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ABSTRACT

Objective: Social determinants of health (SDOH) impact health outcomes and are documented in the electronic

health record (EHR) through structured data and unstructured clinical notes. However, clinical notes often con-

tain more comprehensive SDOH information, detailing aspects such as status, severity, and temporality. This

work has two primary objectives: (1) develop a natural language processing information extraction model to

capture detailed SDOH information and (2) evaluate the information gain achieved by applying the SDOH

extractor to clinical narratives and combining the extracted representations with existing structured data.

Materials and Methods: We developed a novel SDOH extractor using a deep learning entity and relation extrac-

tion architecture to characterize SDOH across various dimensions. In an EHR case study, we applied the SDOH

extractor to a large clinical data set with 225 089 patients and 430 406 notes with social history sections and

compared the extracted SDOH information with existing structured data.

Results: The SDOH extractor achieved 0.86 F1 on a withheld test set. In the EHR case study, we found extracted

SDOH information complements existing structured data with 32% of homeless patients, 19% of current

tobacco users, and 10% of drug users only having these health risk factors documented in the clinical narrative.

Conclusions: Utilizing EHR data to identify SDOH health risk factors and social needs may improve patient care

and outcomes. Semantic representations of text-encoded SDOH information can augment existing structured

data, and this more comprehensive SDOH representation can assist health systems in identifying and address-

ing these social needs.
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INTRODUCTION

Social determinants of health (SDOH) are increasingly recognized

for their influence on patient health, accounting for an estimated

40–90% of health outcomes.1 SDOH include protective factors that

reduce health risks (eg, family support) and risk factors that increase

health risks (eg, housing instability).2 SDOH interventions, such as

initiating medication-assisted therapy in opioid patients, demon-

strate a clear reduction in mortality.3 Other studies have demon-

strated the importance of SDOH data in improving the prediction of

hospital readmissions, medication adherence, suicide attempts, and

more.4,5 Such studies reinforce the importance of screening patients

for social needs, so clinical care teams can connect them with needed

resources.

Patient SDOH information is captured in the Electronic Health

Record (EHR) through structured data and unstructured clinical

narrative text. The clinical narrative contains a more nuanced and

detailed representation of many SDOH than is available through

structured data. For example, substance use (alcohol, tobacco, and

drug) is often documented through binary fields (yes/no) in struc-

tured data, while clinical narratives often document substance use

frequency, amount, and history information. This information can

be automatically extracted using natural language processing (NLP)

information extraction techniques, which map the unstructured text

to a structured SDOH representation. Combining extracted infor-

mation from clinical narratives with existing structured data yields a

more complete patient representation.6,7 This more complete,

automatically-derived patient representation can be used in large-

scale secondary use applications, including clinical decision-support

systems and retrospective studies. Utilizing already-collected data

may reduce the workload and financial resources required for data

collection.

