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Mitotic exit requires the dephosphorylation of many proteins whose phos-
phorylation was needed for mitosis. Protein phosphatase 2A with its B55
regulatory subunit (PP2A-B55) promotes this transition. However, the
events and substrates that it regulates are incompletely understood. We
used proteomic approaches in Drosophila to identify proteins that interact
with and are dephosphorylated by PP2A-B55. Among several candidates,
we identified emerin (otefin in Drosophila). Emerin resides in the inner
nuclear membrane and interacts with the DNA-binding protein barrier-to-
autointegration factor (BAF) via a LEM domain. We found that the phos-
phorylation of emerin at Ser50 and Ser54 near its LEM domain negatively
regulates its association with BAF, lamin and additional emerin in mitosis.
We show that dephosphorylation of emerin at these sites by PP2A-B55 deter-
mines the timing of nuclear envelope reformation. Genetic experiments
indicate that this regulation is required during embryonic development.
Phosphoregulation of the emerin–BAF complex formation by PP2A-B55
appears as a key event of mitotic exit that is likely conserved across species.
1. Introduction
The mitotic cycle is largely driven by kinases and phosphatases that control
reversible phosphorylation on various effector proteins to modify their activi-
ties [1]. During mitotic entry, phosphorylation by cyclin-dependent kinases
(CDKs), Polo-like kinase 1 and aurora kinases are largely responsible for the
induction of nuclear envelope breakdown (NEBD), chromosome condensation,
spindle assembly and other cellular events that prepare the cell for the segre-
gation of chromosomes [2–4]. Mitotic exit is triggered by the anaphase-
promoting complex/cyclosome that ubiquitinates mitotic cyclins and securin,
targeting them for degradation by the proteasome [5]. As a result, sister chro-
matids are separated, allowing their segregation in anaphase. Quickly after,
the nuclear envelope starts to reassemble from the endoplasmic reticulum (ER)
around segregated chromosomes that begin to decondense [6,7]. In addition,
the spindle is disassembled, and kinetochores and centrosomes are partly dis-
mantled [1]. Several proteins become dephosphorylated in this transition [8,9].
The precise contributions of these dephosphorylation events to mitotic exit and
the specific roles of phosphatases in this process are incompletely understood.

The protein phosphatases 1 (PP1) and 2A (PP2A) are required for several
aspects of mitotic progression [9–11]. PP2A forms trimers comprising a catalytic
subunit (PP2A-C), a structural subunit (PP2A-A) and a regulatory subunit
(PP2A-B) (figure 1a) [12]. The B55 subunit provides substrate specificity to
PP2A in part via surface-exposed amino acid residues that bind targets
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Figure 1. Identification of PP2A-Tws interactors. (a) Crystal structure of human PP2A-B55 holoenzyme (PDB 3BW8). The structural (PP2A-A, green), catalytic (PP2A-C,
purple) and regulatory (PP2A-B, orange) subunits are indicated. (b) Purification of PP2A-Tws complexes from Drosophila embryos. Zero to 2 h-old embryos expressing
GFP, Tws-GFP or GFP-Tws were submitted to GFP affinity purifications. The gel shows 5% of the total purification products on a silver-stained 4–12% acrylamide SDS-
PAGE gel. The rest of the samples were submitted to mass spectrometric analyses. The positions of holoenzyme subunits are indicated as: a = PP2A-29B (PP2A-A,
65 kDa predicted); b = Tws-GFP/GFP-Tws (PP2A-B, 80 kDa predicted); c = Mts (PP2A-C, 35 kDa predicted). MW: Molecular weight. (c) Identification of proteins sig-
nificantly enriched with Tws-GFP or GFP-Tws compared to GFP alone. Data points are from three independent experiments. (d ) Scatter plots showing abundances of
proteins significantly enriched with Tws-GFP or GFP-Tws compared to GFP alone (only proteins in red from c)). For (c) and (d ): purple names: PP2A-Tws holoenzyme
subunits; green names: previously reported PP2A-Tws substrates; blue names: proteins identified as likely targets of PP2A-Tws in figure 2.
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transiently [10,13,14]. PP2A-B55 tends to efficiently depho-
sphorylate sites immediately preceding a proline residue,
which include CDK sites [15–20]. PP2A-B55 also
dephosphorylates phospho-threonines more efficiently than
phospho-serines [20,21]. Humans possess four B55 subunit
genes, with B55α and B55δ most ubiquitously expressed
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Figure 2. Identification of PP2A-Tws-dependent phosphoproteins. (a) Wiring diagram of PP2A-B55/Tws function and regulation in the mitotic cycle. See Introduction for
details. (b) Experimental scheme for the identification of PP2A-Tws-dependent phosphorylation sites. (c) Identification of phosphopeptides of which the abundance depends
on Tws, Gwl or Endos. Volcano plots indicate average fold-change values of peptides from the indicated RNAi samples compared to non-target RNAi control samples analysed
in quadruplicate. Significantly enriched (top-right, red) or depleted (top-left, teal) peptides are displayed. Otefin peptides phosphorylates at Ser50 and/or Ser54 are shown.
(d ) Radial heat map for differentially regulated phosphopeptides identified in (c). Colour scale indicates log2 fold change. (e) Identification of phosphopeptides sensitive to OA
treatment. The volcano plot indicates average fold-change values of peptides from OA-treated samples compared to DMSO control samples analysed in quarduplicate.
Significantly enriched (top-right, red) or depleted (top-left, teal) peptides are displayed. Otefin peptides phosphorylated at Ser50 and/or Ser54 are shown.
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[22]. Drosophila has only one B55 gene, named twins (tws) or
abnormal anaphase resolution (aar), and its mutation or knock-
down results in mitotic defects [23–25].

PP2A-B55 is inactivated during mitotic entry [18]. Cyclin
B-CDK1 activates the Greatwall (Gwl)/MASTL kinase that
then phosphorylates endosulfine proteins (Endos in Droso-
phila), turning them into selective inhibitors of PP2A-B55
[26–30] (figure 2a). Endosulfines act as inhibitors because
they are substrates of PP2A-B55 with a relatively high affinity
for the enzyme and a very low dephosphorylation rate [31].
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In late mitosis, when Cyclin B is degraded, Gwl is inactivated
by PP1 and endosulfines are ultimately dephosphorylated by
PP2A-B55 which thereby becomes reactivated [31–33]. This
system generates a delay between anaphase onset and later
events of mitotic exit that depend on PP2A-B55 [34].

Efforts to identify PP2A-B55/Tws functions and sub-
strates in the cell cycle have used different strategies. A live
imaging screen found PP2A-B55α to be required for several
events of mitotic exit including nuclear envelope reformation
(NER), chromosome decondensation and spindle disassem-
bly [35]. A kinetic phosphoproteomic study identified
several PP2A-B55-dependent substrates to propose motif con-
straints in PP2A-B55 target sites [14]. A role for PP2A-B55 in
promoting NER was also uncovered by this study, with
several nucleoporins being identified as targets. Phosphopro-
teomic characterization of Gwl KO cells also revealed roles of
PP2A-B55 in the regulation of the spindle assembly check-
point and in the maintenance of genome integrity [36,37].
Phosphoproteomic studies in the yeast S. cerevisiae have
revealed several substrates of PP2A-Cdc55 (the B55 ortholo-
gue) in the regulation of mitosis [38–40]. However, the
regulation and functions of this enzyme in the cell cycle
appear to differ considerably between budding yeast and ani-
mals [41]. Moreover, the nuclear envelope does not break
down during mitosis in yeast [42].

