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Abstract

Methods for profiling genes at the single-cell level have revolutionized our ability to study several 

biological processes and systems including development, differentiation, response programs and 

disease progression. In many of these studies, cells are profiled over time in order to infer dynamic 

changes in cell states and types, sets of expressed genes, active pathways, and key regulators. 

However, time-series single-cell RNA sequencing (scRNA-seq) also raises several new analysis 

and modelling issues. These issues range from determining when and how deep to profile cells, 

linking cells within and between time points, learning continuous trajectories and integrating bulk 

and single-cell data for reconstructing models of dynamic networks. In this Review, we discuss 

several approaches for the analysis and modelling of time-series scRNA-seq, highlighting their 

steps, key assumptions, and the types of data and biological questions they are most appropriate 

for.

Table of contents blurb

In this Review, Ding, Sharon and Bar-Joseph discuss how dynamic features can be incorporated 

into single-cell transcriptomics studies, using both experimental and computational strategies to 

provide biological insights.

Introduction

Biological processes and systems are dynamic. To fully understand the molecular and 

cellular components and networks that are activated as part of these processes researchers 

often collect data over time. The duration of the process or system being studied varies 

considerably among studies: from a few hours in immune response and drug treatment 

studies1 to days, months and even years in development, cell differentiation and ageing 
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studies2. However, a unifying theme in all such studies is that the temporal data sets, which 

are often collected at discrete intervals, need to be analyzed, visualized, combined and 

integrated with other time-series and snapshot data to fully reconstruct dynamic models.

Over the past few years single-cell RNA sequencing (scRNA-seq) has become the method of 

choice for profiling the expression of genes in molecular studies3. There are several obvious 

advantages for scRNA-seq over bulk RNA-seq data including the ability to characterize 

the set of cells and the frequency of cell types in each sample4, the ability to identify 

the genes and networks activated within each cell or cell type5, and the ability to study 

relationships among cells or cell types6. However, this data type also raises new challenges, 

some of which apply to both single-timepoint (‘snapshot’) data and time-series data (for 

example, how many cells to profile, or how to group cells and assign cell types), whereas 

others are unique to time-series studies. For example, in bulk studies it is easy to relate the 

expression of genes at one time point to their expression in the previous time point, but for 

scRNA-seq data it is not trivial to link individual cells between two consecutive time points. 

An additional challenge in scRNA-seq studies is that cells collected at the same time point 

can represent a relatively wide range of different stages or cell states7 and so assigning all 

of them to the same point in the process is likely to be wrong. Several related computational 

issues arise when analyzing these data, including how to represent the large number of cells 

collected over time, how to infer the networks and pathways activated, and how to determine 

the exact timing of specific events.

Although several methods for the analysis and modelling of time-series bulk data have been 

developed8, many are not directly applicable to scRNA-seq data because they cannot address 

the challenges mentioned above. In addition, unlike for bulk data, even snapshot scRNA-seq 

data from a single sample can provide information on the dynamics of the process, either 

through trajectory [G] inference or RNA velocity9 (see below). This led to the development 

of several experimental and computational methods that are focused on studying the 

dynamics of biological processes using time-series scRNA-seq data. These methods provide 

information on the timing and ordering of events and enable researchers to take full 

advantage of scRNA-seq data. Such methods include experimental and computational 

methods to improve the way the data are collected, to obtain complementary information to 

aid in the data analysis, methods for visualizing the very large number of cells being profiled 

at each time point, their trajectories and ordering, and methods for integrating time-series 

scRNA-seq data with other time-series and snapshot data to reconstruct models of gene 

regulation and cell differentiation over time.

In this Review, we discuss both the experimental and computational approaches that have 

been developed for studying time-series scRNA-seq data. While several computational 

methods have been developed for pseudotime [G] ordering of scRNA-seq data, these are 

not always able to correctly reconstruct the temporal ordering and developmental trajectory 

of cells. We thus start by discussing experimental methods that can be used to explicitly 

infer such ordering or that can be integrated with scRNA-seq data to improve pseudotime 

inference. We next discuss computational methods that can be applied to any scRNA-seq 

time-series data and methods that integrate this data type with other snapshot and time-series 

data. For each of the methods we present, we mention the assumptions and requirements 
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and discuss their input, output, and goals. We also discuss how different methods can 

be combined to perform end-to-end modelling of dynamic biological processes. Figure 1 

presents an overview of the common time-series scRNA analysis pipeline, which we discuss 

in detail below.

Experimental techniques for dynamic inference

Several experimental approaches have recently been developed to provide empirical 

information on the timing and order of molecular events at the single cell level. These 

methods provide “anchors” that increase the accuracy of the computational methods, and the 

two types of approaches can be combined to improve the analysis of time-series scRNA-seq 

data, as we discuss later. As even the most sophisticated computational methods for ordering 

and trajectory inference using scRNA-seq data require validation by experimental means, 

these experimental methods will remain an important part of the toolbox for single-cell 

analysis.

Metabolic labelling of RNAs.

Inferring the relative age of different mRNA transcripts can improve the accuracy of 

pseudotime analysis methods, as it reveals the actual order of transcriptional events 

within a cell. This layer of information can be deduced computationally from the relative 

abundance of intronic sequences, which are present only in nascent mRNA molecules9 

(see below). However, several methods introduced recently manage to distinguish old 

transcripts from new in a straight-forward manner, through metabolic labelling of nascent 

RNA. 4-thiouridine (s4U) is a nucleotide analogue which can transport through the cell 

membrane and incorporate into nascent RNA as a substitute to uridine. Its alkylation 

following a reaction with iodoacetamide (IAA) results in misincorporation of a guanine in 

the corresponding site at the complementary strand during reverse transcription, leading to it 

being read as a T to C substitution in the original RNA transcript upon sequencing10. Herzog 

et al.10 developed the method SLAM-seq (thiol(SH)-linked alkylation for the metabolic 

sequencing of RNA), in which s4U is administered to cells in culture for a limited time; 

allowing for distinction of old RNA molecules from new ones based on higher T-to-C 

conversions rates in the latter. Several methods published recently combine this approach 

with various scRNA-seq techniques. For example scSLAM-seq11 and NASC-seq12, follow 

s4U incorporation and alkylation with smartseq-based library preparation, whereas sci-fate 

developed by the Shendure laboratory uses combinatorial double barcode labelling of 

fixed cells13. scNT-seq14 enables the use of droplet-based microfluidics for single-cell 

library preparation by using the alternative TimeLapse15 chemical reaction which, rather 

than alkylating s4U, transforms s4U into a cytosine analogue (trifluoroethylcytosine). 

