Skip to main content
. 2023 Jul 18;14:4307. doi: 10.1038/s41467-023-39626-8

Table 3.

NBO second-order perturbation stabilization energies for the dominant non-Lewis interactions, and the orbital interaction energies ΔEorb for the dominant bonding interactions shown in Fig. 2a

aNBO ΔE(2) bETS-NOCV
Stabilization interactions ΔEorb
Compound c1 c2 c3 d4 d5 σ2 π σ1
[OUVIO]2+ Dh 2.2 14.2 1.8 29.8 29.8 −320.9 −168.6 −16.6
[OUVIO]2+ C2v 0.8 7.9 1.6 21.0 21.0 −288.9 −164.7 −14.0
OUVI−C 2.1 11.7 2.4 79.7 42.9 −473.0 −317.2 −24.6
(Ra)3NThIVCl 0.0 0.0 0.0 11.6 28.2 −26.6 −10.7 0.0
[(Ra)3NThIVN]2 1.0 7.1 1.1 82.4 13.8 −186.1 −101.8 −34.6
(Ra)3NUVIN 1.1 11.3 0.6 128.9 28.9 −287.1 −153.2 −28.3
[(Ra)3NUVN]1 0.4 8.0 0.4 112.1 19.6 −237.0 −120.2 −30.0
[(Ra)3NUIVN]2 0.8 7.3 0.7 73.5 24.5 −169.4 −83.4 −27.1
(Ra)3NUVO 0.0 6.0 0.0 79.8 22.6 −144.7 −70.2 −19.6
(Ra)3NNpVO 0.3 7.6 0.0 85.6 30.0 −172.7 −48.4 −17.4
MeUVI(Rb)3O 0.8 10.3 0.6 62.9 61.3 −179.3 −87.6 −19.6
PhCCUVI(Rb)3O 0.6 7.3 0.0 47.3 90.4 −166.8 −89.3 −16.7
CUVI−Oe 1.4 9.9 0.0 42.9 79.7 −209.1 −77.9 −13.7
O(Rb)3UVIMee 0.0 0.0 0.0 61.3 62.9 −82.6 −9.1
(Ra)3NUVINf 1.2 10.3 0.6 81.0 21.2 −287.0 −152.6 −27.9

DFT/B3LYP calculations.

a,bEnergies in kcal mol−1.

c,d Interactions illustrated in Fig. 2.

a NBO second-order perturbation theory donor–acceptor ΔE(2) stabilization energy.

b ETS-NOCV contributions to ΔEorb. The ΔEorb and ΔE(2) for the two π-bonding interactions are equivalent and only one is listed.

cΔE(2) donor–acceptor interactions involving 6s and 6p An semi-core shells.

dΔE(2) donor–interaction between the terminal and trans ligand lone pair and formally unoccupied An-centered NBOs. For the symmetric small compounds interactions nos. 4 and 5 are identical.

eData for the trans–An bond for a selected compounds.

fData for the full experimental (Ra)3NUVIN structure for comparison.