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ABSTRACT

Objective: The impact of social determinants of health (SDoH) on patients’ healthcare quality and the disparity

is well known. Many SDoH items are not coded in structured forms in electronic health records. These items are

often captured in free-text clinical notes, but there are limited methods for automatically extracting them. We

explore a multi-stage pipeline involving named entity recognition (NER), relation classification (RC), and text

classification methods to automatically extract SDoH information from clinical notes.

Materials and Methods: The study uses the N2C2 Shared Task data, which were collected from 2 sources of

clinical notes: MIMIC-III and University of Washington Harborview Medical Centers. It contains 4480 social his-

tory sections with full annotation for 12 SDoHs. In order to handle the issue of overlapping entities, we devel-

oped a novel marker-based NER model. We used it in a multi-stage pipeline to extract SDoH information from

clinical notes.

Results: Our marker-based system outperformed the state-of-the-art span-based models at handling overlap-

ping entities based on the overall Micro-F1 score performance. It also achieved state-of-the-art performance

compared with the shared task methods. Our approach achieved an F1 of 0.9101, 0.8053, and 0.9025 for Sub-

tasks A, B, and C, respectively.

Conclusions: The major finding of this study is that the multi-stage pipeline effectively extracts SDoH informa-

tion from clinical notes. This approach can improve the understanding and tracking of SDoHs in clinical set-

tings. However, error propagation may be an issue and further research is needed to improve the extraction of

entities with complex semantic meanings and low-frequency entities. We have made the source code available

at https://github.com/Zephyr1022/SDOH-N2C2-UTSA.

Key words: information extraction, social determinants of health, neural networks, natural language processing, NLP, machine

learning

BACKGROUND AND SIGNIFICANCE

Social determinants of health (SDoH) are nonclinical factors influ-

encing health, functioning, and quality of life outcomes and risks.

For example, SDoH factors include where people are born, live,

learn, work, play, worship, and their age.1–3 Decades of studies have

shown that medical care accounts for only 10%–20% of an individ-

ual’s health status. However, social, behavioral, and genetic factors

also significantly influence health risks, outcomes, access to health

services, and adherence to prescribed care.4,5 Thus, addressing

SDoH is critical for increasing healthcare quality, decreasing health

disparities, and informing clinical decision-making.6

Unfortunately, electronic health records (EHRs) do not generally

code SDoH information in structured data, for example, not in ICD-

10 codes.7 Instead, healthcare organizations and professionals typi-

cally record SDoH in unstructured narrative clinical notes. Thus,

this critical patient information is not easily accessible. Healthcare
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practitioners need to translate them into structured data to support

downstream secondary use applications, like disease surveillance

and clinical decision support.8 Traditionally, medical practitioners

have to manually collect information from unstructured data, such

as medical records, in order to make diagnoses and treatment plans.

This process, known as medical record review, can be challenging

and time-consuming. The extensive paperwork burden can increase

fatigue, reduce job satisfaction, and contribute to medical errors and

adverse events.9 Automating the extraction of SDoH from unstruc-

tured clinical notes using natural language processing (NLP) techni-

ques can help to reduce the workload for medical practitioners;

improve the accuracy and efficiency of the information collection

process; and generate a comprehensive representation of the patient

about their social, behavioral, and environmental information for

downstream tasks.10,11 This approach has been shown to be effec-

tive in previous research, as demonstrated in prior work.12–14

Previous studies on leveraging NLP to automate the extraction

of SDoH information have included lexicons/rule-based meth-

ods13,15,16 and deep learning approaches.14,17–21 In this work, we

introduce a novel system with 3 main components (see Figure 1) to

extract event-based SDoH information from clinical notes: named

entity recognition (NER),22 relation extraction (RE),23 and text clas-

sification (TC).24 We use the Social History Annotation Corpus

(SHAC) developed for the 2022 N2C2 Shared Task—which is based

on the work by Lybarger et al.14 One of the main challenges in

extracting SDoH from text is a large number of overlapping entities.

For example, Lybarger et al14 define smoking status as an SDoH. In

their corpus, the span of the text “2–3 cig per day” includes 4 enti-

ties: the StatusTime argument (“2–3 cig per day”), the Amount

argument (“2–3 cig”), the frequency (“per day”), and the type

(“cig”). Even worse, entities with the exact same spans can refer to

2 separate entities. For example, “marijuana” represents the entity

Drug and it represents the entity Type (ie, because it refers to a type

of drug) in the Lybarger et al14 corpus.