Unlike IAA-mediated alkylation, TimeLapse chemistry increases the abundance of truncated 

mRNA molecules15, but it also allows the use of 6-thioguanine to introduce G to A 

substitutions16, thereby providing a hypothetical tool to label nascent RNA molecules 

over two time intervals. Overall, the main differences between the methods derive from 

the approaches they adopt for library preparation and not from the labelling chemistry. 

scSLAM-seq and NASC-seq are fit to handle low numbers of cells (several hundreds) and 

provide full-transcript sequencing, whereas sci-fate and scNT-seq which allow cost-effective 
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sequencing of thousands of cells are based on 3′-end sequencing, with the added accuracy 

provided by unique molecular identifiers [G] (UMIs).

It should be noted that focusing on newly synthesized transcripts alone may not be 

enough to detect the slight underlying differences between cells over time. To improve 

trajectory reconstruction one should combine old and new transcripts, and determine their 

ratio13. A gene which showed high rates of C to T conversion during the labelling 

period may represent a gene which was recently turned on, but it could also be a gene 

with rapid turn-over. Measurement of the ratio between the abundance of new and old 

transcripts can identify those genes that underwent a change in their expression during the 

experimental time window. By highlighting the dynamic elements in the system, metabolic 

labelling methods efficiently increase the resolution of scRNA-seq based methods for 

trajectory reconstruction. Indeed, studies of both scNT-seq14 and scSLAM-seq11 show that 

s4U incorporation outperforms splicing-based RNA velocity (see below) in the ability to 

identify temporal directionality. This is most likely due to the metabolic labelling of newly 

synthesized transcripts being independent both from the number of introns in the gene and 

from the speed of the splicing process14.

A potential downside of metabolic labelling methods when compared to computational-

only methods is that they were only demonstrated for cell cultures in vitro. It should be 

noted, however, that scRNA-seq on in vivo labelled RNA seems highly feasible. In SLAM-

ITseq17 (a variation on SLAM-seq), RNA sequencing is performed on tissue extracted 

from mice engineered to express uracil phosphoribosyltransferase (UPRT) in a cell-type 

specific manner. This protozoan enzyme, which does not have an equivalent active form in 

mammalian cells, transforms 4-thiouracil into 4- thiouridine monophosphate, and enables 

the incorporation of the modified uridine into nascent RNA molecules specifically in UPRT+ 

cells. Although sequencing of these cells was performed in bulk, there is no reason to 

suspect this cannot work for scRNA-seq as well.

Cell-type specific reporters.

Another experimental approach that complements time-series trajectory inference from 

scRNA-seq data is the use of cell-type specific reporters or markers with a temporal 

expression pattern — which enables sequencing of only a subset of the cells18. Gehart 

et. al took this approach a step further, when they combined scRNA-seq with a fluorescent 

time-recording reporter to gain an additional layer of data that assists in the construction 

of time- rdered trajectories19. To study the dynamics of enteroendocrine cell development, 

they inserted a sequence that codes for two fluorescent proteins — red tdTomato and a 

destabilized form of mNeonGreen — immediately downstream of Neurog3, which is a 

transcription factor (TF) gene that is transiently expressed during early differentiation of 

enteroendocrine cells. Because the gene and both reporters are found on the same transcript, 

the Neurog3Chrono mice generated equimolar amounts of the endogenous gene and of the 

red and green fluorescent reporters. However, due to the faster decay of mNeoGreen relative 

to tdTomato, red:green fluorescence ratios measured at continuous intervals could serve as a 

standard-clock that measures the actual time elapsed since Neurog3 expression in each cell. 

Based on this information, the authors sorted single neurog3Chrono cells into multi-well 
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plates, and combined the transcriptional profile of each cell with its fluorescence status (as 

established by fluorescence-activated cell sorting (FACS)) to obtain an actual-time (rather 

than pseudotime) developmental map. An interesting outcome was the realization that two 

cell populations that seemed at first to appear in parallel, had actually formed at consecutive 

intervals, indicating that one had arisen from the other, and not with it. In addition, whereas 

the length of branches on pseudotime plots cannot provide any information about the 

actual time needed for the described process to occur, scRNA-seq in combination with 

a time-recording reporter provided this type of information. Altogether, Chrono labelling 

generates real-time anchors to which the computational time-series analysis has to comply, 

thereby improving the accuracy of scRNA-seq-based temporal dynamic trajectories.

Genetic barcoding.

Genetic lineage tracking is a third experimental approach which aspires to set anchors 

that direct the calculated trajectory, but on a longer time scale than those established by 

the Chrono method discussed above. Conceptually, this approach extends from previous 

endeavours to deduce cell lineages by identifying genetic mutations shared among different 

cells20. With the advent of CRISPR–Cas9, numerous mutations can now be generated 

deliberately at specific loci targeted by guide RNAs (gRNAs). After their introduction, 

these mutations remain as ‘scars’ in the genome, and sequencing the ‘scar-recording’ locus 

in cells of different tissues can serve to construct lineage maps (such as in the genome 

editing of synthetic target arrays for lineage tracing (GESTALT) approach)21. Recently, 

several methods were developed for combining genomic scarring with scRNA-seq, thereby 

providing fate maps with higher resolution compared to that obtained through scar analysis 

alone; and with increased validity and accuracy relative to those obtained only through 

scRNA-seq based pseudotime trajectory reconstruction. ScarTrace22 uses a tandem repeat 

sequence of GFP introduced into the zebrafish genome, to record mutations caused by 

Cas9 and a gRNA injected into the early embryo. Cells are sorted into multi-well plates, 

and during the preparation of the expression library, the scar-recording region is amplified 

from the genomic DNA. Similarly, LINNAEUS23 records scars on RFP sequences in the 

fish, but reads them directly from the transcriptome library, thus allowing the use of droplet-

based sample preparation. scGESTALT24 introduced an inducible form of Cas9 with a 

constitutively expressed gRNA, thus enabling ‘scarring’ the genome at later stages of fish 

development, and revealing complex lineage relationships within the brain.