We previously took a genetic approach to search for func-
tions and targets of PP2A-Tws in mitosis. We found that
PP2A-Tws promotes NER in mitosis and in meiosis [43].
This occurs in part through its dephosphorylation of
barrier-to-autointegration factor (BAF), a protein that links
chromosomes, nuclear envelope proteins and the lamina in
interphase [44]. BAF directly binds DNA and the LEM
(Lem2, emerin, MAN1) domain contained in several proteins
of the inner nuclear membrane [6,44,45]. In mitosis, BAF
phosphorylation in its N-terminus by VRK1 (NHK-1 in Dro-
sophila) induces its dissociation from DNA and decreases its
affinity for LEM domains [46,47]. During mitotic exit, depho-
sphorylation of BAF by PP2A results in BAF recruitment to
segregated chromosomes [43,48]. There, BAF serves as a plat-
form for NER by recruiting LEM-domain proteins [6,44,45].
PP2A-B55/Tws could promote NER by dephosphorylating
several other proteins [8].

Here, we used proteomic approaches to identify targets of
PP2A-Tws during mitotic exit in Drosophila. We identified
several specific PP2A-Tws interactors and PP2A-Tws-depen-
dent phosphorylation sites. Otefin (also known as emerin
from its name in humans), a LEM-domain protein that inter-
acts with BAF, emerged as an important target [49,50]. In
humans, mutations in the emerin gene cause Emery–Dreifuss
muscular dystrophy [51,52]. Work in Xenopus egg extracts
had suggested that emerin and MAN1 phosphorylation in
mitosis decreases their ability to bind BAF [53,54]. However,
the precise mechanism, the phosphorylation sites and the
kinase(s) and phosphatase(s) responsible for this potential
regulatory mechanism remained unknown. Here we show
that otefin dephosphorylation in a PP2A-Tws-dependent
manner promotes the formation of a ternary complex con-
taining otefin, BAF and lamin, licensing the recruitment of
otefin to reassembling nuclei during mitotic exit. Failure in
this event delays NER and leads to early embryonic lethality.
The mechanism identified could constitute an important
means of regulation of post-mitotic nuclear reassembly
conserved across species.
2. Results
2.1. Identification of PP2A-Tws interactors
To guide the discovery of novel PP2A-Tws targets, we
sought to identify specific interactors. Because we were
interested in functions of PP2A-Tws in mitosis, we chose
to do our purifications from early Drosophila embryos,
which spend much of their time in mitosis. At this stage,
13 rounds of mitosis occur synchronously in a syncytium,
at intervals of approximately 10 min. We used transgenic
lines that expressed Tws-GFP and GFP-Tws under the con-
trol of the upstream activating sequence (UASp). These
fusion proteins were previously shown to be functional as
their transgenic expression induced by a ubiquitous driver
rescued the development of tws mutant flies [55]. Expression
was induced using the maternal driver matα4-GAL-VP16,
which allowed production of the proteins during oogenesis
and early embryogenesis. Embryos aged 0 to 2 h were
collected and submitted to GFP affinity purification. Purified
products were analysed by mass spectrometry. Embryos
expressing GFP alone were used as a control. The experiment
was done three times, allowing for statistical analysis
(electronic supplementary material, table S1).

This analysis confirmed that Tws forms a complex with
the core PP2A subunits: the structural PP2A-29B and the cat-
alytic Mts (figure 1a–d). Several previously demonstrated or
proposed mitotic substrates of Drosophila PP2A-Tws were
also identified as specific interactors of Tws-GFP (figure 1d
left, green names). These include the nuclear envelope-associ-
ated proteins BAF, Lamin and the nuclear pore complex
protein Nup107 [43]. These results are consistent with the
notion that PP2A-Tws promotes NER after mitosis [8]. The
calmodulin-dependent kinase CaMKII and the cohesin
Vtd/Scc1 are other known targets of PP2A-Tws that were
identified [56,57]. Among specific interactors of Tws-GFP,
we also recognized orthologues of several known substrates
of PP2A-B55 enzymes in humans (electronic supplementary
material, figure S1, red names) [10,14,58]. In comparison,
few known targets of PP2A-Tws/B55 were identified as
interaction partners of GFP-Tws (figure 1d right). Thus, the
N-terminal GFP tag may hinder the stable interaction of
substrates at the Tws-binding pocket. The large number of
interactors of Tws-GFP identified is consistent with the
numerous functions of PP2A-Tws/B55 in various cellular
processes [10]. However, a large proportion of these inter-
actions is probably indirect. For this reason, it was difficult
to identify novel mitotic targets of PP2A-Tws with high
confidence based on these data alone.
2.2. Identification of PP2A-Tws-dependent
phosphoproteins

To identify potential substrates of PP2A-Tws, we used a pro-
teomic approach with Drosophila cells in culture (figure 2b).
D-Mel cells were transfected with dsRNA against Tws or
with non-target dsRNA as control. After 4 days, cells were
harvested and lysed, and proteins were digested with tryp-
sin. Phosphopeptides were enriched on a TiO2 resin and
analysed by mass spectrometry. We initially attempted to
use a stable isotope labelling in cells in culture (SILAC)
approach for direct quantitative measurements comparing



royalsocietypublishing.org/journal/rsob
Open

Biol.13:230104

5
two samples [59]. However, the synthetic medium required
for SILAC dramatically increased the doubling time of the
cells (our unpublished observations). Instead, we used a
label-free analysis strategy, where quadruplicates for each
condition allowed for the generation of quantitative data
(electronic supplementary material, table S2).

In this analysis, phosphopeptides containing PP2A-Tws
dephosphorylation sites are expected to be more abundant in
the Tws RNAi samples relative to controls (figure 2c, top-
right corner of the volcano plot). Interestingly, sites found to
be hyperphosphorylated after Tws depletion had a strong ten-
dency to immediately precede a proline residue, consistent
with the reported ability of PP2A-B55 enzymes to dephosphor-
ylate CDK1 sites (electronic supplementary material, figure
S2a). However, hyperphosphorylated sites identified after
Tws RNAi do not necessarily reflect a role of PP2A-Tws in
mitotic exit because this phosphatase likely functions in the
regulation of various cellular processes, even during inter-
phase. To help the identification of PP2A-Tws targets in
mitotic exit, we included in our phosphoproteomic analysis,
the RNAi knockdown of Gwl and Endos. Both proteins func-
tion together to inactivate PP2A-Tws during mitotic entry, and
genetic analysis indicated that this is their only essential func-
tion in mitosis (figure 2a) [60]. In this way, phosphopeptides
containing PP2A-Tws dephosphorylation sites are expected
to be less abundant in the Gwl RNAi and Endos RNAi
samples relative to controls (figure 2c, top-left corner of the
volcano plots). Thus, in the clustering of the data, we were par-
ticularly interested in phosphopeptides enriched after Tws
RNAi and depleted after Gwl and/or Endos (figure 2d,
purple branches). Of the 42 phosphopeptides identified and
grouped in this cluster, 14 belonged to 12 proteins also ident-
ified as significantly enriched interactors of Tws-GFP in our
purifications: otefin (2 peptides), Lost (2 peptides), Nup358,
Klc, HBS1, chb (Orbit), Akap200, Ctf4, MEP-1, Map205,
CG7414 (eIF2A) and Nocte (figure 1c,d, blue names). These pro-
teins constitute likely substrates of PP2A-Tws. As expected,
Endos, a known PP2A-Tws substrate, was also detected as
hyperphosphorylated at the expected site after Tws depletion
and hypophosphorylated after Gwl depletion (figure 2d, in blue).