BACKGROUND AND SIGNIFICANCE

Secondary use of SDOH information from clinical narratives

requires extraction of relevant information and conversion of the

SDOH descriptions to structured semantic representations. The

extraction of SDOH information from clinical text is increasingly

explored; however, the nature and granularity of the target SDOH

varies across the research space.8 Several studies treated SDOH

extraction as a text classification task, where labels are assigned at

the sentence or note-level.9–14 Narrative SDOH information has

also been the target of relation or event extraction, where SDOH are

characterized across multiple dimensions related to status,

temporality, and other attributes.15–17 SDOH information extrac-

tion techniques include rule-based7,18,19 and supervised learning

approaches such as Support Vector Machines, random forest, and

logistic regression.8 More recent supervised extraction approaches

utilized deep learning architectures, such as convolutional neural

networks, recurrent neural networks, and pre-trained transformers,

including Bidirectional Encoder Representations from Transformers

(BERT)20 and Text-To-Text Transfer Transformer (T5).8,14,21,22

Pre-trained transformers, such as BERT and T5, allow pre-training

on large quantities of unlabeled text and fine-tuning model parame-

ters to specific classification tasks.20,21 The fine-tuning of pre-

trained transformers is an effective transfer learning strategy that

has achieved state-of-the-art performance in several SDOH informa-

tion extraction tasks.13,14,22

Prior studies have applied SDOH extractors to clinical data sets

to understand the prevalence of SDOH information within clinical

narratives and assess information gained relative to existing struc-

tured data. Hatef et al developed hand-crafted linguistic patterns for

social isolation, housing insecurity, and financial strain, which were

applied to a large clinical data set. [7] Navathe et al used a rule-

based system23 to extract SDOH from notes and demonstrated a

more complete representation of patient substance use, depression,

housing instability, fall risk, and poor social support can be obtained

when combined with diagnosis codes.6 Zhang et al similarly com-

bined narrative text and structured data to predict patient outcomes

using deep learning.24 Focusing on lung cancer patients, Yu et al uti-

lized BERT and RoBERTa25 to identify SDOH concepts at the

document-level and compared the extracted results with structured

EHR data.13,26

Contributions
This article presents two main contributions. First, we present a

state-of-the-art event-based deep learning extractor for SDOH, the

multi-label span-based entity and relation transformer (mSpERT).

mSpERT was trained on the Social History Annotated Corpus

(SHAC),17 the benchmark gold standard dataset from the 2022

National NLP Clinical Challenges SDOH extraction task (n2c2/UW

SDOH Challenge).22 In prior work, we developed SHAC to address

the limitations of published studies in terms of SDOH representation

and normalization. For example, Han et al used BERT for sentence-

level SDOH classification but did not extract granular information

related to substance types, duration, and frequency.14 Yu et al

extracted text spans referring to smoking but did not identify spe-

cific entity types or normalize the spans to SDOH concepts (eg, the

phrase “smoked 2 packs per day until 5 years ago” would not be
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labeled as a past habit or as containing specific frequency or amount

information). SHAC is novel in the granularity of the annotations,

size of the corpus, and inclusion of multi-institution data. The granu-

lar SDOH annotations enable a broader set of secondary downstream

applications. If compared to n2c2/UW SDOH Challenge shared task

systems trained and evaluated on SHAC, the mSpERT performance

of 0.86 overall F1 would only be surpassed by two teams, which

achieved 0.89 and 0.88 overall F1.22 We provide the code, trained

extraction model, and annotated data (https://github.com/Lybarger/

sdoh_extraction). To our knowledge, this is the first publicly available

SDOH extractor trained on SHAC to the research community.

Our second contribution is a large-scale EHR case study that dem-

onstrates the utility of NLP for SDOH extraction. We measured the

prevalence of substance use, living situation, and employment infor-

mation in the clinical narrative and structured SDOH data. Previous

studies exploring the prevalence of SDOH information in the clinical

narrative are limited by the EHR dataset size, patient population

scope, and extraction methods. These studies have either applied

extractors to relatively small, often disease-specific cohorts6,10,13,15,27

or used rule-based approaches.6,7,27 In contrast, we applied mSpERT

to a large clinical dataset of 225 089 patents and 430 406 notes span-

ning all patient populations from the University of Washington Medi-

cine. We compared extracted SDOH information from clinical

narratives with the structured EHR data. The results show that com-

bining the narrative SDOH information with the existing structured

data yields a more comprehensive patient representation, which can

help guide patient care, assess health risks, and identify social needs.

MATERIALS AND METHODS

To extract detailed representations of SDOH from the clinical narra-

tive, we developed a high-performing event-based SDOH extractor,

mSpERT, using SHAC. mSpERT can extract multiple SDOH events in

the patient timeline, including past and current SDOH, and character-

ize SDOH events through detailed arguments related to status, severity,

type, and temporality. Through an EHR case study, we applied

mSpERT to a University of Washington (UW) dataset that includes

430 406 notes with social history sections for 225 089 patients and

compared the extracted information with existing structured data to

quantify differences in SDOH coverage. The structured data captures

SDOH information through coarse encounter-level labels. To facilitate

a direct comparison between the extracted information and existing

structured data, we mapped a subset of the extracted SDOH informa-

tion to note-level labels. To validate mSpERT on the UW dataset, we

randomly sampled and annotated a subset of the notes in the UW data-

set with note-level labels that can be directly compared with structured

fields. All parts of this work were approved by our institution’s IRB.

This section presents the: (1) data used, (2) information extraction

methodology, and (3) EHR case-study design.