Bowling et al. introduced Cas9-based scarring into mice by generating the CARLIN 

mouse25. In this mouse, 10 different constitutively expressed gRNAs are designed to 

target a constitutively expressed cassette upon the inducible expression of Cas9. This 

elaborate design provides a comprehensive system that allows combining ‘scarring’-based 

lineage tracing with scRNA-seq of any tissue in the mammalian body, at any stage. Using 

this approach, Bowling et al. were able to combine expression-based trajectories with 

clonal analysis to follow the dynamics of the haematopoietic system during embryonic 

development and regeneration. This line of analysis adds an additional layer to scRNA-seq-

based developmental maps, as the clonal analysis is able to detect past events including cell 

population bottlenecks which are almost impossible to detect using methods that rely solely 

on transcriptional similarity between cells. Additionally, combining lineage tracing with 
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scRNAseq can provide unique insights into areas other than embryonic development. For 

example, Quinn et al. used piggybac transposition to insert a lineage-tracing cassette into 

lung cancer cells, which allowed them to follow tumour development upon transplantation 

into mice26. In this framework, each cassette they used contained one of 10 stable barcodes 

introduced upstream of the cas9 edited region27. This strategy provided an additional layer 

to their lineage tracing: initial clones could be identified by the composition of their stable 

barcodes, whereas the scars generated in the editable region defined the sub lineages 

of each initial clone. By comparing the mutations registered on the main tumour to its 

metastases, they were able to outline the spatial distribution of the tumour mutations across 

cell generations.

Pseudotime and trajectory inference methods

After designing and performing a time-series scRNA-seq experiment (Box 1 and Figure 

2), a key analysis challenge is linking the cells within and across time points. Several 

computational methods have been developed to address this challenge and these largely 

fall into three major categories. The first two (dimensionality [G] reduction and gene-space 

methods) use the expression of genes in cells to link them over time, whereas the third (RNA 

velocity) uses information about spliced and unspliced genes. Dimensionality reduction 

methods rely on a low-dimensional representation of the cells to infer a spanning tree 

or another graph representation on which cells are projected to reconstruct trajectories. 

Gene-space methods work in regular gene space without dimensionality reduction and 

utilize probabilistic models (often probabilistic graph representations) to infer discrete or 

continuous assignment for cells. RNA velocity does not rely on the levels of genes to 

connect cells but instead attempts to determine the next state for each cell based on the 

differences between unspliced and spliced transcripts for each gene.

Dimensionality reduction based methods for trajectory inference.

These are likely to be the most popular and most widely used methods since they allow for 

both inference of the trajectories and representation of all cells in a visually appealing and 

interoperable manner. They are often composed of three key steps, although each can use a 

variety of different approaches. In the first key step, the high-dimensional single-cell dataset 

(e.g., scRNA-seq) is embedded in a lower dimension. Low-dimensional representation is 

a very popular technique in data analysis which is useful for both removing noise (by 

focusing on the most abundant and consistent signal) as well as for visualization purposes. 

A commonly used method is to first reduce the high-dimensional data into a mid-range 

number of dimensions (e.g., 50) using linear methods such as principal components analysis 

(PCA)28 and perform the trajectory inference using this representation. The data set is 

then further projected into two or three dimensions for visualization. Here, numerous 

dimensionality reduction methods including t-distributed stochastic neighbour embedding 

(t-SNE29), uniform manifold approximation and projection (UMAP)30 and neural-network-

based auto-encoders [G] 31 have been used. In the second key step, a graph structure 

(usually a trajectory tree) is learned on the low-dimensional manifold to best connect all 

cells. Here the definition of ‘best’ differs between methods. For example, Monocle32 uses 

independent component analysis for dimensionality reduction and then infers the trajectory 
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directly on the cells by constructing a minimal spanning tree (MST). Qiu et al. later 

developed Monocle 233, which improves Monocle by using cell centroids (milestones) 

to learn the tree. The method then iterates between moving the cells towards the nodes 

of the current tree graph and updating the tree structure until convergence. Monocle 2 

maintains an invertible map between the high-dimensional and low-dimensional space, 

which simultaneously reduces the data dimensionality and learns the trajectory. A few other 

methods such as ‘tools for single-cell analysis’ (TSCAN)34 and Slingshot35 utilize a similar 

approach: constructing the MST on cell centroids, which represent cell types and states. 

Another commonly used method, partition-based graph abstraction (PAGA)36, reconstructs 

the trajectory using a different strategy: PAGA partitions, prunes, and connects the clusters 

based on a statistical connectivity among the clusters in a general graph. Monocole 337 

improves on PAGA by learning a principal graph on each of the PAGA partitions, leading 

to a trajectory with a higher resolution. One of the most popular tools in this category is 

Seurat3, a comprehensive tool that contains various methods for each step in the trajectory 

inference (e.g., dimensionality reduction, data imputation, and clustering). Seurat also 

contains modules to integrate different single-cell datasets. In the third key step, a root 

cell (or a list of root cells) is determined to seed the trajectory (i.e., the starting point on the 

differentiation tree). A pseudotime is then assigned to cells based on their location. Different 

strategies have been developed to estimate the pseudotime. One commonly used strategy 

is using the distance (e.g., Euclidean or correlation) to the root cell(s) to represent the 

pseudotime38. Another group of popular pseudotime inference methods including single-cell 

lineage inference using cell expression similarity and entropy (SLICE)39 do not require the 

user to define root cells. Instead, these methods calculate the entropy for each cell and use it 

to represent the pseudotime. This works best in cases where the entropy is expected to drop 

as time passes, for example, during development40.

Several methods based on optimal transport have also been applied to infer trajectories 

form scRNA-seq data. These methods, which include Waddington-OT41, ImageAEOT42, 

and LineageOT43 do not make strong assumptions about specific placing of cells along the 

developmental trajectory but rather assume a distribution for possible placement of each cell 

along the trajectory. The method learns these distributions and can make inference about 

underlying molecular events that drive the observed trajectories.

Finally, learned trajectories from different methods described above can be evaluated 

using automatic scoring functions. For example, dynverse44 provides a set of guidelines 

to help users select the best result for their dataset. The single-cell data and reconstructed 

trajectories can be visualized by several developed tools such as STREAM45, Cellxgene46, 

and the commercial package BioTuring (https://bioturing.com/).

Pseudotime inference in gene space.