As an orthogonal approach, we used chemical inhibition.
We treated cells for 1 h with okadaic acid (OA), which inhibits
all forms of PP2A and also other PPP family phosphatases
[61]. Phosphoproteomic analysis identified hundreds of sites
that became hyperphosphorylated following OA treatment
compared with DMSO control (figure 2e). Many of the Tws-
dependent sites were also OA-dependent, including those
identified in otefin, which will be characterized below
(electronic supplementary material, figure S2b). We consider
that sites identified in both analyses are likely to be
dephosphorylated by PP2A-Tws.
2.3. Otefin phosphorylation near its LEM domain is
regulated by PP2A-Tws

The intersection of our interaction and phosphorylation ana-
lyses pointed to otefin as a likely target of PP2A-Tws. Otefin
is a component of the inner nuclear membrane, and we have
previously shown that PP2A-Tws promotes the reassembly of
the nuclear envelope [43]. We therefore became interested in
the regulation of otefin by PP2A-Tws. Both PP2A-Tws-
dependent phosphopeptides identified were phosphorylated
at Ser50, and one of them was also phosphorylated at Ser54.
Ser50 and Ser54 are located immediately after the LEM
domain of otefin in its primary structure (figure 3a). Both
sites lie in a consensus motifs for phosphorylation by CDKs
(minimal: S/T-P or optimal: S/T-P-X-K/R) [1]. Ser54 of
otefin was previously shown to be phosphorylated by
Cyclin B-CDK1 [62]. Moreover, sequence alignment with
human emerin reveals one site, Ser49, which is similarly
located after the LEM domain and lies in a minimal CDK
motif (figure 3a). The PhosphoSitePlus database indicates
that human emerin was frequently reported to be phosphory-
lated at Ser49 [63]. For these reasons, we hypothesized that
phosphorylation at otefin at Ser50–Ser54 could serve an
important biological function.

To visualize phosphorylation at these sites and its depen-
dence on PP2A-Tws, we used SDS-PAGE with the addition of
Phostag. We expressed in D-Mel cells a small N-terminal
fragment of otefin in fusion with GFP (GFP-Ote 1–70). We
observed a faint band at a higher molecular weight for
GFP-Ote 1–70 that was lost upon mutation of Ser50 and
Ser54 (figure 3b, arrow). Moreover, RNAi depletion of Tws
induced a marked increase in the intensity of this higher
band for GFP-OteWT 1–70, but not for GFP-OteAA 1–70. We
conclude that otefin dephosphorylation at Ser50 and/or
Ser54 is strongly dependent on PP2A-Tws.
2.4. Identification of phosphorylation-dependent
interactors of otefin

To explore how phosphorylation of otefin (Ote) at the identified
sites regulates its protein interactions, we generated transgenic
fly lines expressing GFP-Ote, either WT (GFP-OteWT) or with
Ser50–Ser54 mutated into non-phosphorylatable alanine resi-
dues (GFP-OteAA) or phosphomimetic aspartic acid residues
(GFP-OteDD). We collected embryos from these flies and used
them in GFP affinity purifications followed by mass spec-
trometry analysis as described above for Tws (figure 3c). We
identified several proteins significantly enriched in the GFP-
OteWT purification products relative to GFP alone (figure 3d;
electronic supplementary material, figure S3 and table S3).
BAF and lamin, two proposed direct interactors of otefin,
were identified as expected [49,64]. Other chromatin-associated
proteins were also identified. Although some of them could
potentially interact with otefin directly, they may also be co-pur-
ified because BAF and Lamin bridge interactions with
chromatin proteins. For example, it is likely the case for Histone
H4, as BAF was shown to bind histones in human cells [65,66].
We also found other NE proteins in complex with otefin,
including its two LEM-domain protein orthologues Bocksbeutel
(Bocks) and MAN1, and nucleoporins of the Nup107-Nup160
complex. Interestingly, our proteomic analysis identified a
clear and novel association between otefin and girdin, an
actin-binding protein conserved in humans [67,68]; girdin was
the most enriched protein in the GFP-otefin purification pro-
ducts (figure 3d). Finally, we note our identification of all
three members of the RZZ complex (Rod-Zw10-Zwlich),
known to function in the attachment of kinetochore to microtu-
bules [69]. Several other proteins that enriched with otefin were
abundant RNA metabolism proteins and metabolic enzymes
for which we have no functional hypotheses.

To identify otefin interactors that depend on the
phosphorylation status of Ser50 and Ser54, we compared
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shows 5% of the total purification products on a silver-stained 4–12% acrylamide SDS-PAGE gel. The rest of the samples were submitted to mass spectrometric
analyses. (d ) Identification of proteins significantly enriched with GFP-Ote compared to GFP alone. Data points are from three independent experiments. (e,f )
Identification of proteins significantly enriched or depleted with GFP-OteAA versus GFP-OteWT (e) or with GFP-OteDD versus GFP-OteWT ( f ). Data points are from
three independent experiments. In (d–f ), proteins of interest discussed in the text are labelled.
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the abundance of proteins specifically co-purified with GFP-
OteAA versus GFP-OteWT or GFP-OteDD versus GFP-OteWT.
We found that higher levels of BAF and Lamin were co-pur-
ified with GFP-OteAA compared with GFP-OteWT (figure 3e).
By contrast, most other putative interactors of otefin were not
significantly affected in their co-purified levels between GFP-
OteAA and GFP-OteWT. Conversely, BAF levels tended to be
depleted in the GFP-OteDD purification product compared
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to GFP-OteWT, although the difference was not statistically
significant (figure 3f ). Histone H4, a known BAF interactor,
was also significantly enriched with GFP-OteAA and depleted
with GFP-OteDD, compared with GFP-OteWT.

2.5. PP2A-Tws-dependent phosphosites on otefin
regulate its interaction with barrier-to-
autointegration factor

The above results suggested that reversible phosphorylation
of otefin at Ser50–Ser54 regulates its interaction with BAF.
Moreover, these phosphorylation sites, within CDK motifs,
are immediately adjacent to otefin’s LEM domain, which is
known to interact with BAF in all LEM domain proteins
examined [44,70]. Thus, we hypothesized that phosphoryl-
ation at Ser50 and Ser54 may disrupt the interaction of
otefin with BAF during mitotic entry. Conversely, depho-
sphorylation of these sites by PP2A-Tws would promote
the otefin–BAF interaction during mitotic exit, as the nuclear
envelope reassembles (figure 4a).