Data
We used SHAC to develop and evaluate mSpERT.17,22 SHAC

includes 4405 annotated social history sections from clinical notes

from MIMIC-III28 and UW. It includes train, development, and test

partitions for both sources. SHAC uses an event-based schema,

where each event includes a trigger that identifies the event type and

arguments that characterize the event. The SHAC event annotation

schema characterizes each SDOH event in the patient timeline

across multiple dimensions. Figure 1 presents an annotated social

history section from SHAC with a slot filling interpretation of the

events. In this example, the event schema can differentiate between

the current use of heroin and the past use of methamphetamines and

crack. It can also resolve the method of use, intravenous, for all sub-

stances. The slot-filling representation in Figure 1 illustrates how the

SDOH annotation scheme can be mapped to a structured format for

utilization in secondary use applications. Table 1 summarizes the

arguments for each event type: Alcohol, Drug, Tobacco, Employ-

ment, and Living Status. There are two categories of arguments: (1)

span-only arguments (green labels in Figure 1), which include an

annotated span (eg, “IV”) and argument type (eg, Method) and (2)

labeled arguments (blue labels in Figure 1), which include an anno-

tated span (eg, “Prior”), argument type (eg, Status Time), and argu-

ment subtype (eg, past) that normalize the span to key SDOH

concepts. The argument subtype labels associated with the labeled

arguments provide discrete features for downstream applications

and improve the utility of the extracted information. Additional

Figure 1. SHAC annotation example (left side) with slot filling interpretation of the annotated events (right side).
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information regarding SHAC, including the distribution of note

counts by source and annotation details, is available in the original

SHAC paper and the n2c2/UW SDOH Challenge paper.17,22

To assess the SDOH coverage in the clinical narrative relative to

structured data, we created a clinical dataset from UW from January 1

to December 31, 2021, which we refer to as the UW Data Set. The

UW Data Set includes structured and narrative text data from the UW

Epic EHR from outpatient, emergency, and inpatient settings, includ-

ing 20 medical specialities. Table 2 summarizes the total records and

unique patients. UW Data Set contained more than 3.3 million notes

for 225 089 patients. In the case study, we processed 430 406 notes

with social history sections with mSpeRT. To validate mSpERT, we

created the UW Validation Set, which consists of 750 randomly

sampled documents with social history sections with equal proportions

of progress notes, emergency notes, and social history documents.

Information extraction
Event extraction

The SHAC events can be decomposed into a set of relations, where

the head is the trigger, tail is an argument, and relation type is the

argument role. To extract SHAC events, we introduce mSpERT,

which builds on Eberts and Ulges’s SpERT.29 SpERT jointly extracts

entities and relations using BERT20 with output layers that classify

spans and predict span relations. SpERT achieved state-of-the-art

performance in multiple extraction tasks.29 SpERT’s span-based

architecture allows overlapping span predictions but only allows a

single label to be assigned to each span; however, the SHAC annota-

tions frequently assign multiple labels to a single span. To adapt

SpERT to SHAC, we developed mSpERT. Figure 2 presents the

mSpERT framework, which includes three classification layers: (1)

Entity Type, (2) Entity Subtype, and (3) Relation. The input is a sen-

tence, and the output is extracted events. The Entity Type and Rela-

tion layers are identical to the original SpERT, and the Entity

Subtype layer is incorporated to generate multi-label span

predictions.

Input encoding. BERT generates a sequence of word-piece

embeddings ðhCLS;h1; . . . ht; . . . ; hnÞ, where hCLS is the sentence rep-

resentation, ht is the tth word piece embedding, and n is the sequence

length.

Entity Type. The Entity Type classifier labels each span,

si ¼ ðt; t þ 1; . . . t þ kÞ, where i is the span index and kþ1 is the

span width. Learned span width embeddings, w, incorporate a span

width prior. The span representation, gðsiÞ, is generated from the

BERT embeddings of si and the width embeddings, as:

gðsiÞ ¼MaxPoolðht;htþ1; . . . htþkÞ � wkþ1; (1)

where � denotes concatenation. The Entity Type classifier is a linear

layer, /e, operating on xs;i, defined as”

Table 1. Annotation guideline summary

Event type Argument type Argument subtypes Span examples

Alcohol, Drug, and Tobacco Status Timea fnone, current, pastg “drinks,” “reports”

Duration – “for 10 years”

History – “2 years ago”

Type – “whiskey,” “meth”

Amount – “1-2 drinks,” “1 pack”

Frequency – “a day,” “weekly”

Employment Status Employa femployed, unemployed, retired,

on disability, student, homemakerg
“working,” “retired”

Duration – “for 15 years”

History – “last year”

Type – “construction,” “lawyer”

Living status Status Timea fcurrent, past, futureg “living,” “resides”

Type Livinga falone, with family, with others, homelessg “with family,” “homeless”

Duration – “for 2 years”

History – “until last year”

aIndicates a labeled argument. The labeled arguments are required for each event.