Recently, several methods have been proposed for handling over-

lap in NER tasks.25–28 Some papers have designed different tagging

schemes29,30 by combining token-level classes to deal with overlap-

ping NER, which may cause data sparsity issues (eg, a word can be

labeled as B-ORG-I-PER if it is the start of an organization span and

the inner part of a person’s name). However, if 2 entity types over-

lap infrequently, this can cause a data sparsity issue. Span-based

models are another approach for handling overlapping entities.31,32

These models follow a 2-stage framework, first extracting all possi-

ble text spans from the text and then using filters to reduce the total

search space and computational complexity.31,32 Rojas et al33 show

that simply training an individual model for every entity type

(assuming overlapping entities only appear across entity types) pro-

duces better performance than more complex prior methods. How-

ever, training a single model for every entity type can be wasteful

regarding memory usage. Moreover, if the number of entity types is

large, the deployment of many models can be difficult.

To address limitations in prior work for extracting SDoH infor-

mation from text using the NER approach, we propose a unified

marker-based sequence labeling model for the simultaneous extrac-

tion of triggers and arguments in a single NER model. This model is

then used as part of a larger event extraction system, which outper-

forms recent methods introduced in the 2022 N2C2 shared task.

Our method is inspired by the success of prefix-based prompt-learn-

ing27,32,34 and the work by Rojas et al33 that shows individual mod-

els for each entity outperforming more complex overlapping NER

systems. Intuitively, our approach simulates individual models

trained for every entity type into a single system. Lybarger et al14

recognized 2 additional limitations of current SDoH extraction

methods. First, prior methods lacked the ability to classify relation-

ships between entities that span multiple sentences. Second, the

methods were incapable of incorporating context from adjacent sen-

tences when labeling various aspects of the SDoH event. Our system

addresses the 2 limitations by working at the note level instead of

the sentence level for the relation and subtype classification compo-

nents of our pipeline.

In summary, this article makes the following contributions:

1. We propose a simple yet novel system for SDoH information

extraction. Our system achieves state-of-the-art performance

compared with other competitive systems submitted to the

National NLP Clinical Challenges (n2c2) shared task.

2. We propose a novel marker-based sequence labeling method for

extracting all possible triggers and argument entities while han-

dling overlap. The method is shown to outperform more com-

plex methods developed for overlapping NER. Moreover, our

note-level components are able to identify relations across enti-

ties in separate sentences in the EHR note and incorporate

cross-sentence context to improve subtype classification.

3. We conduct an ablation-like analysis to understand which com-

ponents of our system have the greatest potential for improving

SDoH extraction. Moreover, we perform an error analysis to

provide future avenues of research.

METHODOLOGY

The SDoH extraction task aims to extract “triggers” and “arguments.”

Triggers are mentions of SDoH factors (eg, Alcohol, Drug, Tobacco,

Living Status, and Employment). Arguments link to the triggers to pro-

vide further context. An example is provided in Figure 2. The trigger

extracted is “smoking” which was assigned the trigger entity Tobacco.

Next, 4 argument entities are extracted: StatusTime, Amount, Fre-

quency, and Type. Note that these entities can be nested (overlapping),

as discussed in the “Background and significance” section. Intuitively,

the argument entities provide information about the trigger entity, for

example, what they were smoking and how often they smoked. Some

arguments (eg, StatusTime) are also classified into specific subtypes to

provide a standardized format for important information. In this case,

we see that the person is a “current” smoker. Overall, while our main

methodological advances come from the NER component (which we

justify via a careful analysis), each piece works together to extract

SDoH information to overcome several of the challenges described by

Lybarger et al14 (eg, detecting cross-sentence relations). Finally, we

describe the exact entity types for triggers, arguments, and all of the

subtypes in their respective subsections below.

Named entity recognition
The first stage of our SDoH system is to extract all trigger and argu-

ment entities within the text. There are 5 unique trigger entities:

Drug, Alcohol, Tobacco, Employment, and LivingStatus. Likewise,

there are 9 unique argument entity types: StatusTime, StatusEmploy,

TypeLiving, Type, Method, History, Duration, Frequency, and

Amount. Every argument type does not match every trigger type.

For instance, TypeLiving refers to text spans that mention how a

person lives (eg, whether they are homeless), which is not directly

applicable to the other triggers such as Drug and Employment.

Formally, we frame this as a traditional NER sequential labeling

task, where a sequence S consisting of n tokens w1;w2; . . . ;wn,
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where n denotes the length of the sequence is classified into a

sequence of labels L defined as l1; l2; . . . ; ln. Specifically, we model

Pðl1; . . . ; lnjw1; . . . ;wnÞ;

where each label li represents an entity type in Beginning–Inside–

Outside (BIO) format (eg, B-Drug, I-Drug, and B-Type).35 Outside,

or O, represents a token not classified into one of the SDoH trigger

or argument entities. This traditional approach does not handle

overlapping entities. In the SDoH corpus, overlapping entities

appear across entity types. Generally, an entity does not overlap

with an entity of the same type. This assumption is also used in prior

overlapping entity work.33 However, to overcome this prior work,

Rojas et al33 train an independent classifier for every entity type. For

instance, a single model would predict all Drug entities, while

another model would be dedicated to Employment. This approach

could result in 14 unique models in our corpus (ie, a model for each

trigger and argument entity type), for example,

PDrugðl1; . . . ; lnjw1; . . . ;wnÞ, Palcoholðl1; . . . ; lnjw1; . . . ;wnÞ, etc. More-

over, there may be information about one entity that can help

improve the prediction of another. However, using independent

models will overcome the issue of overlapping entities, but it will

also cause the loss of access to cross-entity information.