To begin testing this idea, we used a co-immunoprecipita-
tion assay in D-Mel cells transfected with Myc-BAF and
GFP-otefin. As expected, GFP-Ote could be co-purified with
Myc-BAF. To test if PP2A activity was required for the otefin–
BAF interaction, we treated cells with OA (a PPP inhibitor
with broad specificity) or with LB100, which inhibits more
selectively PP2A and PP5 [71,72]. We found that both inhibitors
strongly abrogated the otefin–BAF interaction, consistent
with the idea that PP2A activity promotes the interaction
(figure 4b). Interestingly, OA (100 nM) induced an upshift of
the GFP-Ote band, suggesting its hyperphosphorylation.

To test if phosphorylation of otefin at Ser50 and Ser54
negatively regulates its interaction with BAF, we used
the non-phosphorylatable (OteAA) and phosphomimetic
(OteDD) mutants. We found that Myc-BAF co-purified less
GFP-OteDD than GFP-OteWT or GFP-OteAA (figure 4c).
These results suggest that phosphorylation of otefin at
Ser50 and Ser54 negatively regulates its interaction with BAF.

OA and LB100 are thought to inhibit all forms of PP2A,
indiscriminately of its associated regulatory subunit. To test if
the otefin–BAF interaction is regulated by PP2A-Tws, we con-
ducted the same assay as above following RNAi silencing of
Tws. We found that the otefin–BAF interaction was abrogated
by the loss of Tws (figure 4d). This is consistent with the idea
that dephosphorylation of otefin by PP2A-Tws promotes the
otefin–BAF interaction. However, Tws depletion abolished the
otefin–BAF interaction even when the otefin phosphorylation
sites were mutated to alanine residues. This suggests that
there are other PP2A-Tws-dependent phosphorylation sites in
otefin or in BAF that may be involved in regulating the inter-
action. Phosphorylation of BAF in its N-terminus may be
responsible for this effect as it is known to negatively regulate
its interactions with LEM-D proteins, and its recruitment to
the reassembling nuclear envelope in human cells [44,46]. More-
over, we previously reported that PP2A-Tws promotes BAF
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recruitment to reassembling nuclei in Drosophila cells [43]. Thus,
PP2A-Tws may promote the otefin–BAF interaction by
redundant mechanisms.

2.6. PP2A-Tws-dependent phosphosites on otefin
regulate the formation of a complex containing
barrier-to-autointegration factor, lamin and
additional otefin

In addition to interacting with BAF and other proteins, human
emerin also interacts with itself, forming homomers at the
nuclear lamina [73–75]. Thus, we considered that otefin may
also engage in homomeric interactions, in addition to binding
BAF and lamin. Since BAF forms dimers and lamin forms poly-
mers, large complexes containing multiple copies of otefin, BAF
and lamins could assemble in a cooperative manner and com-
plicate the interpretation of co-purification results (figure 5a).
To better understand the impact of Ser50–Ser54 phosphoryl-
ation on Otefin interactions, we used a truncation analysis.
We generated constructs for the expression of GFP-Ote 1–70,
GFP-Ote 42–400 and GFP-Ote 1–400, all of which containing
Ser50 and Ser54. The 1–70 region contains the region homolo-
gous to the LEM domain of human emerin shown to bind
BAF [73,76]. The 42–400 region is homologous to the region
shown to be sufficient to bind lamins and emerin [73]
(figure 5b). Using these fusion proteins, we proceeded to co-
purification experiments on transfected cells. We found that
all three truncations of GFP-Ote specifically co-purified Myc-
BAF, Myc-Ote and Lamin. However, GFP-Ote 1–400 co-purified
all three proteins more efficiently than GFP-Ote 1–70 or GFP-
Ote 42–400 (figure 5c; electronic supplementary material,
figure S4). This result is consistent with cooperative binding
in the formation of a complex containing otefin, BAF and
lamin (figure 5a). Nevertheless, Myc-BAF co-purified more
strongly with GFP-Ote 1–70 compared with GFP-Ote 42–400,
while Myc-Otefin and lamin co-purified more strongly with
GFP-Ote 42–400 compared with GFP-Ote 1–70, as expected
(figure 5c; electronic supplementary material, figure S4).

Also consistent with the cooperative binding model, we
found that the phosphomimetic mutations in GFP-Ote abro-
gated its interaction with Myc-Ote and with lamin, in
addition to Myc-BAF (figures 4c and 5d ). To identify which
interactions of otefin are directly dependent on its phos-
phorylation at Ser50–Ser54, we used variants of GFP-Ote
1–70 and GFP-Ote 42–400, which preferentially interact
with BAF or with otefin and lamin, respectively. We found
that the S50D-S54D phosphomimetic mutations in GFP-Ote
1–70 decreased its ability to interact with Myc-BAF
(figure 5e). By contrasts, the phosphomimetic mutations in
GFP-Ote 42–400 did not decrease its ability to interact with
Myc-Ote or Lamin (figure 5f ). These results suggest that
phosphorylation of Otefin at Ser50–Ser54 negatively regulates
its interaction with BAF, thereby also indirectly affecting
formation of the otefin–BAF–lamin complex.

2.7. PP2A-Tws regulates the recruitment of otefin and
barrier-to-autointegration factor to reassembling
nuclei after mitosis

To monitor the dynamics of otefin during mitosis, we used
live imaging. We filmed mitosis in embryos expressing
GFP-Ote along with RFP-BAF (figure 6a, mock series; elec-
tronic supplementary material, videos S1–S3). As expected,
GFP-Ote was enriched at the nuclear envelope and at intra-
cellular membranes (putative ER) in interphase, consistent
with its previously reported localization [77]. During mitotic
entry and until anaphase onset, GFP-Ote remained localized
to the spindle envelope, which corresponds to the nuclear
envelope that is fenestrated at poles to allow the spindle to
connect chromosomes and centrosomes [77,78]. RFP-BAF
showed a similar localization, but a larger fraction of this
protein appeared to be cytoplasmic during early mitosis.
During late anaphase, RFP-BAF was rapidly recruited to seg-
regated chromosomes (figure 6a,b, mock series, white
arrowheads). At that stage, GFP-Ote was not yet recruited
to the region of reassembling nuclei that is proximal to the
spindle (the inner core region). Within 1 min, GFP-Ote
rejoined RFP-BAF at the inner core region as two separate
nuclear envelopes reassembled from the spindle envelope
(figure 6a,b, mock series, yellow arrowheads).