Table 2. Data sources used in the EHR case study

Data type Name Total records Total records with social history Unique patients

Structured Flowsheets 83 235 – 7875

Social history 733 591 – 297 581

Occupation history 120 733 – 42 115

Employment status 560 940 – 560 940

Total 1 498 499 – 618 363

Free-Text Progress Notes 3 063 025 283 423 140 820

ED Notes 147 114 19 120 14 619

Social History Doc. 127 863 127 863 127 863

Total 3 338 002 430 406 225 089

Note: “Total Records” indicates the total counts of structured data records and free-text documents. “Total Records with Social History” indicates the number

of progress and emergency (ED) notes with social history sections and number of social history entries.
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xs;i ¼ gðsiÞ � hCLS: (2)

Entity Subtype. The Entity Subtype classifiers consist of separate

linear layers, /s;v, where v indicates the argument type. The Entity

Subtype classifiers operate on the same span representation as the

Entity Type classifier and incorporate the Entity Type classifier log-

its, as:

xs;v;i ¼ xs;i � /eðxs;iÞ: (3)

The Entity Type logits are incorporated to improve the consistency

between entity type and subtype predictions.

Relation. The Relation classifier predicts the relationship between

a candidate head span, si, and a candidate tail span, sj, with input:

xr;i;j ¼ gðsiÞ � cðsi; sjÞ � gðsjÞ; (4)

where gðsiÞ and gðsjÞ are the head and tail span embeddings and cðsi; sjÞ
is the max pooling of the embedding sequence between the head and tail

spans. The Relation classifier consists of a linear layer, /r.

Target Labels. The Entity Type label set, Ue, includes the null

label, event types (Alcohol, Drug, Tobacco, Employment, and Liv-

ing Situation), and span-only arguments (Amount, Duration, Fre-

quency, History, and Type) (jUej ¼ 11). For all classifiers, null is the

negative label. There are three Entity Subtype classifiers (Status

Time, Status Employ, and Type Living), and the label set for each

classifier includes null and the applicable subtype labels (eg fnull;

none; current; pastg for Alcohol). In SHAC, the links between the

arguments and triggers can be interpreted as binary connectors (has

vs does not have). Consequently, the Relation label set, Ur, is fnull,

hasg. Only spans predicted to have a non-null label by the Entity

Type classifier are considered in relation classification.

Training. The classification layers were learned while fine-tuning

BERT. The training spans include all the gold spans, Sg, as positive

examples and a fixed number of spans with label null as negative

examples. The training relations include all the gold relations as positive

samples, and negative relation examples are created from entity pairs in

Sg not connected through a relation. Hyperparameters were tuned using

the SHAC training and development sets, and final performance was

assessed on the UW partition of the withheld SHAC test set.

Evaluation. We used the n2c2/UW SDOH Challenge evaluation

criteria, which interprets event extraction as a slot filling task.22 In

secondary use, there may be multiple semantically similar annota-

tions, and the evaluation uses relaxed criteria that reflect the clinical

meaning of the extractions.

Trigger: A trigger is defined by an event type and multi-word

span. Trigger equivalence is defined using any overlap criteria where

triggers are equivalent if: (1) the event types match and (2) the spans

overlap by at least one character.

Arguments: Events are aligned based on trigger equivalence, and

the arguments of aligned events are compared using different criteria

for span-only and labeled arguments.

Span-only arguments: A span-only argument is defined by an

argument type, argument span, and trigger connection. Span-only

argument equivalence is defined using exact match criteria; span-

only arguments are equivalent if: (1) the connected triggers are

equivalent, (2) the argument types match, and (3) the spans match

exactly.

Labeled arguments: A labeled argument is defined by an argu-

ment type, argument subtype, argument span, and trigger connec-

tion. Label arguments are defined using a span agnostic approach,

where labeled arguments are equivalent if: (1) the connected trig-

gers are equivalent, (2) the argument types match, and (3) the

argument subtypes match. The argument span is not considered,

and the span of the connected trigger is used as a proxy for argu-

ment location.