To overcome the limitations of training a separate model for

each entity type, we explore methods of handling overlap without

training multiple models by exploring different types of entity type

markers, which have been shown to be effective at injecting infor-

mation into the model.32,36,37 We explore 2 unique methods of

training a joint NER model for the trigger entities, 2 models for the

arguments, and 1 joint model for triggers and arguments. The sum-

mary of each marker-based system for each variation is shown in

Figure 3. We describe each model below.

Trigger Model 1 (no overlap trigger)

First, for triggers, we explore the use of the traditional flat NER,

where we ignore overlap between trigger entities. We found that

there is not substantial overlap between trigger entities, though it

does appear within the dataset. Specifically, given the input sen-

tence, we will simultaneously predict all trigger entity types by

modeling

Ptðl1; . . . ; lnjw1; . . . ;wnÞ;

where PtðÞ represents the NER model for all triggers. Each token

will be assigned one, and only one, BIO formatted label li.

Trigger Model 2 (overlap trigger)

Next, we explore a trigger model that can handle overlap. Intui-

tively, we simulate training a single model for every trigger entity

type using a marker k. Intuitively, instead of predicting all trigger

entity types in a single pass of the sentence and, thus, only assigning

a single class to each token, we make predictions by first condition-

ing on the entity type we want to predict. Formally, we model

Ptðl1; . . . ; lnjw1; . . . ;wn;kÞ;

which will only make predictions for each token w1; . . . ;wn for trig-

ger k or not k. As we change k, the predictions will change. We

implement this model by prepending a trigger type marker k to the

start of each sequence that is formatted as <TriggerName> (eg,

<Tobacco>), which transforms a sequence of tokens w1; . . . ;wn to

k;w1; . . . ;wn. An example is provided in Figure 3.

Argument Model 1 (independent overlap arguments)

For the arguments, there is substantial overlap between entities.

Hence, completely ignoring overlap is not feasible. The first argu-

ment model we explore involves training an Overlapping Argument

model for each trigger. Specifically, we train a model similar to

Overlap Trigger for arguments, but the model is trained for each

trigger’s arguments. For instance, train a model for all of the

Tobacco trigger’s arguments, StatusTime, Amount, Frequency, and

Type. Likewise, we do the same for the other triggers, resulting in 5

models. Formally, we train a model

Input Document

Reports <Alcohol> drinking <\Alcohol> 2
<Type> beers <\Type> daily for several years until...

Step 1: NER Step 2: Relation Classification

Step 3: Argument Subtype Classification
...<Alcohol> drinking </Alcohol>2 beers daily for sev-
eral years <StatusTime> until lay off </StatusTime>.

Events

Reports drinking 2 beers daily for several
years until lay off. States since then, has
been drinking 6 beers and [**1-30**] bottle
of whiskey (unclear size). OSH indicate
wife reports development of morning
drinking...

Figure 1. Overview of our marker-based pipeline.

Amount

Type

Tobacco Event

Trigger: "smoking"
StatueTime Span: "2-3 cig per day"
        Subtype: current
Amount: "2-3 cig"
Frequency: "per day"
Type: "cig" 

Social   History  :   smoking   down   to   2-3   cig   per   day. no illicits

Tobacco Frequency

StatusTime

tobacco-frequency
tobacco-statustime

tobacco-amount

tobacco-type

Entity Extractor

Figure 2. An example for the SDoH extraction task.
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Pa
kðl1; . . . ; lnjw1; . . . ;wn; qÞ;

where q represents an argument for trigger k. Similar to the Overlap

Trigger model, we implement this by prepending the marker q to the

sequence of tokens w1; . . . ;wn to form q;w1; . . . ;wn. Again, at infer-

ence time, we only predict one entity type q 2 Q where Q is the set

of arguments for trigger k. To generate a different argument entity,

we change q (eg, we prepend <Type> to predict the Type argument

and <Frequency> to predict the frequency entity).

Argument Model 2: Overlap arguments

Instead of learning a joint argument model across all 5 triggers, we

also experiment with a single argument model across all triggers.

