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Building ecological networks is the fundamental basis of depicting how
species in communities interact, but sampling complex interaction networks
is extremely labour intensive. Recently, indirect ecological information has
been applied to build interaction networks. Here we propose to extend the
source of indirect ecological information, and applied regional ecological
knowledge to build local interaction networks. Using a high-resolution data-
set consisting of 22 locally observed networks with 17 572 seed-dispersal
events, we test the reliability of indirectly derived local networks based on
regional ecological knowledge (REK) across islands. We found that species
richness strongly influenced ‘local interaction rewiring’ (i.e. the proportion
of locally observed interactions among regionally interacting species), and
all network properties were biased using REK-based networks. Notably,
species richness and local interaction rewiring strongly affected estimations
of REK-based network structures. However, locally observed and REK-
based networks detected the same trends of how network structure
correlates to island area and isolation. These results suggest that we
should use REK-based networks cautiously for reflecting actual interaction
patterns of local networks, but highlight that REK-based networks have
great potential for comparative studies across environmental gradients.
The use of indirect regional ecological information may thus advance our
understanding of biogeographical patterns of species interactions.
1. Introduction
Species do not live in isolation; they are entangled into ecological networks of
interactions with other species [1]. High-quality ecological networks of biotic
interactions are important for ecologists to better understand local ecological
processes and community structure [1–3]. However, building ecological inter-
action networks over time and space is challenging, mostly due to the intensive
fieldwork required to sample reliable ecological networks [4–6]. Even after a
long-term intensive sampling, onemay only get a limited portion of local ecologi-
cal interaction networks in biologically diverse ecosystems or logistically remote
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sites [7]. Thus, there is an increasing need of cost-effective
approaches to build reliable ecological networks that provide
robust estimates of community structures and the processes
structuring ecological networks [8].

Recently, indirect ecological information was used to
predict and collect potential pairwise species interactions
[5,9,10]. For example, Ong et al. built plant–frugivore inter-
action networks based on information on interactions
accumulated through observations by many people in many
local places over long periods of time [5]; hence the resulting
networks may be more useful to describe broad-scale pro-
cesses, or even historical interactions [11]. Another example is
inferring potential interactions from trait-matching rules
[12,13], which recently has been used to build novel networks
involving introduced species [14]. Although these indirect
methods can identify species interactions widely and include
interactions that are hard to sample [15], they often under-
estimated interaction variations due to environmental and
biogeographical drivers known to impact species interactions
[16]. For example, the loss of interspecific interactions is
faster and ahead of species loss [17]. Speciesmay locally coexist
but have already lost their functionality, resulting in their inter-
actions unlikely to occur (e.g. ‘empty forest syndrome’) [18,19].
Thus, one should be cautious about inferring interactions from
indirect ecological information even when species coexist,
especially in highly heterogeneous environments such as
fragmented landscapes.

Habitat loss and resulting fragmentation are indeed among
the main drivers of species and interactions loss worldwide
[20], leaving fewer species within remnant fragments com-
pared with continuous habitats [21]. Indirect ecological
information may underestimate the impacts of environmental
filtering on interactions within local fragments, for example,
by the reduction in forest area. For example, forest fragmenta-
tion leads to a drastic loss of seed-dispersal interactions and
functionality [22], even if mutualistic species remain in forest
fragments [23]. However, species loss may also promote inter-
action generalization for some remaining species [23], for
example, dietary expansion of frugivores when fruit resources
are less available in smaller fragments [24]. Overall, network
connectance (i.e. the proportion of observed interactions rela-
tive to the total possible interactions) often decreases with
increased species richness [25–28]. Taken together, we predict
that a higher proportion of potential interactions will be
observed in species-poor habitats than within a given region.
Moreover, although indirect ecological information is useful
to study broad-scale interaction networks, it remains unclear
whether it can be used to reveal local-scale processes,
especially for systems consisting of depauperated ecological
networks with many remnant species [29].

