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ABSTRACT

Objective: Social determinants of health (SDOH) are nonclinical, socioeconomic conditions that influence

patient health and quality of life. Identifying SDOH may help clinicians target interventions. However, SDOH are

more frequently available in narrative notes compared to structured electronic health records. The 2022 n2c2

Track 2 competition released clinical notes annotated for SDOH to promote development of NLP systems for

extracting SDOH. We developed a system addressing 3 limitations in state-of-the-art SDOH extraction: the

inability to identify multiple SDOH events of the same type per sentence, overlapping SDOH attributes within

text spans, and SDOH spanning multiple sentences.

Materials and Methods: We developed and evaluated a 2-stage architecture. In stage 1, we trained a

BioClinical-BERT-based named entity recognition system to extract SDOH event triggers, that is, text spans

indicating substance use, employment, or living status. In stage 2, we trained a multitask, multilabel NER to

extract arguments (eg, alcohol “type”) for events extracted in stage 1. Evaluation was performed across 3

subtasks differing by provenance of training and validation data using precision, recall, and F1 scores.

Results: When trained and validated on data from the same site, we achieved 0.87 precision, 0.89 recall, and

0.88 F1. Across all subtasks, we ranked between second and fourth place in the competition and always within

0.02 F1 from first.

Conclusions: Our 2-stage, deep-learning-based NLP system effectively extracted SDOH events from clinical

notes. This was achieved with a novel classification framework that leveraged simpler architectures compared

to state-of-the-art systems. Improved SDOH extraction may help clinicians improve health outcomes.
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INTRODUCTION

Social determinants of health (SDOH) are nonclinical, socioeco-

nomic conditions that influence patient health and quality of life.

SDOH may account for 80% of modifiable health factors, whereas

medical care accounts for only the remaining 20%.1 For example,

homelessness and living alone, substance abuse (drug, alcohol, or

tobacco), and unemployment are linked to social isolation, depres-

sion, and increased morbidity and mortality.2–4 It is thus incumbent

on healthcare stakeholders to identify SDOH to assist in healthcare

interventions, public health reporting, and large-scale retrospective

studies.

Electronic health records (EHR) capture SDOH in both structured

fields and unstructured (narrative) notes. However, unstructured

notes may capture SDOH more frequently and in a more nuanced

fashion compared to structured data. For example, a study found that

the prevalence of patients with identified social support increased

from 0.4% to 16% when clinical notes were reviewed.5 Moreover,

nonsystematically reported SDOH such as ethnicity and marital status

are more often missing-not-at-random in structured data compared to

unstructured data, which introduces selection bias.6

Manual extraction of SDOH from clinical notes is labor intensive

and expensive due to the vast number of notes in any EHR system, the

degree of variation and complexity of clinical natural language, and

the need for human annotators. Therefore, the development of natural

language processing (NLP) systems that automatically extract SDOH

from clinical notes has been an active area of research over the past

several years.7 While rule-based systems such as cTAKES and Moon-

stone are widely adopted,8,9 state-of-the-art SDOH extraction is now

achieved by supervised machine learning (ML)-based systems. Tradi-

tional ML techniques (eg, SVM, k-NN, random forests) have been

somewhat successful in SDOH extraction. However, deep-learning

based NLP models, and especially those based on transformers like

Bidirectional Encoder Representations from Transformers (BERT), are

increasingly outperforming traditional ML approaches.10–14

The development of ML systems requires large, annotated data-

sets for training and evaluation. To this end, Lybarger et al15 cura-

ted and annotated the Social History Annotation Corpus (SHAC),

which includes 4480 social history sections with detailed annota-

tions for 12 SDOH characterizing the status, extent, and temporality

of 18 000 distinct SDOH events in clinical notes from MIMIC-III16

and the University of Washington and Harborview Medical Centers

(UW). Figure 1 shows an example of an annotated note from SHAC.