A potential downside of dimensionality reduction is that the trajectory is inferred based 

on a subset of the most abundant differentially expressed genes. This could make it hard 

to distinguish and accurately reconstruct clusters and trajectories for cell states that are 

represented by fewer cells, especially for time-series studies where the last time point may 

include several different cell types. In addition, dimensionality reduction limits the ability 
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to rely on additional information as part of the trajectory inference as we discuss below. To 

overcome this problem, several methods attempt to infer pseudotime and trajectories based 

on the gene space itself. These methods usually adopt probabilistic models and attempt to 

construct a graph that represents both the expression levels of genes within each cell and 

relationships between cells. In addition to representing branching information, the graph 

provides an emission model which captures the expected expression of all genes in each 

state. Most probabilistic trajectory-inference methods based on graphical models [G] iterate 

between learning/updating the graph structure and the emission parameters and assigning 

cells to locations on the graph, until convergence. Early methods used a discrete trajectory 

graph, in which cells are assigned to a small number of discrete nodes. Examples methods 

include temporal assignment of single cells (TASIC)47, scdiff38 and single-cell clustering 

using bifurcation analysis (SCUBA)48. More recent models extended this approach to 

continuous trajectory. For example, continuous-state hidden Markov models (CSHMMs)49 

can be used to assign cells to any positions of the trajectory graph (Figure 3). CSHMMs 

start by clustering all the cells in the full gene space. An initial tree-structured trajectory is 

learned by connecting all clusters based on their distances to the root cells. The parameters 

to define any states in the trajectory are also estimated from the initial trajectory. All cells 

are then re-assigned to the state that represents the largest assignment probability. The 

method iterates between updating the trajectory graph and re-assigning all the cells until 

a stopping criterion is met. Unlike standard hidden Markov models (HMMs), which are 

defined using a discrete set of states, CSHMMs can have infinitely many states, which 

allows for continuous assignment of cells along developmental trajectories.

RNA velocity for trajectory inference.

All strategies discussed so far rely only on the expression of the exons of the genes in the 

cells profiled. This is based on the assumption that expression levels change gradually and 

that enough cells were sampled from all intermediate states to enable the reconstruction of 

continuous trajectories. Although this works well for highly sampled data sets, it may not be 

enough for data sets that do not contain cells from all such states. An alternative is to use 

RNA velocity9, which captures transcriptional dynamics within a cell rather than directly 

between two cells. RNA velocity is based on the relationship between spliced and unspliced 

transcripts in the same cell. To quantity the RNA velocity, expression level derivatives are 

determined by the balance between the abundance of the spliced mRNAs and unspliced 

mRNAs, as well as mRNA degradation. The steady states are reached asymptotically 

when the abundance of spliced and unspliced molecules is constrained to a fixed-slope 

relationship. This equilibrium slope combines degradation and splicing rates to capture 

gene-specific regulatory properties. Specifically, during gene upregulation, transcripts are 

skewed towards unspliced transcripts, whereas during gene downregulation the skew is 

towards spliced transcripts. Hence this ratio can provide insight into how transcript levels are 

changing over time and thus where cells might be ‘headed’ in the future state50. The RNA 

velocity method assumes that the transcriptional phases of gene expression induction and 

repression last sufficiently long to reach either an actively transcribing or inactive silenced 

steady-state equilibrium. This assumption limits application to transient cell states, in which 

the steady states are often not reached as induction might terminate before mRNA-level 

saturation. To overcome this problem and enable the use of the RNA velocity framework for 
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transient cell states, Bergen et al.51 developed scVelo, a likelihood-based dynamical model, 

which infers gene-specific reaction rates of transcription, splicing, degradation, and an 

underlying latent time in an expectation-maximization [G] (EM) framework. This inferred 

latent time describes the cell position in the underlying biological process.

Several methods have recently combined RNA velocity with expression similarity for 

trajectory inference. These methods benefit from the ability of RNA velocity to infer 

direction and the ability of traditional pseudotime inference methods to cluster cells based 

on expression similarity. For example, CellRank52 uses the RNA velocity information to 

infer the ordering of different groups of cells and uses expression similarities within groups 

to further refine their orderings. This feature enables CellRank to uncover putative lineage 

drivers and visualize lineage-specific gene expression trends. CellPath53 is another trajectory 

inference method that utilizes RNA velocity information to identify root cells that are 

assigned to the first path in the reconstructed model.

Data integration for modelling dynamics

Reconstructed temporal trajectories from scRNA-seq data can be used to address several 

different questions. However, they do not provide information on other molecular aspects of 

the process including changes to the epigenome and the set of regulators that are activated at 

specific time points. In addition, given their strong dependence on the assumption of gradual 

change in the expression of genes within or between time points they may not be appropriate 

for studies that need to sample at lower frequencies. To overcome these problems several 

computational methods have been developed to integrate time-series scRNA-seq with other 

bulk or single-cell data.

Integrating time-series single-cell expression with genetic information.

Computational methods have been developed to integrate time-series and snapshot scRNA-

seq data with the genetic barcoding and CRISPR–Cas9 data. Such integration can be 

used to improve the trajectories reconstructed from each method separately. Hurley et al. 

projected the expression of barcoded single cells on a dynamic model for cell differentiation, 

enabling them to validate predictions about the timing of cell fate commitment for induced 

pluripotent stem cells (iPSCs) differentiating to alveolar epithelial type 2 cells (AEC2s)54. 

They then identified genes whose expression differs, at the time of commitment, between 

lung epithelium and non-lung endoderm cells. Many of these genes were associated with the 

WNT pathway, and by withdrawing the GSK3 inhibitor CHIR they were able to significantly 

increase the percentage of lung AEC2 cells. Barcoding also showed that the resulting cells 

exhibited a stable phenotype and nearly limitless self-renewal capacity.

Weinreb et al55 used lentiviral constructs to express random barcodes in haematopoietic 

progenitors, and sequenced both barcodes and mRNA at the single-cell level shortly after 

and at later time points. By consecutively sampling cells from the same culture plate, they 

could examine how each clone expanded and differentiated over time, providing a partial 

‘ground truth’ for the pseudotime path. As expected, their findings confirmed the ability 

of scRNA-seq-based lineage maps to describe the transcriptional changes a cell undergoes 

during differentiation. However, they also concluded that scRNA-seq was insufficient to 
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capture the point at which a cell’s fate had been determined. Specifically, when clones 

were split into separate wells, their separated daughters mostly acquired the same fate, 

even though scRNA-seq could not identify the original clone’s poised status. This finding 

presents a notable challenge to the field, as it suggests that in spite of the immense power 

provided by scRNA-seq analysis, the major question time-series analysis is expected to 

answer — how cells decide between two possible fates — lies in processes that may not be 

observed at the transcriptional level in some cases; such processes might include chromatin 

structure or protein abundance and regulation.