Extraction performance was evaluated using the SHAC gold

standard labels. A more detailed description of the scoring criteria

Figure 2. Multi-label Span-based Entity and Relation Transformer (mSpERT) model, which builds on the original SpERT framework.29
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and its justification is available in the n2c2/UW SDOH Challenge

paper.22

EHR case study
Our EHR case study consisted of two experiments: (1) we validated

mSpERT on the UW Data Set using 750 human-annotated docu-

ments, called the UW Validation Notes, and (2) we identified 1.4

million SDOH-related structured records for 618 363 patients and

compared directly with NLP-derived data from 430 406 documents

with social history sections for 225 089 patients written in 2021.

The existing structured data did not capture the same granularity of

SDOH information as mSpERT, so we mapped the mSpERT output

to note-level labels that can be directly compared with structured

fields.

Data sources

Structured data. In this study, we used four database tables in the

UW Epic EHR: flowsheets, social history, patient employment sta-

tus, and patient occupation. From the flowsheets table, we lever-

aged the SDOH-related records identified by Phuong et al30 to

identify employment and housing status. The social history table is

primarily composed of Boolean yes/no columns related to alcohol,

tobacco, illicit, and recreational drug use. The patient employment

status table provides current categorical employment status, such

as Student, Full—time, and Retired, while the patient occupation

table provides a longitudinal record of free-text occupation titles,

such as “Mechanic” or “Therapist.” The employment status table

does not include timestamps to determine when records were

updated, so we limited records to only patients with a completed

visit in 2021.

Narrative text data. We used three narrative text sources: (1)

progress notes, (2) emergency department (ED) notes, and (3) narra-

tive descriptions of social documentation from an SDOH-related

module within our EHR. Progress notes typically document patient

clinical status or related health events in outpatient and inpatient

settings. ED notes document patient care within an ED setting.

Social history documentation is stored in our EHR as longitudinal

records with the same text carried forward and edited in subsequent

encounters. For simplicity of analysis and to avoid duplicate infor-

mation, we only analyzed the latest social documentation records

for each patient in 2021. Progress and ED notes were pre-processed

to extract the social history sections (typically with a header of

“SOCIAL HISTORY”). Notes without this section were discarded.

Note classification evaluation

Note-level classification performance was assessed by annotating

750 UW Validation Notes with five multi-class labels (one for each

event type): Alcohol, Drug, and Tobacco had labels

funknown; current; past; noneg; Employment Status had labels

funknown, employed, unemployed, retired, on disability, student,

homemakerg, and Living Status had labels funknown, alone, with

family, with others, homelessg. The unknown label is analogous to

the null label in mSpERT. Where the patient’s status was described

multiple times in a document, the most recent value was used. Five

medical students annotated our gold standard data set. The initial

annotation training round consisted of all annotators labeling the

same 15 randomly selected social history sections with the extracted

trigger spans from mSpERT pre-labeled. After the initial training

round, 750 social history sections were single-annotated. Classifica-

tion performance was evaluated using accuracy, precision (P), recall

(R), and F1. The inter-rater agreement on 15 notes in the initial

round of annotation was 0.95 F1.

Structured data and NLP data evaluation

Using the extracted information and existing structured data, we

assessed the proportion of patients who had a positive indication for

current alcohol, tobacco, and drug use, any description of employ-

ment, and current homelessness within the 1-year time period of the

UW Data Set. These SDOH were selected because they provide the

most direct comparison with existing structured data. In the

extracted information and structured data, patients may have multi-

ple descriptions of a given SDOH over time (eg, alcohol use indi-

cated as current at one visit but past in a subsequent visit). We

counted any patient with any positive indication for listed SDOH as

positive, regardless of any subsequent changes, given the short time

period.

RESULTS

Information extraction
mSpERT was trained on the entire SHAC train set (1316 MIMIC

and 1751 UW notes) and evaluated on the UW partition of the

SHAC test set (518 notes), as the UW partition is most similar to the

UW Data Set. The overall performance in Table 3 is the micro-

average across all extracted phenomenon (all event types, triggers,

and arguments). The training and test data used to develop the

mSpERT SDOH extractor is identical to Subtask C of the n2c2/UW

SDOH Challenge.22 Subtask C included 10 participating teams that

used a wide range of extraction approaches including pre-trained

transformer-based language models (BERT20 and T521). The top

three teams achieved 0.89, 0.88, and 0.86 overall F1. If compared to

shared task systems, the mSpERT performance of 0.86 overall F1

would be similar to the third-place team.