Here we propose an approach to build local seed-dispersal
networks from regional ecological knowledge (REK) in a
fragmented landscape consisting of artificial land-bridge
islands. A regional interaction network constructed from all
observed interactions between species of a regional species
pool may provide powerful evidence for understanding the
structure of local networks [30]. Local interaction networks
can be constructed based on the regional network and the
local community composition (species pool), which may
enable us to evaluate local-scale ecological processes [31].
However, it remains unknown whether keeping all observed
interactions in the region between interacting species would
affect our evaluation of local networks’ actual structure,
because interactions may be context-dependent [16,23,32].
For example, changing resource availability would influence
interaction variations of consumers [33]. Thus, we need to
evaluate the implications of using REK-based indirectly
derived networks for the study of actual ecological networks.

To examine the reliability of using a REK-based method to
construct local interaction networks, we used an unprece-
dented dataset on 17 572 seed-dispersal events recorded
using camera trapping on 22 artificial land-bridge islands in
the Thousand IslandLake region, China. Although a combined
approach using various methods (e.g. DNA barcoding, visual
observation and faeces samples) may optimize sampling of
plant–frugivore interactions [4], it needs high labour and/or
financial costs to be employed at large spatial/temporal
scales. Camera trapping provides high-resolution data of
seed-dispersal interactions and the possibility of sampling a
comparable and high-quality interaction network for each
island [24], given that it allows us to monitor plants with simi-
lar fruiting periods simultaneously overmultiple islands [4,34].
Camera trap data can therefore be used as a baseline to assess
the quality of local ecological networks, avoiding network
property biases due to incomplete sampling [35]. Using this
dataset, we evaluated the potential applications of REK to
build local ecological networks for each island. We used local
species lists to derive REK-based networks for each island,
and estimated biases in network metrics between locally
observed networks and REK-based networks. Specifically, we
examined: (1) whether species richness affects the proportion
of locally observed interactions relative to regionally observed
interactions (i.e. local interaction rewiring) using REK-based
networks, (2) whether there are significant biases in network
structures between locally observed and REK-based networks,
(3) whether the estimated network structures of both locally
observed and REK-based networks have similar responses to
habitat fragmentation (i.e. island area and isolation in our
study), and (4) whether species richness and local interaction
rewiring affect our estimations of network metrics built by
REK-based methods. We aim to find a general guideline that
can be used elsewhere to build ecological networks at the
local scale using indirect ecological information, like REK
in our study, to address research questions fusing network
ecology with biogeography and macroecology.
2. Material and methods
(a) Study area
Our study was conducted in the Thousand Island Lake (electronic
supplementary material, figure S1), a fragmented landscape
formed by damming in western Zhejiang Province, eastern
China (29°220–29°500 N, 118°340–119°150 E). The lake was created
in 1959 and contains more than 1000 islands covered with second-
ary forest. Trees on islands were clear-cut before dam construction,
and thus all islands initiated their succession from a similar con-
dition. Currently, most of these forested areas (approx. 90%) are
dominated by Masson pine (Pinus massoniana) in the canopy,
with many native fleshy-fruited plants in the sub-canopy and
understory, including abundant shrubs such as Vaccinium carlesii,
Eurya muricate and Lindera glauca [34]. This region has a typical
subtropical monsoon climate with marked seasonality (hot and
humid summers, and cool to mild winters) [36]. We monitored
plant–frugivore interactions in this artificial island archipelago
since 2019 [37]. Because the distributions of plants and seed-
dispersers have been investigated [38], our study system provides
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Figure 1. Illustration of two types of local networks (i.e. island-wide networks in our study) and the regional network across all islands (i.e. landscape-level
network). By carrying out field sampling (i.e. using arboreal cameras in our study), we collected locally observed interactions to build a locally observed network
(lower, blue box) for each study island. Based on all interactions across all islands, we derived a species pool of interacting species (in the left island) and build a
regional network (upper, black box) based on all seed-dispersal interactions collected across all our study islands (319 unique interactions among 39 bird species and
31 plant species). By matching interactions of locally occurring species with those in the regional network, we build a REK-based network (right, orange box) for
each study island. Black thick lines indicate locally observed interactions; red lines indicate regionally observed interactions inferred based on the regional network
(i.e. using regional ecological knowledge). We show three representative species of birds and plants of the regional species pool (see electronic supplementary
material, tables S3 and S4). Bird drawings were produced by Liang Su, Bai Xiao and Jing Qian. Plant drawings were produced by Xue Zhang. The photo of
bird frugivory was taken by camera traps.
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an ideal platform for the studies of building local plant–bird net-
works from a regional perspective, given the rich information of
bird and plant distributions in this system.
(b) Sampling seed-dispersal interactions
We used a recently popularized technique, arboreal camera
trapping, to sample seed-dispersal interactions at the region
scale, because this method has been proven to effectively docu-
ment species interactions in arboreal habitats over large spatial
and temporal scales [24,34]. Specifically for our system, frugivores
of different body sizes (e.g. small-bodied passerines and larger
mammals) from multiple vertical strata (e.g. canopy and unders-
tory) and their foraging behaviours have been documented to be
effectively recorded when the sensitivity of the camera was set to
high [34]. Combined with the line-transect method and camera
trapping, we collected plant–frugivore interaction data on 22
islands from June 2019 to January 2022 (three fruiting seasons,
each from June to next January), covering the gradients of island
area and isolation in this lake system (electronic supplementary
material, table S1 and figure S2). Here we used mutualistic seed-
dispersal networks as our study object. For frugivores, we only
used birds as our targeted animals and excluded mammals
(no fruit bats in this system) because (1) we cannot confirm the
identities of most mammal individuals, (2) cannot confirm
whether they participated in seed dispersal due to the relatively
low quality of black-and-white images taken at night, and (3) the
isolation of water among islands sufficiently precludes the move-
ments of frugivorous mammals. We selected fleshy-fruited
species that are bird-dispersed as our targeted plants. We used
independent interaction events of a particular frugivore as
interaction frequency with focal plants [39].