To begin to test whether PP2A phosphatase activity was
required for this localization dynamics, we injected OA in
these syncytial embryos at the metaphase stage. We could
discern nuclei that underwent anaphase from fluorescence
exclusion zones produced by segregating, condensed
chromosomes (figure 6a,b, black arrowheads, electronic sup-
plementary material, video S4). However, RFP-BAF failed to
be recruited to segregated chromosomes, remaining comple-
tely dispersed, and GFP-Ote never reached the inner core
region as the nuclear envelope failed to reassemble. These
results are consistent with the role of PP2A in the depho-
sphorylation of BAF and its recruitment to reassembling
nuclei [43,48].

However, OA also inhibits other phosphatases and no
small molecule inhibitor exists that would be selective to
PP2A-B55/Tws. To achieve selective inhibition of PP2A-
Tws, we injected a peptide derived from Endos and phos-
phorylated at its Gwl site (pEndos: aa 41–80, pSer67). We
observed delays in the recruitment of RFP-BAF and GFP-
Ote at reassembling nuclei after anaphase (figure 6c,
bottom (255 s); electronic supplementary material, video
S5). Nuclei eventually reassembled and both proteins were
recruited, suggesting either that PP2A-Tws eventually depho-
sphorylated enough pEndos to escape inhibition, or that
another phosphatase can compensate for the loss of PP2A-
Tws activity. Altogether, our results confirm that PP2A-Tws
promotes NER by targeting both BAF and Otefin.
2.8. PP2A-Tws-dependent sites in otefin regulate its
recruitment to reassembling nuclei after mitosis

To test if regulation at Ser50–Ser54 impacts the dynamics of
otefin during mitosis, we filmed mitosis in embryos expres-
sing GFP-Ote WT, AA or DD, along with RFP-BAF
(figure 7a). We compared the fluorescence of GFP-OteDD

versus GFP-OteWT at the inner core region, taking the onset
of RFP-BAF recruitment as a reference time (figure 7b). We
found that the recruitment of GFP-OteDD was significantly
delayed compared to GFP-OteWT (figure 7c). By contrast,
the dynamics of GFP-OteAA was similar to that of GFP-
OteWT. The timing of RFP-BAF recruitment relative to
anaphase did not appear to be altered by the expression
of the GFP-Ote variants. These results suggest that
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dephosphorylation of otefin facilitates its recruitment to reas-
sembling nuclei by promoting its interaction with BAF.
Moreover, because GFP-Ote is a transmembrane protein, it
provides a marker for the nuclear envelope, and therefore,
our results suggest that PP2A-Tws-dependent dephosphory-
lation of otefin at Ser50–Ser54 determines the timing of NER,
at least at the inner core region. However, in this experiment,
the delay observed in the recruitment of GFP-OteDD may not
reflect the full delay that would result from a failure to
dephosphorylate the entire pool of otefin because GFP-
OteDD is able to interact with endogenous Ote.

To visualize the effects of the phosphorylation sites in
otefin on its recruitment via protein interactions but indepen-
dently from its membrane localization, we used the GFP
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fusion of otefin deleted of its transmembrane domain (GFP-
Ote 1–400 =GFP-OteΔTM) (figure 8a). While GFP-OteWT

localized to the nuclear envelope in D-Mel cells, GFP-
OteΔTM did not, but was instead enriched in the
nucleoplasm in interphase (figure 8b), consistent with a pre-
vious report [79]. After mitotic NEBD, GFP-OteΔTM was
dispersed throughout the cell. In telophase, GFP-OteΔTM
was transiently recruited to segregated chromosomes
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(figure 8c; electronic supplementary material, video S6). We
presumed that this localization of GFP-OteΔTM must reflect
its formation of a protein complex containing BAF, which is
known to be recruited with a similar timing [43]. Consistent
with this notion, we found that GFP-Ote 1–70 (which
contains the LEM domain and interacts with BAF) was
recruited to chromosomes in telophase, while GFP-Ote
42–400 (which lacks the LEM domain and cannot interact
with BAF directly), was not recruited (electronic supplemen-
tary material, figure S5). Therefore, the recruitment of otefin
to reassembling nuclei depends on its LEM domain. Interest-
ingly, GFP-Ote 1–400 (ΔTM) was recruited more strongly than
GFP-Ote 1–70, consistent with cooperativity in complex
formation between otefin, BAF and lamin (electronic sup-
plementary material, figure S5; figure 5). As expected, we
found that the recruitment of GFP-OteDDΔTM was delayed
compared to GFP-OteWTΔTM (figure 8c,d ). The observed
recruitment of GFP-OteDDΔTM likely reflects its residual
ability to interact with endogenous otefin and lamin, Conver-
sely, the recruitment of GFP-OteAAΔTM was advanced and
appeared on average stronger compared to GFP-OteWTΔTM
(figure 8d ). These results indicate that dephosphorylation of
otefin by PP2A-Tws at Ser50–Ser54 promotes otefin recruit-
ment to reassembling nuclei by allowing otefin to form a
complex with BAF.
2.9. PP2A-Tws-dependent phosphosites on otefin
regulate its essential functions in vivo

We sought to test the importance of otefin phosphoregula-
tion for its functions in vivo. Otefin is not essential for
viability because its absence is compensated by the presence
of its two orthologues Bocks and MAN1, both LEM domain
proteins of the inner nuclear membrane [80]. However, ote
mutant flies are female-sterile [81]. oteB279/oteDB females
produce a reduced number of eggs, none of which hatch.
We expressed GFP-Ote in the female germline using
the GAL4::VP16-nanos.UTR (MVD1) driver, which allows
expression throughout female germline development,
oogenesis and early embryogenesis [82] (figure 9a). We
found that expression of GFP-OteWT completely rescued
egg production by oteB279/oteDB mutant females, indicating
that N-terminal fusion of GFP preserves otefin function
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5 µm. (d ) Quantification of the GFP fluorescence at reassembling nuclei from cells as shown in (c). Thirty cells were quantified for each cell line. Error areas: s.e.m.
Scale bars: 5 µm. * p < 0.05, ** p < 0.01, *** p < 0.001 from Welch’s t-tests. n.s.: non-significant ( p > 0.05).
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(figure 9b). GFP-OteAA and GFP-OteDD also fully rescued
egg production, indicating that phosphoregulation of
otefin at Ser50–Ser54 is not required for oogenesis. However,
a smaller fraction of embryos laid by ote mutant females
expressing GFP-OteDD hatched, compared with embryos
laid by ote mutant females expressing GFP-OteWT or GFP-
OteAA (figure 9c). These results indicate that dephosphory-
lation of otefin at Ser50–Ser54 by PP2A-Tws is important,
although not absolutely essential, in the context of early
embryonic development which relies on rapid mitotic
cycles.
3. Discussion
In this work, we used a proteomic strategy to identify
potential substrates of PP2A-Tws. Tws interactors and
Tws-dependent phosphorylation sites were uncovered. Both
approaches identified otefin. We found that phosphorylation
of otefin at sites immediately C-terminal to its LEM domain
negatively regulates its ability to interact with BAF and to
form a complex with lamin and additional otefin. We vali-
dated that dephosphorylation of these sites depends on
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days. Bars: averages ± s.d. Indicated p-values were obtained from unpaired
t-tests. n.s.: non-significant ( p > 0.05).
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PP2A-Tws. Microscopy and genetic experiments revealed
that dephosphorylation of otefin is required for its timely
recruitment to reassembling nuclei and for embryonic devel-
opment. To our knowledge, this may be the first documented
case of any protein dephosphorylation event shown to be
required for the development of an animal.