Formally, we model

Paðl1; . . . ; lnjw1; . . . ;wn; k;qÞ

which conditions on trigger k and argument q. Again, we implement

this by prepending both an argument and a trigger marker, trans-

forming the tokens w1; . . . ;wn to k;q;w1; . . . ;wn.

Joint triggers and arguments

The final model we explore is a single joint model for Triggers and

Arguments. Note that there is a substantial overlap between trigger

and argument entities. Hence, this joint model tests the complete

ability to handle the overlap of our marker-based system. This

model is an extension of the Overlap Trigger and Overlap Argu-

ments models. Specifically, we change what is prepended depending

on what should be predicted. Formally, we model

Pðl1; . . . ; lnjw1; . . . ;wn; k; q; zÞ;

where k is a trigger marker (eg, <Drug>), q is an argument marker

(eg, <Type>), and z is a marker that indicates whether we should pre-

dict a trigger or an argument (eg, <Trigger> or <Argument>). If we

are predicting a trigger, then q is set to the empty string. Specifically,

we transform the input sequence w1; . . . ;wn into k; z;w1; . . . ;wn. As

an example, if we want to predict trigger Drug entities, we would mod-

ify the input sequence to start with “<Trigger><Drug>.” To predict

different entities, we modify the inputs to the system as appropriate.

Combinations

In our experiments, we explore 5 combinations of the models above:

“No Overlap Trigger þ Ind. Overlap Arguments,” “No Overlap

Trigger þ Overlap Arguments,” “Overlap Trigger þ No Overlap

Arguments,” “Overlap Trigger þ Overlap Arguments,” and “Joint

Trigger and Arguments.”

Relation classification
In our models for NER, we can map an extracted argument to a trig-

ger of the correct type. However, there may be multiple triggers of

the same type (eg, multiple Alcohol types in Figure 1). Therefore,

No Overlap Trigger

60  O    
pack  O
year  O    

history  O            

of  O

smoking B-Tobacco

and  O

no  O

drinking  B-Alcohol

Overlap Trigger

<Tobacco>  O
60  O    
pack  O
year  O    

history  O            

of  O

smoking B-Tobacco

and  O

no  O

drinking  O

Overlap Arguments

<Tobacco>  O
<Amount>  O
60  B-Amount    
pack  I-Amount
year  I-Amount   

history  O            

of  O

smoking O

Independent Overlap
Arguments 

<Amount>  O
60  B-Amount    
pack  I-Amount
year  I-Amount   

history  O            

of  O

smoking O

Joint Trigger and
Arguments

<Argument>  O
<Tobacco>  O
<Amount>  O
60  B-Amount    
pack  I-Amount

year  I-Amount

history  O            

of  O

smoking O

Figure 3. Examples of the markers used for each of our NER systems.

smoking down to 2-3 cig per day . no illicits<Tobacco> <Type> </Type></Tobacco>

MATCH

smoking down to 2-3 cig per day . no illicits<Tobacco> </StatusTime></Tobacco>

Tabacco-StatusTime: current

<StatusTime>

(I) Relation Classification

(II) Subtype Classification

Figure 4. Examples for the RC and subtype classification. (I) RC is a binary classification task that determines whether a relation exists between trigger and argu-

ment. The 2 possible classes are “match” and “not match.” (II) For subtype classification, a labeled argument is classified into one of several predefined sub-

types, where each has a specific semantic meaning (eg, “current” drug user).

Journal of the American Medical Informatics Association, 2023, Vol. 30, No. 8 1401



matching arguments to an associated trigger instance is not possible

with the NER models alone. Hence, we propose a relation classifica-

tion (RC) framework to match arguments to their respective trig-

gers. To follow a similar framework as our marker-based NER

system, we applied the traditional RC (Matching the Blanks)

approach.27,38–41 Specifically, we model the probability that an

argument should map to a trigger as

Pðy ¼ matchjw1; . . . ;wn; e1; e2Þ;

where e1 represents the trigger entity and e2 represents the argument

entity. We model this classification task by wrapping the entities

with markers. For example, given the sentence “smoking down to

2–3 cig per day,” if we want to check if the type argument “cig”

maps to the trigger “smoking,” then the text is modified as

“<Tobacco> smoking < =Tobacco> down to 2–3 <Type> cig

< =Type> per day.” See another example in Figure 4. Our

approach is able to detect relationships between entities that span

different sentences by passing the entire clinical note to the RC

model with the 2 entities e1 and e2 marked.

Argument subtype classification
The final piece of our SDoH extraction framework involves subtype

classification. There are arguments (eg, Employment Status) that

provide important information. However, it is generally stated in a

wide array of formats. For instance, “John was just laid off work”

and “John is not working” both mention that a person is unem-

ployed. There are 6 arguments that are categorized into subtypes:

Alcohol StatusTime, Drug StatusTime, Tobacco StatusTime,

Employment Status, LivingStatus StatusTime, and LivingStatus

TypeLiving. Each StatusTime subtype can take 1 of 3 categories:

current, past, and future. Employment Status can be employed,

unemployed, retired, on disability, student, or homemaker. Living-

Status TypeLiving can be alone, current, and past.