Our goal was to build seed-dispersal networks between fleshy-
fruited plant species and the frugivorous birds that disperse their
seeds (note that more than half of the birds recorded in this lake
system were potential frugivores) [37]. Thus, we only focused on
plant–bird interactions that may lead to seed dispersal. Here we
used a conservative rule to select seed-dispersal interactions,
i.e. those in which the bird was clearly observed swallowing
entire fruits. More sampling details are given in electronic
supplementary material, appendix S1.

We used ‘sample coverage’ tomeasure the sampling complete-
ness of pairwise interactions, which is defined as the proportion of
the total number of interaction events (i.e. interaction individuals)
in a community belonging to the interactions represented in the
sample [40]. We estimated sample coverage of interactions using
method ‘abundance’ with iNEXT function in the R package
‘iNEXT’, ver. 2.0.20 [41].
(c) Building locally observed and REK-based networks
We classified seed-dispersal interactions between pairs of bird
and plant species co-occurring on each focal island into two
categories (figure 1):
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(1) Locally observed interaction: we collected accurately recorded
interactions, and identified highly probable interactions
between interacting partners within a specific camera (i.e.
indirect evidence; see electronic supplementary material,
appendix S1, and Zhu et al. [34]). Thus, the locally observed
interactions were from direct field sampling.

(2) Regionally observed interaction: based on field sampling on
each island, we collected local species information of birds
and plants (species pool in figure 1). We matched interactions
between pairs of birds and plants based on the regional
network. Besides locally observed interactions (i.e. confirmed
on the focal island), there were interactions between co-
occurring pairs of plant and bird species that had been
observed somewhere else in the study area (i.e. potentially
observable) but not on the focal island, which were defined
as ‘regionally observed interactions’ (red links in figure 1).
As a result, the regionally observed interactions were ident-
ified from regional ecological knowledge (i.e. REK-based
interactions) in our region.