The annotations include a trigger indicating the presence of an

SDOH event (eg, “tobacco use” triggers a tobacco event), and argu-

ments characterizing the event (eg, “quit” indicates a past temporal

status of the tobacco event). Using SHAC, Lybarger et al15 trained a

deep neural network to extract event triggers and their arguments

for the most frequently annotated SDOH: substance use (tobacco,

drugs, or alcohol), living status, and employment. This model fea-

tured a pretrained BERT, bidirectional long short-term memory

(LSTM) layers, conditional random fields (CRF), and self-attention

to achieve state-of-the-SDOH event extraction, which we describe

in further detail in the “Materials and Methods” section. When

trained on MIMIC and UW notes, their model achieved 0.95 F1 on

trigger extraction, and 0.70–0.90 F1 for argument extraction on the

test sets for MIMIC and UW notes.

To further advance SDOH event extraction, Lybarger et al14

organized the 2022 n2c2 Track 2 shared task, Extracting Social

Determinants of Health, in which participants developed new event

extraction models from SHAC. We recently participated in this shared

task, developing a novel deep neural network event extraction archi-

tecture that addressed 3 key limitations of the Lybarger et al15 model.

First, Lybarger et al’s model (L1) cannot incorporate context from

preceding or following sentences and cannot generate events that span

multiple sentences; second, it (L2) cannot predict multiple event trig-

gers of the same type (eg, alcohol) in a single sentence; third, it (L3)

cannot identify overlapping spans for arguments that do not have pre-

defined label categories (ie, span-only arguments). Supplementary

Table S1 shows examples of all 3 limitations.

Our proposed NLP system, multilabel multitask BERT (MLTB),

addresses the 3 above preceding limitations: it processes text at the

note level (addressing L1), treats trigger detection as a token-level

classification task (addressing L2), and treats argument detection as

a multilabel token classification task, so each token can partake in

multiple arguments (addressing L3). Indeed, we achieved between

second and fourth place in the n2c2 competition across 3 different

subtasks, performing within a 0.02 difference in F1 score compared

to the highest scoring submissions. Our contribution is thus the

development of a novel deep learning-based NLP system that can

extract SDOH events in clinical notes with high accuracy, while also

avoiding the limitations of the previous state-of-the-art model.

The rest of the paper is as follows. In the “Materials and Meth-

ods” section, we first describe SHAC and review Lybarger et al’s15

event-extraction model. Then, we describe the development of our

own event-extraction architecture, which addresses the 3 limitations

of the current-state-of-the-art model. In the “Results” section, we

report our performance in the 3 subtasks of the 2022 n2c2 Track 2

shared task. Finally, we discuss these results, as well as their limita-

tions and directions for future work.

MATERIALS AND METHODS

The shared task competition study was approved by the Internal

Review Boards at the Massachusetts Institute of Technology and the

University of Washington.

Figure 1. Social determinants of health (SDOH) annotation example.
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Data sets
SHAC consists of 4480 social history sections from MIMIC and UW

notes. MIMIC notes included critical care discharge summaries dated

from 2001 to 2012. Besides discharge summary notes from emergency

department and inpatient visits, UW also included inpatient progress

notes dated from 2008 to 2019. The original SHAC annotation guide-

lines included 12 SDOH categories (event types), ranging from sub-

stance abuse to environmental exposure and gender identity. However,

the 5 most frequent SDOH categories—Drug, Alcohol, Tobacco,

Employment, and Living Status—accounted for 97% of all SDOH

events and were the focus of the n2c2 shared task.

Each annotated SDOH event included a trigger, that is, a span of

text that anchors the event and identifies its event type (eg, employ-

ment), and one or more arguments characterizing the event’s dura-

tion, history, or other attributes (see Figure 1). Table 1 contains the

event types and arguments that were used in the shared task. Argu-

ments are divided into labeled arguments and span-only arguments.

Labeled arguments like Status included an annotated span and a

subtype category label, for example, “unemployed.” Span-only

arguments like Duration or History included only an annotated

span because normalizing these to a fixed, small set of labels is not

practical. Figure 1 shows an example of 5 annotated events in a sin-

gle note in SHAC using the BRAT rapid annotation tool.

Notes were divided into training, development, and test sets for

each of MIMIC and UW. The training samples were selected either

randomly (29% of training notes) or actively selected15 (71%). All

development and test data were randomly sampled.