Previous work has shown that B55 exposes a binding
surface that is used by PP2A-B55 to dock onto its
dephosphorylation substrates [13,83]. Consistent with this
notion, we could capture PP2A-Tws interactions with several
of its targets by affinity purifications. It was reported that
PP2A-B55/Tws efficiently dephosphorylates CDK sites [15–
20]. Consistent with this idea, almost all Tws-dependent
sites identified were threonine and serine residues followed
by a proline residue. However, while PP2A-B55 was shown
to prefer phospho-threonines to phospho-serines [20,21],
most PP2A-Tws sites we identified are phospho-serines.
This may be merely because phosphorylation occurs more
frequently at serines than at threonines in the Drosophila pro-
teome. Indeed, our analyses detected around 80% of
phospho-serines versus less than 20% of phospho-threonines,
consistent with previous results in Drosophila or in human
cells [84–89].

Our analysis suggests other mitotic targets of PP2A-Tws
in addition to otefin. Candidate targets that were identified
as PP2A-Tws interactors and as phosphoproteins enriched
upon Tws inactivation but depleted upon Gwl and/or
Endos inactivation should be viewed with the highest confi-
dence. The microtubule-associated protein Map205 is one of
them. The PP2A-Tws-dependent site we identified on
Map205 (Ser283, a CDK motif ) was previously shown to
regulate an interaction with Polo kinase. Phosphorylation of
this site in mitosis frees Polo from an interaction with
Map205 which inhibits Polo and sequesters it on microtu-
bules. This release facilitated Polo’s essential functions in
mitosis and cytokinesis [90,91]. Thus, dephosphorylation of
Map205 by PP2A-Tws may promote the binding of Polo to
Map205 during mitotic exit, where Polo returns to its inactive
state. Another candidate mitotic target of PP2A-Tws we
found is chb/Orbit, a motor protein that regulates spindle
microtubules [92]. We also identified Ctf4, an essential
DNA replication factor, which may be a target of PP2A-Tws
in its emerging role in the regulation of S-phase [10,93].

The two PP2A-Tws-dependent sites we identified in
otefin match the consensus motif for phosphorylation by
CDKs. Moreover, one of them, Ser54, was shown to be phos-
phorylated by CycB-CDK1 [62]. CycB-CDK1 is well known
for its pivotal role in mitotic entry and NEBD [1]. Conversely,
PP2A-Tws is inactivated by Gwl and Endos during mitotic
entry and becomes reactivated during mitotic exit [94].
Thus, we propose that phosphorylation of otefin by CycB-
CDK1 during mitotic entry contributes to disrupt its inter-
actions with BAF and lamin as part of NEBD during
mitotic entry, while the dephosphorylation of otefin by
PP2A-Tws promotes its interactions with BAF and lamin
during NER. CDK1-dependent disruption of the Ote–BAF–
lamin complex may act in concert with NHK-1/VRK1-depen-
dent disruption of the BAF-DNA interactions and with the
dissolution of the lamina during NEBD [95]. However, we
found that otefin phosphorylation at Ser50 and/or Ser54 is
not essential for oocyte development or embryogenesis,
arguing against an essential role for this event. Nevertheless,
our results suggest that once otefin is phosphorylated at
Ser50 and Ser54, it must be dephosphorylated at these sites
to be reincorporated in a complex with BAF and lamin and
to be recruited to reassembling nuclei in a timely manner.
Failure in this dephosphorylation can even be lethal for the
embryo, albeit with incomplete penetrance. An analysis of
the subcellular phenotypes developing in embryos expres-
sing phosphomimetic otefin as a sole form of otefin was
precluded by the difficulty in obtaining a large number
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of flies of the required genotype and by the difficulty to
visualize the first mitoses by live imaging.

Apart from its roles in nuclear reassembly, otefin is
required for female germline stem cell (GSC) differentiation
and survival [81,96]. The expression of otefin in GSCs is
also required for the survival of niche cells in a non-cell-
autonomous manner [97]. In GSCs, the loss of otefin results
in nuclear lamina defects and triggers cell death by a mech-
anism involving the ATR and Chk2 kinases [98]. The loss of
BAF in GSCs results in similar defects [99]. Our results indi-
cate that phosphorylation or dephosphorylation of otefin at
Ser50–Ser54 is not strictly required for otefin essential func-
tions in GSCs, nor are they required for the subsequent
mitoses leading to the 16-cell cysts before oogenesis. The
two otefin orthologues Bocks and MAN1 may help compen-
sate for the misregulation of otefin in these germline cells. In
somatic cells, complete loss of otefin does not cause any
obvious phenotype but it is synthetic lethal in combination
with mutation of bocks or MAN1, indicating that LEM-D
proteins function semi-redundantly [80].

Our findings reveal the importance of establishing
contact between BAF and a LEM-D protein of the INM
during nuclear reassembly. Indeed, our results indicate
that the restoration of the otefin–BAF interaction by the
dephosphorylation of otefin at PP2A-Tws-dependent sites
is essential during embryogenesis. We did not investigate
if Bocks or MAN1 are regulated in their interactions with
BAF by a similar mechanism. In addition, whether the
NEBD-NER cycle relies on the phosphoregulation of BAF
interactions with LEM-D proteins in other somatic cell
types of Drosophila could be further explored.

In human cells, mitotic phosphorylation of Lem2 in
the disordered region C-terminal to its LEM domain was
shown to negatively regulate the ability of Lem2 to oligomer-
ize into BAF-associated liquid condensates that interact with
microtubules [100]. These structures reassemble in telophase
and recruit the ESCRT-III complex for its essential membrane
sealing activity during NER [101]. Thus, dephosphorylation
of Lem2 during mitotic exit is thought to promote its essential
recruitment at reassembling nuclei, although the responsible
phosphatase is unknown [8,100]. While the recruitment of
human emerin to reassembling nuclei was not yet reported
to be regulated by phosphorylation, its ability to engage in
homomeric interactions and to bind BAF is known to be
influenced by a complex interplay between multisite phos-
phorylation and O-GlcNAcylation [102,103]. Thus, the
phosphoregulation of the emerin–BAF interaction could
play an important role in NER in human cells, promoting
the initial recruitment of membranes to BAF-coated chroma-
tin, before they can be sealed. Moreover, given that mutations
in emerin and BAF result in progeria and laminopathies,
defects in the regulation of their interaction could potentially
contribute to human disease [104,105].
4. Materials and methods
4.1. Plasmids and mutagenesis
Drosophila cells expression vectors were generated by Gate-
way recombination (Invitrogen). Coding sequences were
first cloned into the pDONR221 entry vector and then recom-
bined into the relevant destination vectors for expression
from copper-inducible (pMT) or constitutive (pAC5) promo-
ters. The following expression vectors were generated:
pAc5-Myc-BAF, pMT-GFP-Ote, pMT-GFP-OteAA, pMT-GFP-
OteDD, pMT-GFP-Ote 1–70, pMT-GFP-Ote 42–400, pMT-
GFP-OteΔTM, pMT-GFP-OteAAΔTM, pMT-GFP-OteDDΔTM
and pAc5-mCherry-tubulin. Drosophila expression vectors
were generated in the pUAS-K10 attB vector (UASp). The fol-
lowing were generated: pUAS-GFP-OteWT, pUAS-GFP-
OteAA, pUAS-GFP-OteDD, pUAS-GFP and pUAS-RFP-BAF.
Amino acid substitution mutants were generated using Quik-
Change Lightning Site-Directed Mutagenesis Kit (Agilent)
following the manufacturer’s protocol.