To detect subtypes, we use a similar framework as our RC com-

ponent. Specifically, we model

Pðsjw1; . . . ;wn; e1; e2Þ;

where e2 represents the status argument we are subtyping and e1 is

its respective trigger entity matched via the RC model. s represents

the subtype. Again, we model this via markers within the text, just

like the RC task. For instance, given the sentence, “smoking down

to 2–3 cig per day,” the StatusTime argument and Tobacco trigger

are marked as “<Tobacco> smoking < =Tobacco> down to

< StatusTime> 2–3 cig per day < =StatusTime>,” where the cor-

rect subtype would be “current.” We train a single model to capture

all subtypes across the 6 arguments. See another example in Figure 4.

Moreover, the entire clinical note is passed to the subtype model

with markers such that contextual information from document can

be used to improve performance. By using the entire note, we are

able to overcome prior limitations of lacking contextual information

mentioned by Lybarger et al.14

Implementation details
For the NER models, we train a Bi-directional Long Short-Term

Memory (BiLSTM) network with conditional random fields.42 We

explore 2 types of input embeddings for the model: Flair,43 Bio-

Bert,44 and T5-3B.45 For the Flair embedding model, we trained a

marker-based NER model using a sample dropout of 0.4, a hidden

layer size of 128, a learning rate of 0.1, and 25 epochs with a mini-

batch size of 16. We save the model after each epoch and use the

best version based on the validation dataset. The BioBert and T5-3B

embedding models were trained in a similar fashion, with the excep-

tion of a sample dropout of 0.3, a hidden layer size of 1024, a maxi-

mum of 15 epochs, and a learning rate of 0.025. Both models fine-

tuned the embedding layers. All NER models were implemented

using the Flair software framework developed by Akbik et al43

(https://github.com/flairNLP/flair). For the RC and subtype classifi-

cation models, we use a RoBERTa-base model46 with an Adam opti-

mizer47 and the CosineAnnealingLR scheduler,48 a learning rate of

1e�5, and train for a maximum of 20 epochs. Again, the best epoch

is chosen using the validation data. Finally, all experiments were

performed on 4 NVidia GeForce GTX 1080 Ti GPUs and one NVi-

dia A6000.

EXPERIMENTAL RESULTS

In this section, we describe the data, evaluation metrics, and report

results, and an error analysis.

Datasets
We conducted our experiments on the 2022 N2C2 shared task ver-

sion of the SHAC14 corpora. The dataset consists of 4480 annotated

social history sections (70% train, 10% development, and 20% test)

from MIMIC-III and the University of Washington Harborview

Medical Centers data (UW). The systems are evaluated for 3 scenar-

ios. First, Task A involves training and evaluating on the MIMIC-III

data (ie, MIMIC-III ! MIMIC-III). Task B measures generalizabil-

ity which involves training on the MIMIC-III and evaluating on UW

data (ie, MIMIC-III ! UW). Finally, Task C involves training on

MIMIC-III and UW data and evaluating on UW data (ie, MIMIC-III

þ UW ! UW). Table 1 presents basic information about the

datasets.

Evaluation metrics
Performance is evaluated using the following metrics: overall preci-

sion (P), recall (R), and F1-score (F1), which is a microaverage of all

trigger types, argument types, and argument subtypes (ie, true posi-

tives, false positives, and false negatives are summed across all cate-

gories). In all of our analysis, we use the evaluation tools provided

by the N2C2 shared task organizers (https://github.com/Lybarger/

brat_scoring).

Overall results
Table 2 shows the overall performance of our systems compared

with the best models in the 2022 N2C2 shared task among the 15

participating teams. Although our model is simple, the marker-

Table 1. Dataset statistics for the MIMIC-III and UW datasets

Dataset Subset Number of

documents

Max

words

AVG

words

MIMIC-III

Train 1316 229 65.34

Dev 188 82 44.34

Test 373 192 44.50

UW

Train 1751 437 54.22

Dev 259 99 37.47

Test 518 288 37.16

Note: Statistics include the number of examples/documents in each subset,

max words in a document, and the average words per document.
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based system approach outperforms prior work. Specifically, our

system with flair word embeddings and joint NER model achieves

similar performance to the best-performing systems without using

an ensemble or manually curated rules (0.8829 vs 0.9008 for Task

A, 0.7523 vs 0.7738 for Task B, and 0.8788 vs 0.8886 for Task C).