State-of-the-art SDOH extraction approach and

research gap
Lybarger et al proposed a deep-learning event extractor described in

Reference 15. In their model, individual sentences are encoded with

a pretrained, frozen BioþDischarge summary BERT model.17,18

BERT encodings are then fed into a bi-LSTM, and the forward and

backward output states of this bi-LSTM are concatenated, resulting

in a matrix V, which feeds into separate trigger detection, labeled

argument detection, and span-only argument detection layers. Using

V as input, trigger detection is treated as a sentence-level, multilabel

classification task with an attention mechanism to identify trigger

spans. The output of this trigger detection layer is a matrix Pt of trig-

ger probabilities. Using V and Pt as input, labeled argument

detection is similarly treated as a sentence-level classification task,

with attention used to identify argument spans. The output of this

labeled argument detection layer is a matrix Ps of labeled argument

probabilities. V and Ps are then used as inputs to a linear-chain CRF

to predict span-only arguments. Span-only arguments are encoded

with begin-inside-outside (BIO) encoding (eg, B-Duration, I-Dura-

tion, B-History, I-History, O), and a separate CRF is used for every

event type. As Lybarger et al acknowledge, their model has 3 key

limitations which we described in the “Introduction” section and

which this study aims to address.

Proposed SDOH event extraction architecture
This section summarizes our proposed architecture which addresses

the 3 key limitations of the current-state-of-the-art approach. Our

MLTB architecture (1) incorporates context from the entire note

when making predictions, (2) can predict multiple events of the

same type per sentence, and (3) can predict span-only arguments

with overlapping spans.

Figure 2 contains an overview of our pipelined 2-stage modeling

approach. The first stage model extracts triggers (Figure 2A), and

the second stage model extracts arguments for all triggers extracted

in stage 1 (Figure 2B). Both stages involve fine-tuning a pretrained

BioClinical BERT model trained on PubMed and MIMIC,17 and

both are treated as token classification problems with BIO encoding

of triggers and arguments. All models were implemented using Hug-

gingface’s transformers library (v4.19.2) with a pytorch backend

(v1.11.0).19,20 Figure 3 describes our approach to model training

and model inference, which we now discuss.

Trigger extraction

Text preprocessing. To train the trigger extraction model, we first

converted the SHAC trigger annotations from BRAT format, which

provides character-based offsets (positions) of all trigger spans, into

BIO format using spaCy.21 The BIO format is used to tag tokens

and indicates whether they are the beginning (B) of a chunk or span,

or if they are inside (I) or outside (O) said span. Table 2A gives an

example of the trigger spans of a note excerpt encoded in BIO for-

mat. Because there are 5 SDOH event types, we assigned “B” and

“I” tags for every event type (eg, B-Alcohol, I-Alcohol, B-Tobacco,

etc.) as well as a single “O” tag. As this encoding is token-based,

Table 1. Social determinants of health types and arguments

Event type Argument type Argument subtype (label) Span examples

Substance use (alcohol, drug, and tobacco) Status* fnone, current, pastg “denies,” “smokes”

Duration “for the past 8 years”

History “7 years ago”

Type “beer,” “cocaine”

Amount “2 packs,” “3 drinks”

Frequency “daily,” “monthly”

Employment Status* femployed, unemployed, retired,

on disability, student, homemakerg
“works,” “unemployed”

Duration “for five years”

History “15 years ago”

Type “nurse,” “office work”

Living status Status* fcurrent, past, futureg “lives,” “lived”

Type* falone, with family, with others, homelessg “with husband,” “alone”

Duration “for the past 6 months”

History “until a month ago”

Note: Labeled arguments, marked with a *, are mandatory. (Table adapted from Ref. 15.)
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corpus idiosyncrasies may affect the correct identification of spans.