We built both types of local seed-dispersal networks on each of
the 22 islands (figure 1). First, for each island, we used only locally
observed interactions to build a locally observed network (blue box in
figure 1). Locally observed networkswere built with sampling data
collected on the focal island, and thus they were considered as
empirical local networks. Second, we built a REK-based network
that included locally observed and regionally observed interactions
(orange box in figure 1). Pairwise interaction frequency in each
REK-based network was derived from the regional network and
scaled by the total number of interactions (interaction abundance)
observed on that island, which is therefore the number of inter-
actions in the corresponding locally observed network. Especially,
we calculated relative interaction frequency between pairwise
bird and plant species of a REK-based network (i.e. pairwise inter-
action frequency divided by the total frequency of the REK-based
network), thenmultiplied relative interaction frequency by original
total frequency from its corresponding locally observed network to
estimate pairwise interaction frequency of the REK-based network.
Thus, a REK-based network is an extended version compared with
the locally observed network.
(d) Data analysis
For each island, we assessed the proportion of locally observed
interactions relative to the total number of regionally observed
interactions using b0

OS (local interaction rewiring), which was
used to quantify observed interactions at the local-island level con-
sidering the overall potential interactions at the regional-landscape
level (electronic supplementary material, figure S3) [42,43]. Here
we used the partitioning approach following Novotny [44] with
Sørensen dissimilarity [45], which removes the dissimilarity gener-
ated by the difference in interaction richness between networks
[46,47]. In this framework, we can calculate βOS (interaction
rewiring) between network M and N using equation (2.1):

bOS ¼
b0 þ c0

2aþ bþ c
, ð2:1Þ

where b0 and c0 are the number of interactions only in the Mshared

and Nshared, respectively (Mshared and Nshared are the subsets of M
and N that contain the same species); a is the number of inter-
actions that exist in both M and N; and b and c are the number of
interactions only in M and N, respectively. When we set M to a
local network and N to the regional network, there would be no
unique species and interactions in M (as M is a subnetwork
of N ), that is, b0 = 0 and b = 0. Thus, we can calculate b0

OS using
equation (2.2):

b0
OS ¼

c0
2aþ c

, ð2:2Þ
where a and c0 are the number of observed and unobserved
interactions in a local network, respectively; c is the number of
interactions in the regional network other than the given local
network. To fit with our study, we modified the calculation of
b0
OS using equation (2.3):

b0
OS ¼

Robs

Lobs þ Rregion
, ð2:3Þ

where Lobs andRobs are the number of locally observed and region-
ally observed (but locally unobserved) interactions in a given local
network, respectively; Rregion is the number of interactions in the
regional network. Thus, b0

OS evaluated the relative proportion of
locally observed interactions for local communities, that is, local
interaction rewiring, considering all observable interactions in
the region; values close to 0 indicate the presence of most observa-
ble interactions in a local network (low level of local interaction
rewiring), while values close to 1 suggest the loss of most observa-
ble interactions even though all, or almost all, species from the
regional network are locally co-occurring (high level of local inter-
action rewiring) [42]. When fewer species co-occur, values will be
lower than 1, due to the lack of interactions as a direct result of
species’ absence. We tested the relationship between local inter-
action rewiring and network size (plant richness × bird richness).
We also used the partitioning approach following Poisot et al.
[43] (electronic supplementary material, appendix S2) to examine
the sensitivity of methodological choices. Moreover, given that
regionally rare interactions that we may miss in the locally
observed networks can affect our estimation of local interaction
rewiring, we repeated the above analysis by artificially removing
rare interactions from our dataset [48].

To test whether the network structures of locally observed
and REK-based networks differed from each other, we used
weighted connectance, weighted nestedness (weighted NODF),
weighted modularity and specialization (H2

0) as metrics for
quantitative network analyses, and used connectance, nestedness
(NODF) and modularity as metrics for binary network analysis.
These metrics are commonly used to describe network structures
[49,50]. We computed modularity using the algorithm provided
by Beckett [51], which computes modularity 100 times to obtain
the highest value of modularity for each quantitative or binary
network per island. Then, we used one-tailed Wilcoxon matched
pairs signed rank tests to determine whether network metrics
differed significantly between locally observed and REK-based
networks. We also tested whether the differences in network
metrics between locally observed and REK-based networks (i.e.
Δ values) were systematically biased. Finally, we used multiple
linear regression models to examine whether network metrics
of locally observed and REK-based networks related significantly
to island area and isolation (the distance to the mainland). Island
area was not correlated to isolation (Pearson’s correlation coeffi-
cient r =−0.15, p = 0.51). We used both quantitative and binary
networks for comparative analyses and a null model approach
to correct network metrics by fixing specific properties (e.g.
size) of the network [52]. All metrics were standardized using
equation (2.4):