Additionally, we evaluated the BioBert model that was trained in

the healthcare domain, PubMed. This improved our Flair model

slightly and the results were close to the best-performing systems in

the competition (0.8948 vs 0.9008 for Task A, 0.7586 vs 0.7738 for

Task B, and 0.8889 vs 0.8886 for Task C). Our results are further

improved using a larger pretrained model T5-3B. The T5-3B embed-

dings and Joint Triggerþ Argument NER model achieve an absolute

F1 score improvement compared with best competition results of

0.0104, 0.0354, and 0.0156 for Task A, Task B, and Task C, respec-

tively. The improvements demonstrate the effectiveness of prefixing

entity type markers in front of each sentence to handle overlapping

NER. We also find that using joint models generally outperforms

using more models. For example, Flair þ RoBERTa Joint Trigger

and Argument has an F1 of 0.7523 for Task B, while Flair þ RoB-

ERTa No Overlap Trigger þ Ind. Overlap Argument has an F1 of

0.7189. One possible reason for the excellent performance is that

when we train joint models, more cross-entity information is shared,

similar to what happens with multi-task learning.

Analysis of system component importance
There are 3 major components to our SDoH extraction system:

NER, RC, and subtype classification. For future work, which piece

can provide the most benefit if improved? To understand each com-

ponent better, we run an ablation-like experiment where we replace

each component with the ground-truth predictions. Intuitively, we

are trying to understand if we improved a single component, which

has the most potential impact on the entire system. Table 3 shows

the results of the study for Task A and Task C. By comparing, we

find that using ground truth for argument-level NER yields the larg-

est potential improvement (0.0433 for Task A and 0.0403 for Task

C). The next largest potential improvement comes from the RC

model. The component with the lowest potential impact on the

overall performance is subtype classification, with an improvement

of 0.0193 for Task A and 0.0162 for Task C.

Comparison to a state-of-the-art span-based model
As mentioned in the “Background and significance” section, there

has been significant progress in developing models that can handle

overlapping spans. While some research has shown that training

independent models outperform many of the recent methods,33 it is

important to compare them as a baseline. Hence, we applied a

recent span-based method Triaffine28 to using publicly available

source code on the N2C2 shared task data (https://github.com/Gan-

jinZero/Triaffine-nested-ner). This approach allows the model to

capture complex dependencies and interactions between different

elements in the input text, potentially improving its performance on

tasks such as overlapped NER. Triaffine is currently a state-of-the-

art method in this area.28 We compare 2 versions of the model, one

that trains triggers and arguments jointly (Joint Trigger þ Argu-

ment) and one that trains a model for the triggers separately from

the arguments (Independent Trigger þ Argument). We report the

results in Table 4. Overall, we find that the independent model sub-

stantially outperforms the joint model across all 3 tasks (eg, 0.8594

vs 0.5942 for Task A). The Joint model potentially suffers because it

cannot handle cases where the triggers overlap exactly with the span

of an argument. Our method is capable of handling this by predict-

ing each entity one at a time using markers. We also compare with

assuming a perfect RC because the span-based model does not have

information about matches between arguments and trigger types.

Our models contain this information by including a marker for the

trigger and the argument for argument prediction. Yet, even with a

perfect RC model, it still underperforms our best approach without

a perfect model.

Table 2. Overall performance across the 3 tasks: Task A (MIMIC!MIMIC), Task B (MIMIC! UW), and Task C (MIMICþUW! UW)

Task A Task B Task C

Representations NER Method P R F1 P R F1 P R F1

Best Competition Models 0.9093 0.8925 0.9008 0.8108 0.7400 0.7738 0.8906 0.8867 0.8886

Flair þ RoBERTa

Joint Trigger and Argument 0.9073 0.8597 0.8828 0.8016 0.7088 0.7523 0.8926 0.8642 0.8781

Overlap Trigger þ Overlap Argument 0.9010 0.8655 0.8829 0.7967 0.7036 0.7473 0.8837 0.8741 0.8788

Overlap Trigger þ Ind. Overlap Argument 0.9001 0.8643 0.8818 0.7856 0.7040 0.7425 0.8870 0.8650 0.8759

No Overlap Trigger þ Overlap Argument 0.8915 0.8594 0.8752 0.7835 0.6714 0.7231 0.8707 0.8677 0.8692

No Overlap Trigger þ Ind. Overlap Argument 0.8890 0.8580 0.8732 0.7733 0.6717 0.7189 0.8739 0.8581 0.8659

BioBERT þ RoBERTa

Joint Trigger and Argument 0.8914 0.8983 0.8948 0.7827 0.7359 0.7586 0.8943 0.8835 0.8889

Overlap Trigger þ Overlap Argument 0.8879 0.8897 0.8888 0.7775 0.7354 0.7559 0.8894 0.8904 0.8899