Therefore, we added custom regular expressions to spaCy’s token-

izer to improve the tokenization of training notes (code available

upon request). For a few notes, we added the special token label “-”

to our customized tokenizer to align the character offsets given by

annotations. Retokenization with BioClinical BERT’s tokenizer was

required to convert spaCy tokens into wordpieces (eg, the word

“worked” was divided into 2 subwords: “work” and “ed”), which

have pretrained embeddings in BioClinical BERT. Finally, we added

a special character [NLSP] to replace nonword tokens ignored by

the BioClinical BERT tokenizer. These tokens included new lines,

white spaces, tabs, and bullet points, which may contain potentially

useful information (eg, events may be somewhat unlikely to span 2

or more lines separated by new-line characters). The [NLSP] token

was added to the tokenizer and initialized as a random embedding

within the BERT model and was later tuned during training. The

BERT tokenizer truncated notes to a maximum length of 512 word-

pieces, padded shorter notes to this maximum, and pre-pended all

Figure 2. Deep learning architecture for extraction of social determinants of health (SDOH). (A) Event trigger extraction via multiclass, token-level annotation of

spans of text that anchor SDOH events. (B) Argument extraction via multitask, multilabel prediction of labeled and span-only arguments.
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sequences with the special token [CLS]. BIO labels were applied to

the first wordpiece in each token. All other wordpieces, including

[CLS] and [PAD] tokens, were given a special label of �100

indicating that they were ignored in the loss computation during

backpropagation. The [PAD] tokens were added at the end of notes

shorter than 512 wordpieces so that all documents had the same

Figure 3. Complete training and evaluation pipeline.

Table 2. Encoding of social determinants of health (SDOH) notes during training

(A) BIO encoding of all trigger spans in a note

Tokens Triggers

He O

is O

a B-Employment

bartender I-Employment

and O

lives B-LivingStatus

alone O

(B) BIO encoding of the trigger span and arguments for just the employment event in A

Tokens Trigger StatusEmploy Duration History Type

He O O O O O

is O O O O O

a B-Employment B-StatusEmployEmployed O O B

bartender I-Employment I-StatusEmployEmployed O O I

and O O O O O

lives O O O O O

alone O O O O O

(C) Multi-label encoding of Status and Type arguments for the employment event in A and B — space prohibits display of other arguments

Tokens Token

TypeID

B-Status

Employ¼Employed

I-Status

Employ¼Employed

B-Status

Employ¼Retired

I-Status

Employ¼Retired

O-Status

Employ

. . . B-Type I-Type O-Type

He 0 0 0 0 0 1 . . . 0 0 1

is 0 0 0 0 0 1 . . . 0 0 1

a 1 1 0 0 0 0 . . . 1 0 0

bartender 1 0 1 0 0 0 . . . 0 1 0

and 0 0 0 0 0 1 . . . 0 0 1

lives 0 0 0 0 0 1 . . . 0 0 1

alone 0 0 0 0 0 1 . . . 0 0 1

Note: The sequence “a bartender” participates in both the StatusEmploy argument, and in the Type argument.
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dimension. Similarly, [CLS] stands for classification, and is a special

token introduced in the BERT architecture to allow the model to

encode the meaning of an entire document in the hidden states of a

single token. This is useful for document classification tasks, but

since our task is token rather than document classification, this

token is only necessary for compatibility with the pretrained BERT

model.

Trigger extraction model. The trigger extraction model was imple-

mented via the BertForTokenClassification class in Huggingface’s

transformers library (see Figure 2A). This model’s architecture con-

sisted of a BioClinical BERT transformer followed by a dense classi-

fication layer. The inputs to the classification layer were the final

hidden state representation given by BERT for all tokens in the input

documents. All layers, including the pretrained BERT transformer

were fine-tuned during training. Final training hyperparameters

included training batch size (16), evaluation batch size (16), number

of epochs to train (12), learning rate (3.6e�5), and weight decay

(0.2).

Argument extraction

Text preprocessing. For each SDOH event in the SHAC corpus, we

converted its trigger span and arguments from BRAT format into a

multilayered BIO format as illustrated in Table 2B. The first layer of

this representation is the BIO encoding for the trigger span of the

current event. All other layers correspond to individual span-only

(eg, Amount) or labeled arguments (eg, StatusTime). Span-only

arguments like Amount were encoded as B-Amount, I-Amount, or

O. Labeled arguments were concatenated with their values. For

example, StatusTime for Drug events contained BIO labels in the set

fB-StatusTime¼none, I-StatusTime¼none, B-StatusTime¼current,

I-StatusTime¼current, B-StatusTime¼past, I-StatusTime¼past, Og.
Argument layers were then one-hot encoded and concatenated into

a single matrix representing all arguments, as indicated in Table 2C.