Z ¼ ðmobs �mnullÞ
SD(mnull)

, ð2:4Þ

where mobs is the observed value of a metric, mnull is the mean of
null networks’ values, and SD(mnull) is the standard deviation of
null networks’ values. All standardized networkmetrics described
the extent an input network departs from a random network
generated by null models [53,54]. Here, we used the Patefield
null model, which fixes the network size as well as the marginal
sums of each row and column for quantitative networks (i.e. con-
strains both the species richness and the total number of
interactions per species) [55]. For binary networks, we used the
equiprobable null model, which constructs the simulated matrices
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using a probability matrix based on the degree of species [56].
All networks were randomized 1000 times. All network metrics
were calculated using the ‘bipartite’ package, ver. 2.18 [57].

(e) Simulations of REK-based networks
To test whether species richness and local interaction rewiring
affect our estimations of network metrics built by REK-based
methods, we simulated REK-based networks based on species
and their interactions within the regional network. For each gra-
dient of species richness, we randomly selected n plant species
and n + 2 bird species, and then matched their interactions
from the regional network. Note that selected species had at
least one observable interaction with each other, otherwise, we
would reselect species assembly. We took n to be 5–24 for setting
20 gradients of species richness (i.e. 12–50 species), according to
observed plant richness (5–24) on study islands and the highest
species richness on the largest island (50; electronic supplemen-
tary material, table S2). For each gradient of species richness,
we set six levels of local interaction rewiring, i.e. keeping
between 50 and 100% of the observable interactions (interaction
richness) of the simulated networks. We used the above-men-
tioned seven metrics to estimate network structures of 100
simulated networks for each gradient of species richness and
local interaction rewiring. Throughout the study, all statistical
analyses were conducted in R v. 4.1.1 (www.r-project.org).
3. Results
(a) Species and interaction richness
After sampling plant–frugivore interactions on 22 islands over
three years, we have recorded 17 572 seed-dispersal events
with a high sample coverage of pairwise species–species
interactions for each island (mean 0.98 ± 0.01 s.d.; electronic
supplementary material, table S2). From these events, we
created a seed-dispersal interactions database for the study
region, including 39 bird species and 31 fleshy-fruited plant
species with 712 fruiting individuals (electronic supplementary
material, tables S3 and S4). The regional network involved 319
unique seed-dispersal interactions from direct sampling data.
At the local-island level, more than half of interactions could
be clearly identified as seed-dispersal interactions (i.e. locally
observed interactions) (mean 51.7 ± 8.2 s.d. %; figure 2a).
We identified regionally observed interactions using REK,
which accounted for nearly half of the total potential inter-
actions (mean 48.3% ± 8.2% s.d.). The REK-based networks
included a range of 12 to 108 interactions (regionally observed
interactions) per island than the locally observed interactions
(electronic supplementary material, table S2). Compared with
locally observed networks, the number of unique interactions
in REK-based networks increased by 46% to 177%. Local
interaction rewiring (b0

OS) showed a significantly positive
relationship with network size (figure 2b), which can be also
found when we used the partitioning approach of network
dissimilarity following Poisot et al. [43] (electronic supplemen-
tary material, figure S4). The sensitivity analysis on rare
interactions implies that the result of local interaction rewiring
was robust to potential sampling bias and network sizes
(electronic supplementary material, figure S5)

(b) Biases in network metrics between networks
All network metrics were clearly biased after expanding locally
observed networks into REK-based networks (figure 3). REK-
based networks’ connectance and nestedness were significantly
overestimated,whilemodularityand specializationwere signifi-
cantly underestimated when compared to locally observed
networks. The density distributions of Δ values show there
were significant deviations from zero (figure 3). Except connec-
tance and binary modularity, most Δ values of locally observed
andREK-basednetworkshadnon-significant trendswith island
area and isolation (electronic supplementary material, figure S6
and table S5), indicating that the degrees of overestimation or
underestimation were not systematically biased.