Other methods were designed to combine scRNA-seq with lineage tracing data from 

CRISPR–Cas9 mutations. scRNA-seq data can be used to help overcome the problem of 

scar saturation which can lead to inability to infer the exact set of sequential edits that led 

to the observed set of mutations56. Zafar et al57 developed LinTIMaT, a general method 

for combining scRNA-seq data with scar data. LinTIMaT reconstructs cell lineages using a 

maximum-likelihood framework which combines mutation and expression agreement along 

the branches. When applied to zebrafish scar data, the method was able to resolve the 

ambiguities arising when only using the scar data and it identified additional cell subtypes 

that could not be resolved without using the expression data. Furthermore, LinTIMaT also 

enables the integration of different individual lineages for the reconstruction of an invariant 

lineage tree leading to better cell type coherence and new insights on progenitors and 

differentiation pathways.

Integrating multiple types of time-series data with single-cell data.

In addition to using genetic information, several studies also integrated other types 

of time-series molecular data. For example, the interactive dynamic regulatory events 

miner (iDREM)58 was used to project single-cell lung developmental data on a detailed 

human lung development model constructed using bulk expression data to infer the cell 

types activated at each stage59. Similarly, PhenoPath, a statistical analysis method that 

incorporates the impact of environmental and genetic covariates, was used to analyze 

time-series bulk and single-cell transcriptomics data for inferring pseudotime trajectories60. 

Other methods integrate time-series assay for transposase-accessible chromatin sequencing 

(ATAC-seq) data with time-series scRNA-seq data. For example, TimeReg61 was recently 

applied to combine gene expression and chromatin accessibility at the single-cell level. The 

method first infers context-specific regulatory interactions from ATAC-seq and RNA-seq 

data at a single time point and then uses dimensionality reduction to extract core regulatory 

interactions across the time points. These interactions are then used to identify regulators 

that drive the changes in expression observed. TimeReg was applied to study retinoic acid 

(RA)-induced development and was able to identify several novel regulatory elements for 

cerebellar development, synapse assembly, and hindbrain morphogenesis.

Integrating time-series single-cell data with interaction data.

Although the integration of complementary time-series datasets can lead to much better 

models for regulatory networks, these approaches require additional experiments and are 

not always feasible. By contrast, general protein–DNA and protein–protein interaction data 

can be integrated with any single-cell data leading to the improved reconstruction of the 
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networks and pathways activated in the study. Although interactions are obviously changing 

over time, almost all large interaction datasets are measured as static, single-timepoint data 

(or inferred from DNA motif information which is obviously not changing over the time 

the experiments are conducted). Several methods have been developed to incorporate such 

interaction information and these can be largely divided into two major categories. The first 

uses these interactions for post-processing of trajectories learned by other methods, whereas 

the second uses them as an integral part of the trajectory inference.

An example for the use of post-processing methods is the work by Sanchez-Castillo et 

al62 which presented a Bayesian method utilizing autoregressive moving-average model 

(GRNVBEM) to infer gene regulatory networks from pseudotime ordered cells. Similarly, 

Hamey et al.63 used diffusion maps to order blood stem and progenitor cells. They next 

applied Boolean network learning to the ordered cells to infer transcriptional regulatory 

network models that recapitulated differentiation of haematopoietic stem cells (HSCs) 

into progenitor cell types. This enabled them to identify and experimentally validate the 

regulation of Nfe2 and Cbfa2t3h by the GATA2 TF. Although Hamey et al63. used a 

specific ordering method (diffusion maps), their Boolean network analysis can also be 

applied to orderings obtained by other algorithms, which allows users to flexibly match 

ordering and network inference methods. For further information we refer readers to a 

review of bulk network inference methods64 that can be applied to ordered single cell data, 

and a comprehensive survey of gene regulatory network inference methods for single-cell 

data65. Overall, the advantage of post-processing methods is that the trajectory inference 

and interaction evaluation are decoupled. Thus, most post-processing network inference 

methods can use ordering from several different trajectory inference methods and similarly, 

most methods for trajectory inference can be matched to network analysis methods, thus 

providing much better flexibility for users. As mentioned above, several packages, including 

dynverse44 can transform the output of several popular trajectory inference and pseudotime 

ordering methods to a common output. Using this output allows several different methods to 

be used for inferring regulatory networks.

The second set of methods uses the interaction information when reconstructing the 

trajectories. This may improve the ability to focus on the most important genes and 

regulators when learning the model and, if the models are generative, can help in the 

prediction of the impact of various perturbations. For example, SimiC jointly infers the 

gene regulatory networks (GRNs) and the cell states enabling the grouping of cells 

to clusters representing unique stages66. The GRN inference problem is modelled as a 

LASSO optimization problem and the model is constrained by requiring that cells be 

assigned to contiguous states, which uses the interaction information to enforce smooth 

transitions between states. Other methods utilize a probabilistic model for the integration of 

interaction and expression data. Ding et al. relied on graphical models (extending HMMs) 

to integrate static protein–DNA interaction information with time-series scRNA-seq data38. 

The algorithm iteratively identifies key TFs and uses their known targets to assign cells 

and TFs to specific branches on the trajectory. This provides both a pseudotime model for 

profiled cells and, for each branching point, the set of TFs predicted to regulate the split in 

cell trajectories observed. This method was used to model lung development in mice and 

identified hypoxia-inducible factor (HIF1A), CREB1, and HMGA2 as key TFs controlling 
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the differentiation of type 1 to type 2 epithelial lung cells38. Knockout and overexpression 

experiments at the time predicted by the model indicated that perturbing the expression of 

these TFs indeed impacts cell fate decisions and can lead to decreased sacculation and a 

lower fraction of type 2 cells. This method was also used to model iPSC differentiation 

into cardiomyocytes and identified the dysregulation of HOPX during differentiation as a 

mechanism underlying the failure of in vitro-derived cardiomyocyte maturation67. Figure 3c 

presents an extension of these methods, termed Continuous State HMM-TF (CSHMM-TF), 

which enables better identification of the TF activation time and the interactions between 

TFs68.

Conclusions and perspectives

As biological processes are dynamic, many studies include the profiling of samples over 

several time points. scRNA-seq has now become the method of choice when studying the 

expression levels of genes in such samples. While this technology offers several advantages, 

it is also raising new challenges. Many of these challenges can be addressed by combining 

experimental and computational methods to design (Box 1), process, analyze, visualize and 

integrate time-series scRNA-seq data.