In this matrix, each token has multiple labels—one for each argu-

ment layer—reflecting the multilabel token classification formula-

tion we have pursued.

We reused the modified spaCy tokenizer in the trigger extraction

for this task. On a few notes, our tokenizer was unable to align its

output tokens with the character offsets given by annotations. These

cases were omitted in training for the argument extraction model.

Our special token [NLSP] was again utilized for new line tokens and

other tokens dropped by the BERT tokenizer. One-hot encoding val-

ues of 0 or 1 were applied to only the first wordpiece in every token.

All other wordpieces, including [CLS] and [PAD] tokens, were given

a value of �100 for every column, and were ignored in the loss com-

putation during backpropagation.

The token type ID’s for all wordpieces in a trigger span were set

to 1, and all other token type ID’s were set to 0 to provide the argu-

ment extractor with awareness of the location of trigger spans for

each event. In brief, BERT input embeddings are the sum of 3

embeddings: token embeddings unique to a wordpiece, positional

embeddings unique to an integer index in the sequence of tokens in

a document, and token type embeddings unique to a token type ID.

In our use case, we used token type ID’s to demarcate the span of

text corresponding to the trigger span for a particular event (see Ref.

22 for a similar approach).

Argument extraction model. The argument extraction model was

trained in a multitask framework (Figure 2B). A single BERT

encoder was shared and fine-tuned for all event types, and 5 separate

event-specific, linear classification layers were added on top of this

shared BERT. The training set containing samples of different events

was shuffled so that training batches would contain multiple event

types. The logits of the classification layer were softmaxed within an

argument layer (ie, softmax was applied to the logits for B-Duration,

I-Duration, and O-Duration), and then converted back to logits.

This normalization within an argument layer emphasized that a sin-

gle label (B-Duration or I-duration or O-Duration) should be pre-

dicted for each argument layer. Because this token classification task

is multilabel (eg, a token could be labeled B-Type and B-StatusEm-

ployUnemployed), we used PyTorch’s BCEWithLogitsLoss as our

loss function, which combines a sigmoid loss with binary cross

entropy. Because we utilized multitask learning, the loss for the set

of samples was reduced to a single quantity with sum rather than

mean reduction (default behavior), so that event types with more

argument types contributed more to the loss (see Table 1).

Model inference

At inference time, notes were tokenized with our customized spaCy

tokenizer, and then propagated through our trigger extraction

model. Predicted triggers (with corresponding token type ID’s) were

then passed through a fine-tuned argument extractor. Finally,

extracted triggers and arguments were converted to BRAT format to

apply the scoring criteria described in Reference 23. Practical details

of the processing of model predictions are available in Supplemen-

tary File S1.

Overcoming the limitations of the state-of-the-art event-extraction

model

Having described our architecture, we now briefly explain how it

overcomes the 3 limitations of Lybarger et al’s model.15 First, while

their model processes text at the level of sentences, our model takes

entire notes as input (in SHAC a very small number of notes are too

long for BERT; see discussion on alternative transformers that could

avoid this problem). This allowed our model’s event predictions to

depend not just on the current sentence, but also on neighboring sen-

tences. Our model’s event predictions can then span arbitrary dis-

tances in text. Second, Lybarger et al’s model performs trigger

detection via sentence classification and can therefore only predict a

single event of a given type per sentence. In our model, trigger detec-

tion is treated as a token classification task, and our model can

therefore predict as many events of a given type as there are tokens

in a sentence. Finally, Lybarger et al’s model has a single CRF to

predict span-only arguments for each event type, allowing each

token to have only one label and participate in one span-only argu-

ment. Our model, however, has a separate output layer for each

argument, allowing tokens to be labeled in multiple spans (eg,

Amount and Type spans).