4.2. Cell culture, transfections and cell lines
All cells were in the D-Mel (d.mel-2) background and were cul-
tured in Express Five medium (Invitrogen) supplemented with
glutamine, penicillin and streptomycin (Wisent). Transfections
were performed using X-tremeGENE HP DNA Transfection
Reagent (Roche) following the manufacturer’s instructions.
All stable cell lines were selected in medium containing
20 µg ml−1 blasticidin. While inducible pMT-based vectors
contain the blasticidin resistance gene, pAc5-based vectors
were co-transfected with pCoBlast to confer blasticidin resist-
ance to the cells. Expression of the copper-inducible
transgenes was induced with CuSO4 (300 µM unless otherwise
indicated) for at least 8 h before experiments.

For RNA interference, dsRNAs were generated from PCR
amplicons using a T7 RiboMAX kit (Promega). dsRNA
derived from the bacterial kanamycin resistance gene was
used as a non-target control. Twenty milligrams of dsRNA
was transfected in 1X106 cells in a well of a 6-well plate
using Transfast transfection reagent according to the
manufacturer’s protocol.

4.3. Protein purifications for mass spectrometry
GFP affinity purifications from embryos destined to mass
spectrometry analysis were done essentially as described
[106]. Briefly, embryos were collected every 2 h and dechorio-
nated in 50% bleach. For each genotype, 300 mg of embryos
were crushed using a plastic pestle fitted to a 1.5 ml micro-
fuge tube, in 1 volume of extraction buffer (20 mM Tris pH
7.5, 150 mM NaCl, 2 mM MgCl2, 0.5 mM EGTA, 1 mM
DTT, 0.5% Triton X-100, 5% glycerol, 1 mM phenylmethylsul-
fonyl fluoride (PMSF), 10 µg ml−1 aprotinin and 10 µg ml−1

leupeptin). Additional extraction buffer was added to a
total of 4.5 volumes. Lysates were passed four times through
a needle using a syringe and were incubated on a rotating
wheel at 4°C for 15 min. Samples were centrifugated at
21 000g at 4°C for 10 min. Supernatants were transferred to
new tubes, avoiding the fat layer at the top. Samples were
centrifugated again and supernatants were transferred
again to new tubes. One hundred microliters of pre-equili-
brated GFP-Trap agarose (Chromotek) was added to each
sample. Samples were incubated on a rotating wheel at 4°C
for 2 h. Beads were collected by centrifugation at 500 g at
4°C for 3 min. Supernatants were discarded. Beads were
washed three times with 1 ml of extraction buffer, placing
tubes on the wheel at 4°C for 5 min, and centrifugating
them to collect beads. Samples were transferred to new
tubes and four additional washed were done using final
wash (20 mM Tris pH 7.5, 150 mM NaCl, 2 mM MgCl2,
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0.5 mM EGTA and 1 mM DTT). Samples were transferred to
new tubes again. Proteins were eluted by the addition of
750 µl of 1 M NH4OH, 0.5 mM EDTA, placing tubes on a
rotating wheel at room temperature for 5 min. Eluates were
transferred to new tubes. A second elution was done and
pooled with the first one. Samples were split into two
tubes: 90% destined to mass spectrometry analysis and 10%
for visualization using electrophoresis. Samples were
desiccated in a Speedvac.

4.4. Mass spectrometry
For phosphoproteomics, harvested cells were lysed in ice cold
1% (w/v) SDC (sodium deoxycholate, Sigma D6750) in
50 mM NH4HCO3. Protein concentration was measured by
BCA assay (Thermo Fisher Scientific). Protein disulfide
bonds were reduced by adding Tris(2-carboxyethyl)pho-
sphine hydrochloride (TCEP, 5 mM final) to the lysates.
Alkylation of cysteine residues was achieved by adding chlor-
oacetamide (CAA, 20 mM final). Samples were incubated at
37°C with 500 rpm shaking for 30 min for the reduction/
alkylation procedure and then digested (overnight, 37°C)
with trypsin (Sigma-Aldrich) using an enzyme to substrate
ratio of 1 : 25 (w:w). Tryptic digests were acidified with 1%
formic acid (FA), centrifuged (17 000g, 10 min) and desalted
on Oasis HLB cartridges (Waters) previously conditioned
with acetonitrile (ACN) 1% FA, solid-phase extraction (SPE)
buffer (50% ACN1% FA) and finally 1% aqueous FA. Peptide
samples were applied, desalted with 3 ml of 1% FA and
eluted in 1 ml of SPE buffer. Peptide eluates were snap-
frozen in liquid nitrogen, lyophilized in a SpeedVac centri-
fuge and stored at −80°C. Phosphopeptide enrichment was
performed on 5 µm titansphere particles (Canadian Life
Science, Peterborough, ON, Canada) according to published
protocols [107,108]. Loading of protein extracts on the titan-
sphere beads, washing and elution steps were performed
using custom spin columns [109] made from 200 µl pipette
tip containing a SDB-XC membrane (Empore, 3 M) frit and
filled with TiO2 beads. Peptides were desalted in 100 µl of
1% FA and subsequently eluted from spin columns using
100 µl of 50% ACN, 0.5% FA. Liquid chromatography-mass
spectrometry (LC-MS)/MS analyses were performed on a
Q-Exactive HF or an Orbitrap tribrid Fusion mass spec-
trometer using home-made capillary LC columns (18 cm
length, 150 µm inner diameter and 360 µm outer diameter).
Capillary LC columns were packed with C18 Jupiter 3 µm
particles (Phenomenex, Torrance, CA) at 1000 psi. Samples
were directly injected on LC-columns and separations were
performed at a flow rate of 0.6 µl min−1 using a linear gradi-
ent of 5–35% aqueous ACN (0.2% FA) in 150 min. Raw data
analysis of SILAC experiments was performed using Max-
quant software 1.5.3.8. The false discovery rate (FDR) for
peptide, protein and site identification was set to 1%; the
minimum peptide length was set to 6. The Uniprot fly pro-
teome database was used for all database searches. Further
bioinformatics analyses were performed in R.