Overlap Trigger þ Ind. Overlap Argument 0.8855 0.8865 0.8860 0.7757 0.7174 0.7454 0.8881 0.8849 0.8865

No Overlap Trigger þ Overlap Argument 0.8645 0.8784 0.8714 0.7464 0.7434 0.7449 0.8819 0.8770 0.8795

No Overlap Trigger þ Ind. Overlap Argument 0.8617 0.8744 0.8680 0.7479 0.7241 0.7358 0.8794 0.8705 0.8749

T5-3B þ RoBERTa

Joint Trigger and Argument 0.9035 0.9167 0.9101 0.8144 0.7964 0.8053 0.9002 0.9049 0.9025

Overlap Trigger þ Overlap Argument 0.9132 0.9092 0.9112 0.8194 0.7992 0.8092 0.9036 0.9049 0.9042

Overlap Trigger þ Ind. Overlap Argument 0.9036 0.9020 0.9028 0.8029 0.7800 0.7913 0.8982 0.9005 0.8994

No Overlap Trigger þ Overlap Argument 0.9009 0.8980 0.8994 0.8165 0.7780 0.7968 0.8969 0.9049 0.9009

No Overlap Trigger þ Ind. Overlap Argument 0.8924 0.8914 0.8919 0.8014 0.7575 0.7788 0.8916 0.9009 0.8962

Note: Best scores are bolded for the best model(s) for each set of embedding types (Flair þ Roberta and T5-3B þ RoBERTa).
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Detailed results for trigger and argument types
Table 5 provides a detailed analysis of performance based on event

type and argument type using our best model, which is calculated

using microaveraged F1 scores. The performance for Substance use

(Alcohol, Drug, and Tobacco) and Employment triggers is consis-

tent between Task A and Task C, with scores greater than 0.93,

despite Task C having more training data. However, the Living Sta-

tus trigger performance in Task C is lower compared with Task A

due to the more complex living status descriptions in the UW data-

set, such as “living in a specific Shelter” (0.9294 vs 0.9636). The

labeled argument performance is similar in Task A and Task C for

Tobacco and Employment. However, there are differences in Alco-

hol, Drug, and Living Status labeled arguments. Interestingly, the

Drug Status argument’s performance decreases when more training

data are available (0.9418 on Task A vs 0.8946 on Task C). This

may be because more drug events are in the test dataset, providing a

Table 4. Comparison to the Triaffine28 span-based model for overlapping entities

Task A Task B Task C

Model P R F1 P R F1 P R F1

Triaffine: Independent Trigger þ Argument 0.9050 0.8182 0.8594 0.7889 0.6641 0.7211 0.8876 0.8462 0.8664

þ Perfect RC 0.9561 0.8222 0.8841 0.8108 0.7400 0.7738 0.8906 0.8867 0.8886

Triaffine: Joint Trigger þ Argument 0.8585 0.4543 0.5942 0.8326 0.4377 0.5738 0.9101 0.5555 0.6899

T5-3B þ RoBERTa Joint Trigger þ Argument (ours) 0.9035 0.9167 0.9101 0.8144 0.7964 0.8053 0.9002 0.9049 0.9025

Notes: Results are on the test data. The largest numbers are bolded.

Table 3. Analysis of system component importance for Tasks A and C using their respective development sets

Task A Task C

Model P R F1 Diff F1 P R F1 Diff F1

Joint Trigger and Argument 0.8994 0.9074 0.9034 — 0.9064 0.9189 0.9126 —

þ Perfect NER-Trigger 0.9410 0.9207 0.9308 0.0274 0.9391 0.9363 0.9377 0.0251

þ Perfect NER-Argument 0.9482 0.9451 0.9467 0.0433 0.9579 0.9480 0.9529 0.0403

þ Perfect Subtype Classification 0.9186 0.9268 0.9227 0.0193 0.9225 0.9352 0.9288 0.0162

þ Perfect RC 0.9639 0.9046 0.9333 0.0300 0.9671 0.9152 0.9404 0.0278

Note: The biggest differences are bolded.