Model evaluation and n2c2 subtasks

The 2022 n2c2 Track 2 shared task was divided into 3 subtasks,

which varied primarily in the sites of the training and test sets. In

Subtask A (Extraction), participants were given MIMIC training

and development sets (Dmimic
train , Dmimic

dev ), and performance was eval-

uated on a MIMIC test set (Dmimic
test ). In Subtask B (Generalizability),

participants were provided the same MIMIC training and develop-

ment sets as Subtask A, and performance was evaluated on the UW

training and development sets in SHAC (DUW
train, DUW

dev ). Finally, in

Subtask C (Learning Transfer), participants were provided text and
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labels for all MIMIC and UW training and development sets, and

performance was evaluated on a new UW test set (DUW
test ). Prediction

performance was evaluated via precision, recall, and F1 scores for

the extraction of events (triggers, arguments, and argument roles)

relative to the gold standard annotations, using a scoring script

made available to task participants.23

RESULTS

Table 3 describes our model performance across all subtasks. The

bottom rows in Table 3 contain the microaverage performance for

all model predictions (triggers and arguments) as well as the best

values reported after the n2c2 competition. The test sets used to

score our model’s predictions were released after the model had

been trained. Thus, we have no leakage from any subtask’s test set.

Across all 3 subtasks, we achieved F1 scores from 0.77 to 0.88. As

expected, we obtained better performance when the notes’ sites

overlapped across training and test (subtasks A and C, F1¼0.88)

and worse performance when they did not (subtask B, F1¼0.77).

Table 3 also provides detailed performance metrics broken down

by event and argument type. We observed considerable variation in

performance across event types, with better performance in sub-

stance use events (drug, alcohol, tobacco) compared to living status

or employment. For argument extraction, this might be attributed to

our multitask framework, where the transfer learning is more bene-

ficial between the events that are more alike (eg, drug vs alcohol)

than those that are unrelated (eg, drug vs employment). As for varia-

tion in argument types, the greatest challenge is span-only argu-

ments of LivingStatus, where we never achieved F1 scores above

0.38. This is likely due to the small number of gold standard events

with annotations for these arguments (eg, n¼7 in subtask A). It is

also possible that differences in lexical diversity among the different

SDOH event types accounted for differences in model performance;

Feller et al10 found that unstable housing was more challenging for

their model, and was described in notes in a greater variety of ways

(compared to drug use and sexual orientation, which were easier for

their model to classify).

The performance metrics in Table 3 mirror those in Table 3 of

Lybarger et al,15 which shows the performance of their event extrac-

tion model on the MIMIC and UW test sets when trained on the

entire SHAC corpus. Thus, we can reasonably compare their per-

formance on UW to our performance in subtask C, which trains and

tests on the same data. As can be seen, we generally matched or out-

performed their model in 12 out of 15 extraction categories.

Overcoming limitations of the state-of-the-art event-

extraction model
We identified notes and events susceptible to the limitations in the

state-of-the-art model (described in the “Overcoming limitations of

the state-of-the-art event-extraction model” section), and found that

our model indeed overcomes these limitations. Figure 4 shows 2

examples of notes and events corresponding to each of these 3 cases.