The SHAC event structure most heavily used in the EHR case

study includes the triggers and labeled arguments. The triggers

Table 3. Event extraction performance on the UW portion of the

SHAC test set

Event type Argument # Gold P R F1

Substance Trigger 1310 0.94 0.96 0.95

Status Time 1310 0.89 0.90 0.89

Amount 217 0.74 0.76 0.75

Duration 65 0.77 0.71 0.74

Frequency 165 0.73 0.74 0.73

History 103 0.60 0.69 0.64

Method 102 0.68 0.55 0.61

Type 319 0.76 0.62 0.68

Employment Trigger 153 0.94 0.88 0.91

Status Employ 153 0.90 0.84 0.87

Duration 5 0.80 0.80 0.80

History 7 0.80 0.57 0.67

Type 84 0.80 0.57 0.67

Living Status Trigger 354 0.88 0.89 0.89

Status Time 354 0.87 0.87 0.87

Type Living 354 0.84 0.83 0.83

Duration 9 0.50 0.33 0.40

History 2 0.50 0.50 0.50

OVERALL 5066 0.87 0.85 0.86
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resolve the event’s type (Alcohol, Drug, etc.) and the labeled argu-

ments capture normalized representations of important SDOH.

mSpERT achieved high performance in identifying triggers for all

events types (0.89–0.95 F1) and resolving the Status Time, Status

Employ, and Type Living multi-class labels (0.83–0.89 F1). The

span-only argument (eg, Amount, Duration, etc.) performance var-

ied by argument type and event type.

The Error Analysis section of the Supplementary Appendix includes

a detailed quantitative and qualitative error analysis, focusing on trig-

gers and labeled arguments. Substance use performance varied by event

type (Alcohol, Drug, and Tobacco) and Status Time label. Across sub-

stance event types, performance was highest for the Status Time none

label (� 0:94F1), where descriptions tend to be relatively concise and

homogeneous (eg, “Tobacco: denies”). Performance was lower for cur-

rent (0:80� 0:91F1) and past (0:59� 0:81F1), which tend to be asso-

ciated with more heterogeneous descriptions and have higher label

confusability. Regarding Employment, performance was relatively high

for all Status Employ labels (� 0:86F1). The Type Living performance

was highest for with family (0:91F1) and alone (0:90F1) and lower for

homeless (0:80F1) and with others (0:69F1).

EHR case study
Extractor validation

Table 4 presents mSpERT validation results for the note-level

extraction performance on the UW Validation Notes. Precision,

recall, and F1 were calculated by considering unknown as the nega-

tive label, and accuracy was calculated using direct comparisons of

all class labels. Comparing Tables 3 and 4 suggests some reduction

in performance associated with mapping the events extracted by

mSpERT to document-level labels. However, the note-level perform-

ance is relatively high across event types (0.77–0.86 F1).

Comparison of extracted and structured information

Table 5 compares the extracted and structured SDOH information,

including the proportions of unique patients with current sub-

stance use (Alcohol, Drug, and Tobacco), any Employment infor-

mation (employed, unemployed, etc.), and Living Status of

homeless. These selections are most directly comparable between

the structured data and extracted SDOH. Tobacco, Drug, and Liv-

ing Status showed the most significant gains in the number of

patients for whom extracted SDOH revealed risk factors not cap-

tured by structured data; 32% of homeless patients, 19% of cur-

rent tobacco users, and 10% of current drug users only have these

SDOH captured in the clinical notes without corresponding struc-

tured information. Employment showed the lowest relative gain

with 11% of patient employment found in both sources and 1%

found only by NLP. The Note Distribution section of the Supple-

mentary Appendix presents the distribution of extracted event

types by note type and provider speciality. The Alcohol and Drug

usage types section of the Supplementary Appendix presents nor-

malized past and present substance counts.