Table 5. Overall performance for the 3 tasks based on event type and argument type—Task A (MIMIC!MIMIC), Task B (MIMIC! UW), and

Task C (MIMICþUW! UW)

Task A Task B Task C

Event type Argument #Train #Test F1 #Test F1 #Train #Test F1

Trigger

Alcohol – 1295 308 0.9776 1828 0.9540 2917 403 0.9865

Drug – 987 189 0.9583 2263 0.9151 3004 473 0.9623

Tobacco – 1232 321 0.9721 1824 0.9394 1767 434 0.9655

Employment – 982 168 0.9388 872 0.8477 2390 153 0.9325

Living Status – 959 242 0.9636 1613 0.7925 2845 354 0.9294

Labeled argument

Alcohol Status 1295 308 0.9064 1828 0.8465 2917 403 0.9499

Drug Status 987 189 0.9418 2263 0.8111 3004 473 0.8946

Tobacco Status 1232 321 0.9216 1824 0.8694 1767 434 0.9292

Employment Status 982 168 0.9059 872 0.7707 2390 153 0.8903

Living Status Status 959 242 0.9553 1611 0.7358 2845 354 0.9073

Type 959 242 0.9309 1613 0.6497 2845 354 0.8759

Span-only argument

Alcohol Amount, duration, frequency, history, type, method 1078 162 0.7262 1180 0.6928 2169 178 0.7865

Drug 1037 165 0.7915 2389 0.6699 3233 418 0.7910

Tobacco 1548 300 0.8508 1926 0.7918 3293 375 0.8194

Employment Duration, history, type 806 140 0.7518 591 0.6209 1347 96 0.7389

Living Status Duration, history 56 6 0.5714 80 0.4364 133 11 0.4545

Note: Task B uses the training data from Task A.
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better performance estimate (189 on Task A vs 473 on Task C). For

span-only arguments, the performance is comparable for Alcohol,

Drug, Tobacco, and Status. However, there is a significant decrease

in the performance for the Living Status, which is potentially due to

the complex living history descriptions in the UW data or the small

test dataset (6 on Task A vs 11 on Task C).

In Task B, which was trained on MIMIC and tested on the UW

dataset, there is a slight decrease in the performance of Substance

use triggers due to the difference between the training and test

domains. Additionally, the performance of Employment and Living

Status triggers and arguments decreases substantially, especially for

the Living Status Type argument (0.6497 on Task B vs 0.9309 on

Task A and 0.8759 on Task C). These may be due to the more intri-

cate employment and living histories of patients in the UW dataset

compared with those in MIMIC. Specifically, the UW dataset has a

unique format of templated information, including details on sub-

stance use, which differs from the format present in the MIMIC

data. Additionally, the writing style in the UW dataset is distinct

from that in MIMIC.

Error analysis
We analyze common errors made by our Joint Trigger and Argu-

ment model. First, when there are direct mentions of different

(unique) types of drugs that have different StatusTime (eg, current

vs past), annotators will label each as separate triggers. For instance,

has 2 Drug triggers: “marijuana use” and “cocaine.” Yet, our model

only predicts the more general “Illicit drugs” as the trigger entity.

We hypothesize that our model does not differentiate general con-

cepts (eg, “Illicit drugs”) from more specific instances of the concept

(eg, “marijuana” and “cocaine.” This is because it is not modeled

explicitly in the architecture; moreover, the data generally contain

more instances of generic mentions than more specific mentions.

Another example of this is found in the example

where our model predicts “drinks” as trigger, while the ground truth

is “alcoholic.” Based on the criteria of Lybarger et al,14 the phrase

describing a general substance (ie, alcohol, tobacco, or drug) or

substance-related verb, such as drink can be a trigger. When both

appear, a more specific concept should be used. Yet, again, our

model fails to understand this underlying semantic meaning and

does not differentiate instances from generic types. This error is very

common for other trigger types. For example, our model incorrectly

predicts “smokes” as a trigger instead of the ground-truth

“cigarettes” often. Likewise, for the employment trigger, our model

will predict “worked” as a trigger instead of “retired” in some

examples. Another common error type happens for uncommon

noun phrases. For instance, in the example,

the ground truth for the LivingStatus trigger is “a rehab facility,” but

our model fails to detect it. Another example of this error type includes-

where our model predicts the Type argument for the Employment trig-

ger as “finance,” while the ground-truth is “finance at Mass Eye &

Ear.” Again, this indicates our models struggle with novel noun

phrases, particularly when they include prepositional phrases. A future

interesting research avenue would explore methods for incorporating

external knowledge bases into transformer models. This could poten-

tially help the model make more accurate predictions and avoid errors.

One way to incorporate external knowledge into transformer models is

through the use of external memory networks, which have been shown

to be effective at incorporating common sense into language models.49

CONCLUSION

This article presents our approach for extracting SDoH events from

clinical notes using the N2C2-2022 Task 2 shared task dataset. We

introduce a novel NER system to extract overlapped entities and

propose a multiple pipeline system to extract SDoH events, includ-

ing NER, RC, and Subtype Classification models, which results in a

new state-of-the-art performance for the N2C2 data. In future

efforts, we aim to enhance our NER model by utilizing structured

knowledge bases through demonstration-based learning,50 such as

providing the sentence of task demonstrations or entity type descrip-

tions instead of just using simple entity type markers for in-context

learning. This can easily be integrated into our framework and we

hypothesize that it would help low-resource entities.
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