(c) Local network structures along island area and
isolation

All the standardized quantitative and binary metrics of both
locally observed and REK-based networks had significant
relationships with island area (figure 4; electronic supplemen-
tary material, table S6), while none of them had significant
relationships with island isolation. In all cases, the metrics of

http://www.r-project.org


20

40

60

0.1
0.1 0.1

0.1

0.1

0.3

0.5

0.2

0.5

0.8

0.3

0.5

0.3 0.5 0.2 0.80.50.2 0.3 20 40 60
0

10

de
ns

ity

20
connectance

1

3

de
ns

ity

5

modularity

1

3

de
ns

ity

5
specialization

specializationmodularity

0.01

0.03

0.05

de
ns

ity

nestedness

20

50

80

0

2

de
ns

ity

4

connectance

1

3

de
ns

ity

5

modularity

0

0.02

0.04

de
ns

ity

nestedness

nestedness

0.2

*** ***

** ***

***

*** ***

connectance

modularitynestednessconnectance

(a) (b) (c)

(e) ( f ) (g)

(d)

0.3

qu
an

tit
at

iv
e

0.2
0.2 20 0.1 0.3 0.550 800.5 0.8

0.5

0.8

bi
na

ry

ne
tw

or
k 

m
et

ri
cs

 o
f 

R
E

K
-b

as
ed

 n
et

w
or

ks

network metric of locally observed networks

Figure 3. Relationships between network metrics calculated for the REK-based (y-axes) and locally observed (x-axes) networks. The dashed line shows the 1 : 1
relationship, indicating no change in metric values. Point size is related to network size. The significance of Wilcoxon matched pairs signed rank tests is shown in the
top-left corner or bottom-right corner (*p < 0.05; **p < 0.01; ***p < 0.001). Each inset is the density distribution of Δ values of both networks’ metric, with the
vertical dashed line showing the zero value. See Material and methods for details regarding calculation of network metrics and statistical analysis.

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20231221

6

both locally observed and REK-based networks showed con-
sistent and similar trends along gradients of island area
and isolation. For quantitative networks, weighted con-
nectance and nestedness decreased, while modularity and
specialization increased with increasing island area; but
binary networks’ metrics showed opposite patterns to those
of quantitative networks.
(d) Simulated REK-based networks along species
richness and local interaction rewiring

For simulated REK-based networks, the influences of species
richness and local interaction rewiring differed depending on
the specific network metrics (figure 5; electronic supplementary
material, figures S7 and S8). Connectance and nestedness
were higher when a higher proportion of interactions were
‘observed’ in the simulations (higher interaction richness), but
modularity and specialization showed the opposite patterns.
Except for nestedness, other network metrics varied along
the species richness gradients, but they gradually reached an
asymptotic value as species richness increased. Notably, quanti-
tative and binary modularity showed an opposite relationship
with species richness. Connectance and specialization decreased
with increasing level of species richness.
4. Discussion
We tested the reliability of using REK to build local ecological
networks. We found that species richness largely predicted the
proportion of locally observed interactions when REK-based
networks were constructed. However, although most network
metrics were significantly biased when using REK-based net-
works relative to locally observed networks, both had similar
responses to island area and isolation. The simulations show
that species richness and local interaction rewiring would
influence our estimations of network structures when using a
REK-based network for a given local community. Taken
together, our study suggests that we should use REK-based
networks cautiously for reflecting actual interaction patterns
of local networks, but we also show that networks built
by relatively coarse interaction data (i.e. indirect ecological
information; REK in our case) are acceptable to evaluate
ecological network trends along environmental gradients.
(a) Building networks using regional ecological
knowledge

Ahigh-quality regional network can establish a strong basis for
building local interaction networks using REK and may thus
provide key information for understanding and evaluating
local interaction patterns. Due to the labour-intensive collec-
tion of species interactions, building ecological networks
across spatial or temporal scales is challenging, particularly
where fieldwork is costly and time-consuming [5]. To over-
come these challenges of sampling interactions directly, we
used a regional interaction network [58] to infer potential
interactions indirectly from known species pools, which pro-
vides a strong tool to reflect local patterns and processes
[59,60]. With a high-quality inventory of species interactions
in a region, the regional network largely avoids ‘forbidden
interactions’ [15], facilitating the compilation of potential inter-
actions at the local scale. Prior work has also indicated that
network structures characterizing local assembly processes
could be inherited from a regional network [61].