Experimental methods have largely focused on complementary approaches to infer the 

timing of specific events beyond the actual sampling time. These include metabolic labelling 

and genetic barcoding methods that provide direct information on the time of specific 

transcription events and relationships between cells. This can provide valuable information 

for both inferring the exact ordering of different cellular states and accurately linking cells 

and their states over time. Although the experimental approaches can help in some studies, 

they may not be enough to correctly order cells for other studies (for example, cases when 

no cell division occurs for genetic barcoding methods). Several computational pseudotime 

inference methods have been developed to address these issues. Such methods differ in 

the assumptions they make about the importance of specific genes in subsets of cells or 

all of the cells, their ability to infer complicated trajectories and their ability to overcome 

issues related to sampling. When the expected trajectory is largely unknown, and sampling is 

believed to be adequate, it may be best to use the dimensionality reduction based methods. 

When there is reason to believe that small populations of cells may be important, especially 

in later stages, it may be best to use the graphical model approaches. RNA velocity is 

often the method of choice when trying to infer dynamics from snapshot (single time-point) 

samples since it provides information on future events not yet seen in the expression levels 

themselves.

Integrating time-series scRNA-seq data with other types of omics and interaction data 

is a very active area of research. While most approaches perform such analysis as a 

post-processing step, integration as part of the trajectory inference provides a number 

of advantages. First, it may lead to better trajectories and models. Second, it provides 

information on the exact timing of various regulatory events. Other approaches integrate 

data collected from the same cells using different experimental platforms, most notably 

single-cell ATAC-seq. The joint analysis is beneficial for both types of data in that case, 

helping identify cell types for the ATAC data and infer active regulators for the RNA 
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data. Going forward, as we discuss in Box 2, we expect to see many studies integrating 

time-series and spatial data which would open the door to inferring not just the dynamics 

of regulatory networks but also signaling networks that are often upstream of these and 

temporal impacts of cell–cell interactions. Together, these will greatly improve our ability to 

reconstruct cell- and tissue-based models of biological processes.
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Glossary:

Pseudotime
Partial ordering of cells in single-cell RNA sequencing (scRNA-seq) data that represents 

predecessor and descendent cell state information.

Trajectory
A graph (often tree) structure which represents the states and their order during the 

biological process being studied. Cells are assigned to points on this graph.

Unique molecular identifiers
UMIs. Sequence indices (often randomly generated) which are added to sequencing libraries 

before PCR amplification and enable the identification of PCR duplicates.

Dimensionality
In single-cell analyses, dimensionality typically refers to the high versus low number of 

dimensions of the data. When working with large samples where each is composed of 

tens of thousands of features (for example cells and their gene expression levels) the 

high dimension corresponds to the original values whereas low dimension is a compact, 

though lossy, way to represent the data with many fewer values. Several low-dimension 

representation methods have been developed and they differ in the function they attempt 

to optimize (such as minimizing reconstruction loss, or minimizing differences in distance 

between the high- and low-dimensional spaces).

Auto-encoders
Neural networks whose goal is to reconstruct the input values. These networks are used for 

dimensionality reduction since they compress all input values through a small intermediate 

layer and then reconstruct them from the information in that layer.

Graphical models
Computational methods that are used to represent joint probability distributions in a compact 

manner. These include Bayesian networks, hidden Markov models and more.

Expectation maximization
(EM). A widely used computational method that can be used to fill in missing data while 

simultaneously learning model parameters. The method iterates between the expectation (E) 
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step which determines expected values for missing data and the maximization (M) step 

which infers parameters using the values obtained by the E step.
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Box 1.

Experimental design considerations for time-series scRNA-seq data

Several issues should be considered when designing time-series single-cell RNA 

sequencing (scRNA-seq) experiments. Some of these arise in all scRNA-seq studies (for 

example, which technology to use) whereas others either require special consideration 

for time-series studies (for example, the number of cells to profile at each time point) or 

are unique to time-series studies (sampling rates). The number of cells needed, and the 

reads per cell are major issues in the design of any single-cell experiments69. A common 

suggestion is to consider the expected frequency of the rarest cell type and determine 

the number of cells based on that74. A few methods have been proposed to recommend 

the number of cells for single-cell experiments, including single-cell empirical Bayes 

(sceb)69 and howmanycells (https://satijalab.org/howmanycells/). Note that the number 

can probably be reduced for time-series studies if one expects to see the same cell types 

at some or all of the time points, especially if the sampling rate is high enough to 

overcome noise at each point70. Sequencing depth (how many reads per cell) often varies 

among different single-cell sequencing platforms. A list of recommended sequencing 

depth for various single-cell sequencing platforms is available in REF75.

How to choose the best time points to profile is a unique challenge in time-series studies. 

Most current studies rely on knowledge of the biological process to determine both the 

duration of the study and the sampling rate. For example, if one expects a uniform 

process (such as for the cell cycle76) then the sampling should be uniform. In other 

cases — for example, various responses to stimuli — it may be better to sample more 

densely at the beginning and less frequently later8. However, there are cases where the 

dynamics of the process being studied are unknown or when assumptions are based 

on the phenotypic behaviour, which may not reflect the underlying molecular dynamics 

that are being profiled by scRNA-seq70. To address this, Kleyman et al. developed the 

Time Point Selection (TPS) method (Figure 2)70. TPS was originally developed and 

applied to bulk RNA-seq but can also be used for scRNA-seq. It works by initially 

oversampling bulk-level RNA-seq using cheap array methods. Next, spline curves are 

used to fit the profiled data, which enables the method to predict values for unobserved 

time points. A heuristic optimization function is then used to select the most informative 

time points, those points that if sampled provide enough information to reconstruct 

the entire expression trajectory for all genes. TPS can also provide a measure of the 

error expected from using only a subset of time points, allowing researchers to balance 

cost and accuracy. Application of TPS to a time-series scRNA-seq study of induced 

pluripotent stem cells (iPSCs) differentiating into lung cells resulted in a somewhat 

surprising selection of time points that focused more on the end of the process rather than 

the more traditional approach that mainly focuses on the beginning. Selected time points 

were validated using the complete dataset54.

Note that although TPS works well for some single-cell studies, it uses bulk data to select 

the optimal time points. This may lead to missing critical transition points for cell types 

that are not well represented in the sample (rare cell types). One potential way to address 
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this issue is to place more emphasis on specific markers for rare cells (if they are known) 

when computing the reconstruction error for TPS.

Another challenge is batch effects. Most methods that have been developed for dealing 

with batch effects in scRNA-seq studies (for example, when analyzing data from multiple 

individuals or conditions) can also be applied to data from multiple time points. Single-

cell multiplexing77 could help mitigate the impact of batch effects by pooling single-cell 

samples from different time points and sequencing them together. Housekeeping genes78 

or spike-ins79 could also improve normalization between time points (or batches). At the 

bulk level, many tools have been developed to correct batch effects between different 

samples, batches or experiments, including ComBat80 and limma81. These methods 

have been extended to use single-cell data. A recent benchmarking study of single-cell 

batch effect correction methods82 provides useful comparison between several popular 

methods.
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Box 2.