Table 3. Social determinants of health extraction performance

Subtask A Subtask B Subtask C

Training: MIMIC Training: MIMIC Training: MIMIC and UW

Test: MIMIC Test: UW Test: UW

Field Event type Argument No. P R F1 No. P R F1 No. P R F1

Trigger Alcohol – 312 0.96 0.95 0.95 209 0.97 0.96 0.96 404 0.99 0.98 0.98

Drug – 194 0.97 0.94 0.96 269 0.95 0.87 0.91 491 0.97 0.93 0.95

Tobacco – 324 0.97 0.96 0.96 223 0.97 0.92 0.94 434 0.97 0.97 0.97

Employment – 193 0.92 0.80 0.85 100 0.97 0.84 0.90 157 0.92 0.89 0.90

LivingStatus – 250 0.97 0.94 0.96 201 0.86 0.78 0.81 357 0.91 0.90 0.91

Labeled

argument

Alcohol Status 306 0.88 0.89 0.89 204 0.91 0.92 0.92 400 0.95 0.96 0.95

Drug Status 191 0.94 0.93 0.93 258 0.87 0.83 0.85 486 0.88 0.85 0.87

Tobacco Status 321 0.91 0.91 0.91 210 0.93 0.94 0.94 430 0.93 0.93 0.93

Employment Status 184 0.86 0.79 0.82 97 0.91 0.81 0.86 151 0.86 0.87 0.87

LivingStatus Status 245 0.96 0.95 0.95 194 0.81 0.76 0.78 352 0.90 0.90 0.90

LivingStatus Type 250 0.93 0.90 0.91 194 0.73 0.69 0.71 356 0.84 0.84 0.84

Span-only

argument

Alcohol Amount, duration, frequency,

history, type

161 0.69 0.69 0.69 93 0.79 0.75 0.77 188 0.74 0.70 0.72

Drug Amount, duration, frequency,

history, type

136 0.82 0.79 0.80 156 0.64 0.60 0.62 339 0.75 0.71 0.73

Tobacco Amount, duration, frequency,

history, type

292 0.78 0.80 0.79 188 0.82 0.78 0.80 386 0.78 0.74 0.76

Employment Duration, history, type 163 0.69 0.60 0.64 60 0.64 0.53 0.58 99 0.76 0.74 0.75

LivingStatus Duration, history 7 0.17 0.14 0.15 6 0.00 0.00 0.00 10 0.36 0.40 0.38

Combined micro

averagea

– – 3529 0.87 0.89 0.88 2662 0.76 0.77 0.77 5040 0.87 0.89 0.88

Best scoring

submissionb

– – 3529 0.91 0.91 0.90 2662 0.81 0.77 0.77 5040 0.92 0.89 0.89

aPerformance values reported by the n2c2 shared task organizers for our model.
bPerformance of the best scoring teams reported by the n2c2 shared task organizers.

P: precision; R: recall; UW: University of Washington (UW) and Harborview Medical Centers.
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As can be seen, our approach can predict overlapping span-only

arguments (Figure 4A), multiple events of the same type in the same

sentence (Figure 4B), and events spanning multiple sentences

(Figure 4C). Figure 4D shows that our approach succeeds on a note

on which Lybarger et al’s model failed, wherein past tobacco use is

described in 2 consecutive sentences. Lybarger et al’s model pre-

dicted past and current tobacco use in the first and second sentences,

respectively. Lybarger et al suggest that this is because the first sen-

tence includes a strong cue to past status (quit), which is less clear in

the second sentence without this previous context. While their

model makes predictions at the sentence level and thus cannot incor-

porate context from neighboring sentences, our model processes the

entire note at once and incorporates relevant context. We note, how-

ever, that we cannot fully ascertain that this lack of context is the

reason why Lybarger et al’s model failed in this particular instance.

DISCUSSION

SDOH have far-reaching effects on patient health, yet they are tradi-

tionally difficult to track and clinically intervene upon. This diffi-

culty stems from the NLP challenges associated with (SDOH)

information extraction from unstructured clinical notes. To address

this, we developed a deep learning-based NLP system, MLTB, to

extract SDOH events (ie, mentions and attributes of 5 SDOH cate-

gories). This system addressed 3 key limitations in the previous

state-of-the-art model by Lybarger et al,15 and achieved excellent

performance on MIMIC and UW notes in SHAC. Notably, our

model achieved 0.88 F1 when trained and evaluated on data from

the same site. Additionally, we found moderate generalizability of

our model when tested on an external site with 0.77 F. Moreover,

we found that transfer learning addressed this disparity and

achieved 0.88 F1.