In our study, we recorded a large number of interaction
events through uninterrupted monitoring during fruiting
seasons for over three years, and achieved a high sampling
coverage (approx. 98% in average) for each island that enabled
us to construct a high-quality regional network. We found that
only an average of 51.7% of all potential interactions were
locally observed on each island (similar to the result of 55%
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in Gravel et al. [59]). This indicates that local filtrations of
species interactions occur between islands in the fragmented
landscape of the Thousand Island Lake system.Notably, poten-
tial missing interactions in the locally observed networks
would lead to an overestimation of local interaction rewiring.
We should thus require locally observed interactions to be
more completely sampled when we study the variations of
local-scale interaction in a region. By estimating local inter-
action rewiring from a regional perspective [42], we found
that local interaction rewiring correlated positively with
species richness (figure 2), which implies that the influence
of environmental contexts on interaction variations could be
driven by species diversity in local communities. This finding
reveals non-stochastic organization of local ecological net-
works, and supports that we could thus predict local
interaction rewiring by community assembly to better reflect
local-scale interaction patterns and processes from a regional
perspective. Given that more reliable and accessible empirical
data on species interactions are accumulating worldwide
[62], unbiased regional networkswill expand our ability to pre-
dict the variability of interactions between local species under
environmental change.
(b) The reliability of REK-based networks
We found that REK-based networks had clear biases in all
network properties (figure 3), but they performed similar to
locally observed networks obtained through considerable
sampling efforts when evaluating how network structures
change along fragmentation gradients (figure 4). Compared
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with REK-based networks, locally observed network struc-
tures were less nested and connected, but more modular
and specialized. REK-based networks include more inter-
actions of interacting species, making them more connected
and generalized than locally observed networks. We also
found that REK-based networks were more nested, as mutua-
listic networks often show stronger nestedness with higher
interaction complexity [63,64]. Ecological factors such as flex-
ible foraging driven by environmental contexts could explain
the loss (or realization) of interactions among regionally inter-
acting species within the local island-level networks, leading
to the observed variations in network structures [65]. This
indicates that we should be cautious when using indirect
ecological information to describe local network structures,
especially if we intend to understand actual processes at the
local scale. Therefore, for the purpose of understanding
local interaction patterns, we recommend building local net-
works with high-resolution datasets of locally observed
species interactions, rather than using indirect networks
such as those built with REK or other kinds of local ecological
knowledge over broad temporal and spatial scales (e.g. [5]).

Although the organization of local networks is affected by
interaction completeness [6], a robust characterization of its
variation pattern along environmental gradients could be rea-
listic [66]. The evidence of systematic biases was not obvious
(electronic supplementary material, figure S6), and generally
inconsequential when evaluating the relationship of network
structures with gradients of island area and isolation. In this
study, we standardized network metrics of locally observed
and REK-based networks comparing to randomly generated
networks using two null models (i.e. randomized networks
based on interaction abundance of species for weighed
networks and interaction richness for binary networks), leading
to opposite patterns of network metrics along fragmentation
gradients for weighted and binary data. Given similar
responses of network metrics to fragmentation gradients of
area and isolation in both locally observed and REK-based net-
works, we thus conclude that it is possible to use REK-based
networks to estimate how network structures vary along
environmental gradients. This implies that REK-based net-
works can reflect the mechanisms of network organization by
biological mechanisms and community complexity, supporting
the validity of indirect approaches to build local networks for
comparative studies in biogeography or macroecology.

