5, N = 81 p-value

Demographics & Smoking Status

 Age in years (SD) 62.23 (5.09) 62.72 (5.32) 62.21 (5.08) 62.72 (5.24) 62.53 (5.10) p = 0.636

 BMI in kg/m2 (SD) 32.15 (4.29) 26.04 (2.84) 28.91 (3.41) 22.68 (2.08) 27.98 (3.07) p < 0.001

 Packyear (SD) 64.21 (30.01) 63.36 (31.01) 62.43 (26.47) 56.92 (23.14) 54.02 (24.40) p = 0.016

 No. current smoker (%) 101 (38.4%) 249 (56.7%) 129 (43.9%) 68 (62.4%) 26 (32.1%) p < 0.001

Thoracic Cavity Morphology

 Lung Volume in L (SD) 6.13 (1.26) 6.51 (1.10) 6.87 (1.03) 6.24 (1.17) 4.74 (0.82) p < 0.001

 DTT in mm (SD) 278.16 (15.82) 271.86 (15.03) 277.75 (12.77) 260.79 (15.66) 263.38 (14.33) p < 0.001

 DTAP in mm (SD) 203.30 (12.01) 183.47 (10.31) 195.96 (10.49) 167.84 (10.85) 182.09 (11.37) p < 0.001

 DTIS in mm (SD) 215.15 (20.16) 235.44 (17.98) 231.95 (17.87) 247.24 (19.98) 205.63 (15.59) p < 0.001

 DTT / DTAP (SD) 1.37 (0.10) 1.49 (0.11) 1.42 (0.10) 1.56 (0.12) 1.45 (0.12) p < 0.001

 DTIS / DTT (SD) 0.77 (0.06) 0.87 (0.06) 0.84 (0.07) 0.95 (0.08) 0.78 (0.07) p < 0.001

Body Composition

 SAT in cm2 (SD) 529.90 (166.42) 311.58 (119.68) 410.32 (147.39) 173.66 (96.03) 387.22 (153.09) p < 0.001

 SMT in cm2 (SD) 460.73 (64.82) 402.67 (55.70) 443.21 (57.98) 359.91 (52.51) 419.18 (66.36) p < 0.001

 SAT / SMT 1.16 (0.38) 0.79 (0.32) 0.94 (0.35) 0.50 (0.30) 0.92 (0.33) p < 0.001

Disease

 Percent Emphysema (SD) 11.00 (8.76) 13.26 (11.21) 14.54 (11.18) 15.82 (14.69) 6.79 (7.43) p < 0.001

 No. lung cancer incidence (%) 34 (12.9%) 88 (20.0%) 41 (13.9%) 22 (20.2%) 10 (12.3%) p = 0.041
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