We believe the performance of our model is notable given its

simplicity. We leveraged a pretrained, BERT-based transformer and

added 2 stages of token classification systems feeding into one

another. This is, in our view, much simpler than the event extractor

model of Lybarger et al15—to which we performed comparably—as

well as other state-of-the-art event extraction systems, which employ

additional components besides BERT, including bi-LSTM’s, convo-

lutional neural networks, CRFs, self-attention mechanisms, span

representations, and more.24 We found that rather than pursuing

higher complexity in the transformer and classification layers, we

achieved improved performance by reframing the classification

problem within a multitask, multilabel framework as shown in Fig-

ure 2. Moreover, in pipeline-based neural event extraction systems

such as ours, classification errors from the trigger identification

stage cascade into the argument identification stage.24 Given the

simplicity of our model, and this known shortcoming of pipeline-

based approaches, it may be surprising that our model performed so

competitively. On the other hand, its simplicity may be a strength:

there are fewer “moving parts” of our model that can fail, or overfit

to our training data.25

Accurate extraction of SDOH may aid healthcare stakeholders

address health inequities and outcomes via improved screening and

healthcare interventions. Improved screening may have upstream

implications in policymaking. A salient example is the State Innova-

tion Models program, through which the Centers for Medicare and

Medicaid Services awarded over US$622 million to fund healthcare

transformation programs across 11 states with an emphasis in popu-

lation health that recognizes the key role of SDOH.25 Furthermore,

SDOH screening may be used during clinical encounters.26 Exam-

ples of interventions include the training of clinical staff to identify

food and housing insecurity in primary care and wellness visits.27,28

These interventions showed that improvements in screenings during

health encounters lead to increased retention in supplemental

Figure 4. Overcoming limitations in state-of-the-art model. (A) Extraction of overlapping span-only arguments. (B) Extraction of multiple events of the same type

in the same sentence. (C) Extraction of events spanning multiple sentences. (D) Leveraging context from preceding sentences.
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nutrition assistance program benefits which may help address food

insecurity. We envision that an NLP system such as the one pre-

sented in this paper may be used to automate SDOH screening, thus

reducing the need for training and clinician effort in identifying

social and behavioral factors that affect patients’ health.

Future directions
We are considering several future directions. First, to improve our

MLTB model, we plan to explore data augmentation techniques,

where synthetic notes are generated and added to training and devel-

opment data. For example, Yang et al22 took sentences annotated

for event structure, and replaced the argument text (eg, “beer” for

the Type argument of an alcohol event) with text that played the

same role in other sentences (eg, “wine”). Additionally, it may be

useful to introduce additional regional lexical variability, as pre-

vious research showed that some SDOH information in text is spe-

cific to a given clinical center or region.29 Second, BERT has been

supplanted in many tasks by a more recent transformer named RoB-

ERTa, which alters some details of pretraining and achieves higher

performance on many tasks.30 We plan to replace BERT with a clin-

ically pretrained RoBERTa, and retrain and test our model. Second,

our own preliminary experiments suggested that adding a Bi-LSTM

or CRF on top of BERT did not improve trigger extraction, but we

plan to test this more rigorously. Third, and similarly, preliminary

experiments showed that hyperparameter tuning did not improve

performance beyond using defaults, but we need to show this sys-

tematically, as well. Fourth, preliminary experiments did show that

our multitask framework for argument extraction outperformed

fine-tuning of separate BERT-based argument extractors for every

event type (single-task learning), but we plan to show this more sys-

tematically. Fifth, because we currently use BERT-based models, we

are limited by the maximum sequence length of BERT (512 tokens),

which forced us to truncate a few notes before processing them. To

address this, notes could be split during preprocessing, but it is not

clear how to do this without reintroducing (a version of) the first

limitation of Lybarger et al’s15 model, which ignored context from

preceding or following sentences when processing a given sentence.

An alternative approach is to use a pretrained transformer like Clini-

cal-Longformer,31 which has a longer maximum sequence length

(4096 tokens).

CONCLUSIONS

In this study, we developed and evaluated a new, deep learning-

based NLP system (MLTB) that extracts SDOH events from clinical

notes. This system addresses 3 limitations of the previous state-of-

the-art system,15 and performs quantitatively at least as well, if not

better than, this system. Similarly, our system performed competi-

tively in the 2022 n2c2 Track 2 shared task for extracting SDOH

events. At the same time, the modeling approach we presented here

is of lesser complexity than competing approaches, which allows

several additional enhancements to be built on top or alongside it.

Improvements in extraction of SDOH from clinical notes may aid

healthcare stakeholders target clinical interventions and public

health monitoring.
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