Taken together, we suggest using high-quality sampling
data to build local ecological networks if we aim to understand
local processes operating in highly heterogeneous environ-
ments, because indirect ecological information may ignore
the effects of environmental filtering on species interactions
at the local scale. Nonetheless, we recommend using indirect
ecological information for building ecological networks in
comparative studies across environmental or geographical
gradients (e.g. [60]), as indirect ecological information here
seems to be at an advantage compared with more traditional
methods. As it is more difficult to sample interactions than
species alone [66], these networks built by indirect information
may thus offer us the opportunity to describe and understand
ecosystem functions along environmental gradients.

(c) The roles of species richness and local interaction
rewiring in determining network structures

Species richness in a local community and its inherent inter-
action rewiring play important roles in determining network
structures (figure 5). We simulated REK-based networks with
random community assembly from our regional species pool,
by controlling the effects of fragmentation on species compo-
sitions (except for species richness). Since the REK-based
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network was a subset of the regional network, our results
showed that connectance of REK-based networks decreased
with increasing species richness, while REK-based networks
had invariably similar nested structures independent of species
richness. Interestingly,weighted and unweightedmodularity of
simulated networks had disparate patterns with increasing
species richness, indicating that we should consider data
types when using REK-based networks [67]. Additionally, for
networks with consistent species richness and local interaction
rewiring, we found nestedness andmodularitywere negatively
correlated as observed in previous studies (e.g. [68]). A lower
proportion of interactions that were ‘locally observed’ in simu-
lations (high local interaction rewiring) increasedmodularity in
REK-based networks with the consistent species richness,
which may result from reduced connectance [69]. Although
network specialization supposedly is independent of network
size [70], our simulations showed this pattern was only
observed in local networks with high species richness. Overall,
these results were consistent with the commonly reported
effects of species richness (or network size) and interaction vari-
ations on network metrics [28,65,71–73]. Moreover, we showed
that influences of both these factors depended on specific
metrics and data types (binary or quantitative).

In the Thousand Island Lake region, we can accurately esti-
mate local interaction rewiring with species richness (network
size) on local seed-dispersal systems (figure 2). This result pro-
vides empirical insights into interaction variations in the face of
local community change due to environmental filtering for
other regions. More importantly, we can assess local network
structures by understanding the response of network metrics
to species richness and local interaction rewiring. For example,
following our framework,we could predict the effects of species
reintroduction on communities by simulating REK-based net-
works [74]. To make reliable predictions about interaction
patterns, we need to understand what triggers the variations
of species richness and local interaction rewiring when using
REK-based networks [75]. In the context of global change, our
results provide evidence that one couldmake better estimations
of network structures using indirect information to examine the
effects of environmental changes across broad geographical
gradients, or explore spatial scaling of interaction networks
[76]. Specifically, given accelerated habitat loss and fragmenta-
tion worldwide [20], our study will contribute to describe
interaction patterns across fragmented landscapes [77]. Note
that although we examined the effects of species richness and
local interaction rewiring on network structures, local species
compositions may also determine interaction patterns (elec-
tronic supplementary material, figure S8). Future studies that
integrate species compositions into the prediction of interaction
patterns would provide further understanding of how local
interaction rewiring affects interaction network structures.
Overall, our findings suggest the importance of considering
community characteristics (e.g. influencing factors of species
richness and local interaction rewiring) when we attempt to
explore well-sampled interaction patterns of local communities
from interaction networks built by indirect information.
5. Conclusion
Building ecological networks is a fundamental process in biodi-
versity research. Recently, several approaches using indirect
ecological information have been proposed to build local net-
works. We here propose to assess and understand local
interaction patterns using regional ecological knowledge. Our
study showed that local interaction rewiring between locally
observed and REK-based networks was driven by species rich-
ness, leading to significant biases in network metrics derived
from REK-based networks. However, when evaluating how
habitat fragmentation influences network structures, REK-
based networks performed similar to locally observed net-
works along the gradients of island area and isolation. Our
study also suggests that assessing species richness and local
interaction rewiring could help understand interaction patterns
of local communities using REK-based networks. These results
demonstrate that inferring species interactions from indirect
ecological information has great potential, but also key limit-
ations, as a tool for understanding the processes shaping
ecological communities. In a world characterized by global
change, we advocate the use of indirect ecological information
for exploring ecological patterns and processes in biogeography
and macroecology of species interactions.
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