For mass spectrometry analysis of affinity purification pro-
ducts, eluted protein purification products were analysed by
LC-MS as described [110]. Samples were reconstituted in
50 mM ammonium bicarbonate with 10 mM TCEP [Thermo
Fisher Scientific] and vortexed for 1 h at 37°C. Chloroaceta-
mide (Sigma-Aldrich) was added for alkylation to a final
concentration of 55 mM. Samples were vortexed for another
hour at 37°C. One microgram of trypsin was added, and diges-
tion was performed for 8 h at 37°C. Supernatants were
desalted on stage-tips (The Nest Group). Samples were dried
down and solubilized in 5% ACN0.2% FA. The samples
were loaded on a home-made reversed-phase column (150-
μm i.d. by 150 mm) with a 220 min gradient from 10 to 30%
ACN-0.2% FA and a 600-nl min−1 flow rate on an Easy nLC-
1000 connected to an Orbitrap Fusion (Thermo Fisher Scienti-
fic, San Jose, CA). Each full MS spectrum acquired at a
resolution of 240 000 was followed by tandem-MS (MS-MS)
spectra acquisition on the most abundant multiply charged
precursor ions for a maximum of 3 s. Tandem-MS experiments
were performed using collision-induced dissociation at a col-
lision energy of 30%. The data were processed using PEAKS
X (Bioinformatics Solutions, Waterloo, ON) and a Uniprot
Drosophila unreviewed database. Scaffold version 5.0.0 (Pro-
teome Software Inc., Portland, OR) was used to validate
MS/MS-based peptide and protein identifications.

4.5. Affinity co-purifications for western blots
For immunoprecipitation of Myc-BAF, pelleted cells from con-
fluent 9 cm2 wells were lysed in 1 ml of lysis buffer (50 mM
Tris-HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 10% glycerol,
0.2% Triton X-100, 1 mM PMSF, 10 µg ml−1 aprotinin
and 10 µg ml−1 leupeptin), and lysates were centrifuged at
19 000g during 10 min at 4°C. Supernatants were incubated
with anti-Myc 9E10 from mouse (#sc-40, Santa Cruz Biotech-
nology, Inc.) for 90 min at 4°C and then incubated with 20 µl
of Protein G-conjugated Dynabeads (Invitrogen) for 30 min
at 4°C, before being washed in lysis buffer four times.

For GFP affinity purifications, pelleted cells from conflu-
ent 25 cm2 flasks were lysed in 1 ml of lysis buffer (20 mM
Tris-HCl pH 7.5, 150 mM NaCl, 2 mM MgCl2, 0.5 mM
EDTA, 1 mM DTT, 5% glycerol, 0.5% NP40 Substitute,
1 mM PMSF, 10 µg ml−1 aprotinin and 10 µg ml−1 leupeptin).
After 15 min on a rotating wheel at 4°C, lysates were centri-
fuged at 19 000xg during 10 min at 4°C. Supernatants were
incubated with 20 µl of GFP-Trap agarose (Chromotek) for
2 h at 4°C, before being washed four times in wash buffer
(20 mM Tris-HCl pH 7.5, 150 mM NaCl, 2 mM MgCl2,
0.5 mM EDTA, 1 mM DTT, 5% glycerol, 0.1% NP40 Substi-
tute, 1 mM PMSF, 10 µg ml−1 aprotinin and 10 µg ml−1

leupeptin).

4.6. Drosophila genetics
Fly husbandry was conducted according to standard pro-
cedures. All crosses were performed at 25°C. The WT strain
used was Oregon R. Transgenic lines for expression of
UASp-GFP-Ote (WT and mutants) were generated by site-
directed insertions of our pUAS-K10attB-based vectors on
the third chromosome in the attP154 strain (BestGene). The
expression of the UASp-GFP-Ote and UASp-RFP-BAF trans-
genes in embryos for GFP affinity purification and for
video microscopy was driven by matα4-GAL-VP16 (#7062;
Bloomington Drosophila Stock Center). For genetic rescue
experiments, the expression of UASp-GFP-Ote transgenes
was driven by GAL4::VP16-nos.UTR (MVD1) (no. 4937;
Bloomington Drosophila Stock Center). Otefin mutant alleles
used were oteB279 (no. 16189; Bloomington Drosophila Stock
Center) and oteDB (no. 5092; Bloomington Drosophila Stock
Center). Fertility tests were done by placing single females
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with 2–3 Oregon R males in tubes containing grape juice agar
and yeast paste at 25°C. Flies were transferred to new tubes
every day and the number of eggs laid and percentages of
hatched embryos were counted 24 h after removal of the
flies from the tubes.

4.7. Western blotting
Primary antibodies used in western blotting were anti-GFP
from rabbit (no. A6455 at 1 : 5000; Invitrogen), anti-Myc
9E10 from mouse (no. sc-40 at 1 : 1000 dilution for WB;
Santa Cruz Biotechnology), anti-lamin Dm0 from mouse
(Developmental Studies Hybridoma Bank Hybridoma Pro-
ducts ADL84.12 deposited by P. A. Fisher, at 1 : 500) and
anti-BAF (custom made by Thermo Scientific at 1 : 1000). Sec-
ondary antibodies were coupled to peroxidase (1 : 5000
dilution; Jackson ImmunoResearch). All antibodies were
diluted in tris-buffer saline with 0.1% Tween 20 and 5% dry
milk.

4.8. Microscopy
Live imaging was performed using a spinning-disc confocal
system (Yokogawa CSU-X1 5000) mounted on a fluorescence
microscope (Zeiss Axio Observer Z1) using an Axiocam 506
mono camera (Zeiss), 63× oil objective (NA 1.4) and ZEN
software. For time-lapse microscopy of D-Mel cells, cells in
culture were plated in a Lab-Tek II chambered coverglass
(no. 155409; Thermo Fisher Scientific). For live analysis of
Drosophila syncytial embryos, 0 to 2 h old embryos were
first dechorionated in 50% bleach, aligned on a coverslip
(no. P35G-1.5-14-C; MatTek) and covered with halocarbon
oil. Between several confocal sections at 1 µm spacing were
collected at each time point.

Embryo injection was performed using home-made glass
capillary fixed on an electronically controlled micromanipu-
lator installed on the microscope. Injections were triggered
manually using an air-filled plastic syringe connected to the
capillary through a rubber tube. All fluorescence quantifi-
cations and images treatment were performed using ZEN
software (Zeiss).

For quantifications of fluorescence in embryos, measure-
ments were made from the hand-drawn inner core area
from a single Z-step intersecting the nucleus at each time
point. Time zero was set as the time preceding the onset of
RFP-BAF recruitment. Fluorescence measured inside the
nuclear area at time zero was subtracted from all values.
For quantifications of fluorescence in cells, measurements
were made from maximum-intensity projections from
Z-stacks taken with a 1 µm interspace. Measurements were
taken from circular areas corresponding to the approximate
positions of reassembling nuclei. Fluorescence measured
inside the cytoplasm at each time point was subtracted
from all values. As cells differed in their expression levels,
values for each time point were normalized, setting the
time zero value to one for each cell.
4.9. Statistical analysis
Statistical analyses of the fluorescence, Western blots and
genetic data were done using GraphPad, using tests indicated
in the figure legends. Statistical analyses of the mass spec-
trometry data were done using Perseus [111] and data
visualized with Origin Pro software (OriginLab Corp.).
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