Spatio-temporal analysis of single-cell data

Several methods have been recently developed to profile genes and proteins spatially. 

While most of these extend fluorescence in situ hybridization (FISH) methods some 

also utilize sequencing technologies recording the location of where the sequences 

are captured83. Some of these methods enable the quantification of expression levels 

for several genes at single-cell resolution (for example MERFISH84,85, seqFISH86, 

seqFISH+87, osmFISH88, and the 3D transcriptomics record STARmap89), whereas 

others provide a more transcriptome-wide survey but at lower spatial resolution that 

groups expression from several cells for each profile90,91. Spatial transcriptomics 

techniques have now been applied to study the organization of cells in several different 

organs and tissues including lung92 and kidney93.

An interesting direction that is still in its infancy is to perform such spatial studies over 

time. This would enable the determination of both intracellular networks (for example 

regulatory networks) and intercellular networks (for example intercellular signalling 

networks) over time. As the two network types are highly dependent, data that enable 

joint modelling provide valuable information on the drivers of specific regulatory 

events and on the impact of gene expression on cell–cell interactions94. The use of 

time-series data for such studies would provide much better information on the causal 

relationships between different molecular events, which are critical for development95, 

various responses to stimuli96,97, and several other biological processes98.

To date, most work on spatio-temporal analysis involved the use of single-cell RNA 

sequencing (scRNA-seq) or other expression information obtained over time from 

different locations99-101. While this provides important information about the cells and 

trajectories in different regions, such data are not sufficient to provide information on the 

cell–cell interactions. More recently, a few studies profiled spatial transcriptomics data 

over time102. SlideSeq, a high-resolution spatial transcriptomics method, was applied to 

study the brain’s response to traumatic injury over time, identifying genes with unique 

spatial expression patterns at different time points91. However, to date, the focus of 

such studies has mainly been on the dynamics of expression changes rather than on 

reconstructing underlying signalling and regulatory networks. Still, the combination of 

spatial and time-series studies at the single-cell level promises to be the next leading 

technology for studying biological systems at the molecular level. Such data are likely 

to require the development of novel computational methods that can infer relationships 

across space and time and connect levels of genes within cells to their impact on internal 

and external cell states.
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Figure 1. Overview of time-series single-cell RNA-seq data analysis.
Top: Experimental design of time-series single-cell studies. Although many of the issues 

involved in designing time-series single-cell RNA sequencing (scRNA-seq) studies are 

similar to issues involved in designing single-timepoint (snapshot) scRNA-seq studies, 

additional consideration should be given to the sampling rates and the number of cells 

per sample (Box 1). The optimal sampling rate is impacted by the expected change in 

cell states and cell types, whereas the number of cells per sample is dependent on the 

distribution of cell types. Middle: Visualization and initial analysis of time-series data. Most 

methods for the analysis of time-series scRNA-seq data attempt to visualize the trajectory 

and pseudotime order of cells, both within each time point and between time points. Many 

different methods have been developed for this and these differ in the way they use the data, 

in the type of models they reconstruct and in how they assign the pseudotime. Bottom: Data 

integration. Several methods have been developed to complement time-series scRNA-seq 

by integrating it with other types of omics and interaction data. Examples include genetic 
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barcoding methods (left), time-series bulk data (middle) and protein–DNA interaction data 

(right).
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Figure 2. Selecting time points to sample in single-cell RNA-seq experiments.
a ∣ Oversampling of bulk RNA sequencing (RNA-seq) data. The bulk data are then used to 

determine the expected error for each potential subset of time points used. A heuristic search 

is then performed to select the optimal set of time points given cost or error constraints. 

b ∣ Selected time points are then used to profile single-cell RNA sequencing (scRNA-seq) 

data. Errors computed in (a) for this subset of time points can be used to bound the 

expected difference between reconstructed and underlying expression levels. CV, coefficient 

of variation; D, days; SFTPC, pulmonary surfactant-associated protein C (a marker of AT2 

alveolar stem cells).
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Figure 3. Dynamic regulatory network inference using CSHMM.
a ∣ A scheme for continuous-state hidden Markov model (CSHMM) and cell assignment 

learning. The method is initialized using clustering in gene space. Relationships between 

clusters are analyzed to obtain an initial branching model. Next the method iterates between 

cell assignment along the branches of the branching model and learning model parameters 

including structure and emission probabilities. Cell assignment is also determined based 

on predicted transcription factors (TFs) for each branching point and their targets 

allowing the method to infer key TFs and their activation time. b ∣ A Standard uniform 

manifold approximation and projection (UMAP) plot of cells profiled to study neuron 

differentiation73. c ∣ CSHMM reconstructed trajectory for the same cells. Cells are assigned 

to different locations along the branches based on their inferred pseudotime. The model also 

includes parameters for the expected expression levels for all genes at each time. Key TFs 

and their p-values are associated with each of the branching points in the model.
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Table 1

A summary table for all discussed methods

Method 
name

Category Input Output Suitability / 
assumptions

Implementation
/ access

Software link Ref.

sceb ED 1) Budget
2) Pilot data

1) Number 
of cells to 
profile
2) 
Sequencing 
depth

Determining 
number of cells 
and read coverage 
for any single-
cell experiment, 
including time-
series and snapshot 
studies

Python / Open https://github.com/
martinjzhang/
single_cell_eb

69 

howmanycells ED 1) Expected 
number of cell 
types
2) Minimum 
fraction of 
rarest cell type
3) Minimum 
number of 
expected cells 
per type

1) Number 
of cells to 
profile

Determining the 
number of cells to 
profile for studies in 
which rare cell types 
are either of interest 
or expected to be 
important.

HTML
JavaScript / 
Open

https://satijalab.org/
howmanycells/

NA

TPS ED 1) Pilot data
2) A level of 
reconstruction 
error

1) The best 
time points 
to profile

Cases in which 
the sampling rate 
is expected to be 
able to recover 
all major molecular 
events occurring in 
the process being 
studied.