DISCUSSION

Our SDOH extraction approach provides a promising way to iden-

tify patients’ SDOH and social needs. We demonstrate high per-

formance, especially in identifying SDOH events (triggers) and

determining status and type labels. The SDOH from prior work that

is most comparable to our EHR case study is tobacco use. 19% of

potential smokers identified were found only by NLP, and Navathe

et al similarly identified 15% of patients, though only among cardio-

vascular disease patients and as compared to ICD-9 codes.6 Yu et

al’s study of cancer cohorts similarly found 18% of smoking infor-

mation using only NLP.13 Our findings differed from Wang et al’s,

who found 52% of a small cohort with smoking habits using NLP,

but all of whom also had corresponding structured data.15 This may

be due to differing institutional practices or other confounding

factors.

Unlike previous studies which extracted SDOH using text clas-

sification or NER, our detailed SDOH representation may better

aid clinicians in identifying SDOH documented in notes by deter-

mining chronicity, duration, frequency, and type. This event-based

approach can automatically generate detailed summaries of patient

SDOH risk factors, reducing clinician chart review time. While

EHRs offer structured fields to document social needs, the consis-

tency of this information collection depends on competing prior-

ities.31 Given the expanding quantity of EHR data, it is

increasingly important for clinicians to efficiently identify key

information that informs patient care, including SDOH and social

needs. NLP serves to bridge the gap between unstructured clinical

narratives and structured data by augmenting existing structured

data and identifying otherwise unknown social needs. Our study

explores the entire patient population at a health system in an

urban setting. Our findings may be most generalizable to other

urban hospital systems; however, we leave this examination to

future work.

Developing SDOH extraction capabilities is timely, given new

guidelines released by the Center for Medicare & Medicaid Services

that will request screening rates for SDOH and social needs in 2023

and require reporting in 2024.32 Our investigation indicates impor-

tant SDOH information can be extracted from the clinical narrative

with high performance to augment structured data.

Limitations and future work
While we extracted SDOH from a large clinical data set spanning

the UW medical system, our investigation only used progress notes,

emergency notes, and social history text, which are a subset of docu-

mentation and likely do not represent all documented SDOH. Our

EHR case study was limited to data from one year, and the perform-

ance of mSpERT for other time periods or institutions is not well

understood. The prevalence and patterns of SDOH descriptions in

narrative text may vary over time and by institution.

This study is limited by extractor performance and target

SDOH. Although performance was relatively high for most SDOH

information, extraction errors negatively impact the case study, and

certain SDOH will be disproportionately affected. For example, sub-

stance abstinence was extracted with higher performance than cur-

rent or past substance use. The SHAC annotations and this study

capture substance use, employment, and living status information;

Table 4. Note-level performance of mSpERT on the UW validation

notes

Category Acc. P R F1

Alcohol 0.93 0.88 0.84 0.86

Tobacco 0.92 0.87 0.85 0.86

Drug 0.94 0.87 0.87 0.87

Employment 0.86 0.82 0.72 0.77

Living Status 0.87 0.77 0.80 0.79

OVERALL 0.90 0.84 0.81 0.83

Journal of the American Medical Informatics Association, 2023, Vol. 30, No. 8 1395

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad073#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad073#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad073#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad073#supplementary-data


however, there are many important SDOH that are not addressed,

such as living environment, access to care, and food security.

Future studies are needed to understand how extracted SDOH

should be incorporated into social needs screening. Topics of inter-

est could include methods for integration into the medical record

and reducing the need for manual data entry,33 impact of false posi-

tives on stigmatization,34 and influence on patient access to health-

care or social services.

CONCLUSIONS

SDOH are increasingly recognized for their impact on patient well-

being and public health. The clinical narrative contains rich descrip-

tions of SDOH, and the automatic extraction of SDOH from these

narratives can enable large-scale use of the information they contain.

We introduce a multi-label version of the entity and relation extraction

SpERT architecture, mSpERT, which can extract overlapping spans

(entities) and assign multiple labels to spans. mSpERT achieves high

performance on the UW partition of the SHAC test set at 0.86 F1 over-

all. mSpERT achieves especially high performance for event (trigger)

identification (0.89–0.95 F1) and the status and type arguments (0.83–

0.89 F1) that characterize the most salient aspects of the SDOH.

In an EHR case study, we processed 430 406 free-text descrip-

tions of SDOH using mSpERT and automatically compared the

extracted structured semantic representations of SDOH to existing

structured EHR data. Based on our analysis, combining the narra-

tive SDOH information with the existing structured data yields a

more comprehensive patient representation that can be used to guide

patient care, assess health risks, and identify social needs.
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