Python / Open http://
sb.cs.cmu.edu/TPS/

70

Monocle TI Cells by genes 
matrix

1) Clusters
2) 
Trajectory 
graph
3) 
Pseudotime 
for all cells

Pseudotime 
inference for 
time-series or 
single-time point 
(unsynchronized) 
studies in which 
the profiled cells 
are expected to 
span the entire 
duration of the 
process. Clustering 
can be used for 
cases in which it 
is not clear if the 
sampling rate covers 
all major biological 
transitions. Time-
series information 
is not utilized by 
the method, and so 
inference is based 
on the expression 
levels only.

R / Open https://cole-trapnell-
lab.github.io/
monocle3/

37 

TSCAN TI Cells by genes 
matrix

1) Clusters
2) 
Trajectory 
graph
3) 
Pseudotime 
for all cells

Similar to Monocle 
in terms of 
assumptions and 
suitability.

R / Open https://github.com/
zji90/TSCAN

34 

Slingshot TI Cells by genes 
matrix

1) Clusters
2) 
Trajectory 
graph
3) 
Pseudotime 
for all cells

Similar to Monocle 
in terms of 
assumptions and 
suitability.

R / Open https://github.com/
kstreet13/slingshot

35 
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Method 
name

Category Input Output Suitability / 
assumptions

Implementation
/ access

Software link Ref.

SLICE TI Cells by genes 
matrix

1) Clusters
2) 
Trajectory 
graph
3) 
Pseudotime 
for all cells

Relies on entropy-
based analysis and 
so is most suitable 
for developmental 
studies. It can infer 
the starting set of 
cells on its own 
without using the 
time information.

R / Open https://github.com/xu-
lab/SLICE

39 

PAGA TI Cells by genes 
matrix

1) Clusters
2) 
Trajectory 
graph
3) 
Pseudotime 
for all cells

Suitable for learning 
complex trajectory 
structure with 
multiple branching. 
Efficient and often 
fairly fast.

Python / Open https://github.com/
theislab/paga

36 

Seurat TI, IM Cells by genes 
matrix

1) Clusters
2) 
Trajectory 
graph
3) 
Pseudotime 
for all cells

An inclusive suite 
of tools for the 
analysis of scRNA-
seq data. It provides 
implementation of 
several methods. It 
is very efficient 
and fast but may 
be less accurate 
for complex 
trajectories.

R / Open https://satijalab.org/
seurat/

53,71

SCUBA TI Cells by genes 
matrix

1) Clusters
2) 
Trajectory 
graph
3) 
Pseudotime 
for all cells

Does not 
infer continuous 
trajectories, only 
states and their 
relationships. It is 
mainly successful 
for cases where the 
trajectory is linear 
or includes few 
branches.

MATLAB / 
Open

https://github.com/
gcyuan/SCUBA

48 

scdiff TI, GRN
IM

Cells by genes 
matrix

1) Clusters
2) 
Trajectory 
graph
3) 
Pseudotime 
for all cells
4) 
Regulatory 
networks

Does not 
infer continuous 
trajectories, only 
states and their 
relationships. It is 
suitable for learning 
complex branching 
models. It works in 
gene space and so 
is suitable for cases 
in which several cell 
types are expected.

Python, 
JavaScript /Open

https://github.com/
phoenixding/scdiff

38 

CSHMM TI, GRN, 
IM

Cells by genes 
matrix

1) Clusters
2) 
Trajectory 
graph
3) 
Pseudotime 
for all cells
4) 
Regulatory 
networks

Infers continuous 
trajectories in gene 
space and so can 
generate complex 
branching models 
for cases in which 
several cell types 
are expected. It 
is slower than 
most methods that 
work on reduced 
dimension space.

Python / Open https://github.com/
jessica1338/
CSHMM-for-time-
series-scRNA-Seq

49 

RNA velocity 
and scVelo

TI scRNA-seq 
data (all reads)

RNA 
velocity 
vectors for 
all cells

These methods 
do not rely 
on expression 
similarity and so 
may be better 
suited for data 

Python / Open https://github.com/
theislab/scvelo

9,51,72
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Method 
name

Category Input Output Suitability / 
assumptions

Implementation
/ access

Software link Ref.

sampled at intervals 
that do not fully 
capture all possible 
molecular events. 
As the methods 
are based on 
identifying splicing 
status, they may be 
problematic for any 
scRNA-seq datasets 
where the reads 
do not sufficiently 
cover both intronic 
and exonic 
regions. They are 
often a valuable 
complement 
to pseudotime 
inference methods.

LinTIMaT TI, IM 1) Cells by 
barcodes 
matrix
2) Cells by 
genes matrix

Trajectories 
and 
barcodes 
that mark 
different cell 
fates

Assumes the 
existence 
of CRISPR-
based mutation 
information for 
cells. Learns 
linage models by 
combining these 
with scRNA-seq 
expression data.

Python / Open https://
jessica1338.github.io/
LinTIMaT/

57 

PhenoPath TI, IM 1) Cells by 
genes matrix
2) Vectors of 
covariates

1) Clusters
2) 
Trajectory 
graph
3) 
pseudotime 
for all cells

Suitable for cases 
in which data from 
multiple individuals, 
perhaps at different 
diseases or 
development stages, 
are integrated. Does 
not assume or 
require a clear 
ordering of the 
samples.

R / Open https://
bioconductor.org/
packages/release/
bioc/html/
phenopath.html

60 

TimeReg GRN, IM 1) Expression 
matrix for 
RNA-seq data
2) Bam files 
for epigenetics 
data

1) 
Regulatory 
network 
(TFs and 
target genes)

Requires 
information 
about TF–gene 
interactions.

R / Open https://github.com/
SUwonglab/TimeReg

61 

GRNVBEM GRN, IM 1) Cells by 
genes matrix

1) 
Regulatory 
network

Can either use 
time series or 
pseudotime-inferred 
ordering to 
reconstruct the 
GRN.

MATLAB / 
Open

https://github.com/
mscastillo/
GRNVBEM

62 

CSHMM, continuous-state hidden Markov model; ED, experimental design; GRN, gene regulatory network; GRNVBEM, a gene regulatory 
network (GRN) inference method using a variational Bayesian expectation-maximization (VBEM) framework; IM, integrative model; LinTIMaT, 
lineage tracing by integrating mutation and transcriptomic data; PAGA, partition-based graph abstraction; RGN, regulatory network inference; 
RNA-seq, RNA sequencing; sceb, single-cell empirical Bayes; scRNA-seq, single-cell RNA sequencing; SCUBA, single-cell clustering using 
bifurcation analysis; SLICE, single-cell lineage inference using cell expression similarity and entropy; TF, transcription factor; TI, trajectory 
inference; TPS, time point selection; TSCAN, tools for single-cell analysis.
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