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ABSTRACT

Objective: We applied natural language processing and inference methods to extract social determinants of

health (SDoH) information from clinical notes of patients with chronic low back pain (cLBP) to enhance future

analyses of the associations between SDoH disparities and cLBP outcomes.

Materials and Methods: Clinical notes for patients with cLBP were annotated for 7 SDoH domains, as well as

depression, anxiety, and pain scores, resulting in 626 notes with at least one annotated entity for 364 patients.

We used a 2-tier taxonomy with these 10 first-level classes (domains) and 52 second-level classes. We devel-

oped and validated named entity recognition (NER) systems based on both rule-based and machine learning

approaches and validated an entailment model.

Results: Annotators achieved a high interrater agreement (Cohen’s kappa of 95.3% at document level). A rule-

based system (cTAKES), RoBERTa NER, and a hybrid model (combining rules and logistic regression) achieved

performance of F1¼47.1%, 84.4%, and 80.3%, respectively, for first-level classes.

Discussion: While the hybrid model had a lower F1 performance, it matched or outperformed RoBERTa NER

model in terms of recall and had lower computational requirements. Applying an untuned RoBERTa entailment

model, we detected many challenging wordings missed by NER systems. Still, the entailment model may be

sensitive to hypothesis wording.

Conclusion: This study developed a corpus of annotated clinical notes covering a broad spectrum of SDoH

classes. This corpus provides a basis for training machine learning models and serves as a benchmark for pre-

dictive models for NER for SDoH and knowledge extraction from clinical texts.

Key words: social determinants of health, natural language processing, natural language inference, machine learning, lower

back pain, depression
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INTRODUCTION

Adverse social determinants of health (SDoH), or social risk factors,

such as food insecurity and housing instability, are recognized for

their deleterious impacts on health outcomes and disparities.1 There

is growing recognition of the role of social risks in chronic low back

pain (cLBP), as highlighted in a recent systematic review that found

strong associations of cLBP prevalence with educational attainment

and socioeconomic status.2 Outcomes for cLBP, a leading cause of

disability worldwide,3–5 are known to be worse in patients who are

economically and socially disadvantaged.2,6–9 This can be attributed

in part to treatment biases, including greater provision of non-

evidence-based care,2,10,11 as well as patients’ prior experience of

discrimination6,12 and beliefs about pain and pain treatment,2,13

which may influence engagement with the treatment offered. Much

of the current research exploring disparities in cLBP care has been

limited to stratifying analyses by socioeconomic status and race, as

social risk data are not readily available in electronic health records

(EHRs). While some social risk information exists in structured data

fields, such as patient demographics and problem lists, these data

are under-identified by clinical teams, under-reported by patients,

and under-documented in structured fields.14–21 When clinical teams

screen for and identify social risks, that information is more often

documented within free-text fields, or unstructured data.17,20 Novel

approaches to identifying SDoH in EHRs, such as natural language

processing (NLP) and other machine learning (ML) techniques, lev-

erage existing health information technology to scan unstructured

data fields, resulting in automated extraction.22

Several studies have applied NLP methods to obtain SDoH

information from clinical notes. Methods have included regular

expressions,23 neural networks,24 and rule-based algorithmic

approaches.25 Named entity recognition (NER), an NLP task of

extracting phrases and their positions from texts, has been most fre-

quently used. SDoH, such as housing situation, finances, and social

support,26 have been less studied using NLP methods than behavio-

ral determinants of health (BDoH), such as smoking status and sub-

stance and alcohol use.22 For BDoH, both rule-based and ML

approaches to NER have been applied.22 SDoH, most notably hous-

ing situation, have most commonly been identified through rule-

based approaches such as keyword matching.22 Most other SDoH

domains, such as transportation access and finances, have been

understudied by either technique. There has been no comprehensive

comparison of the strengths and weaknesses of ML and rule-based

methods when applied to SDoH on various dataset sizes. Also, we

are not aware of any studies that apply NLP for SDoH for cLBP

patients.

Both ML and rule-based systems are being used to extract clini-

cal and SDoH concepts from healthcare narratives. Tried-and-true

rule-based systems such as clinical Text Analysis and Knowledge

Extraction System (cTAKES)27 could provide reasonable perform-

ance with no training data by leveraging standard ontologies (Uni-

fied Medical Language System, UMLS) and rule-based pattern

matching.28,29 Modern ML techniques have revolutionized NLP and

natural language understanding, with self-supervised methods such

as BERT,30 allowing for efficient utilization of large amounts of

unlabeled data. For optimal performance in supervised tasks in spe-

cialized domains, however, these techniques may require corpora of

several thousands of documents of manually annotated text.31 While

still providing important utility in domains where labeled data are

scarce32 and being more interpretable than ML, rule-based systems

often yield to ML methods in performance.33,34 In terms of

development costs, both rule-based and ML-based models are

resource intensive. Still, improvement of ML systems is normally

less demanding in terms of technical development effort as com-

pared to rule-based systems.

While several applications of natural language inference (NLI)

methods, such as question answering (QA)35–37 and recognizing

textual entailment (RTE),38–40 have been pursued in the wider

medical domain, we were surprised to learn that these methods

have not been used to study SDoH or BDoH. Given that these

models have been trained on general knowledge texts (eg, Wiki-

pedia and BooksCorpus), we would expect NLI models to gener-

alize to SDoH and BDoH better than other clinical domains.

This motivated application of NLI models in our study. Out of

NLI approaches, we chose to use entailment (RTE) models

instead of QA models,39 given our interest in off-line knowledge

extraction (ie, without a need to present to a clinician for imme-

diate decision making) with a pre-defined ontology. While extrac-

tive QA models (returning a piece of original text) may not be

able to summarize text into a limited set of categories by design,

abstractive QA models suffer from biases of characteristic to all

generative models such as ability to learn toxic and biased atti-

tudes41,42 as well as exhibit learned attitudes characteristic to

mental illness and addiction.43

In this study, our aim was to create a dataset to evaluate and

compare NLP tools to extract individual SDoH from free-text clini-

cal notes for patients with cLBP. In this study, we make several con-

tributions to this important topic: (1) we label and evaluate a

dataset with social and BDoH in cLBP patients, (2) we tune and

evaluate a rule-based NER system (cTAKES), (3) we train and evalu-

ate 2 ML NER pipelines, and (4) we evaluate a previously trained

common domain NLI entailment model. We believe this study is a

step forward in both applying cutting-edge NLP technology to this

important topic and in improving the structured ontology for identi-

fying SDoH and BDoH.

MATERIALS AND METHODS

Study population
Our study population consisted of cLBP patients, defined by low

back pain lasting at least 3 months,41 from an urban academic medi-

cal center at the University of California, San Francisco (UCSF) and

was approved by institutional review (IRB #19-29016). All patients

received care at the UCSF Integrated Spine Service.42 We extracted

patients’ progress notes, history and physical (H&P) notes, emer-

gency department (ED) provider notes, patient instructions, and tel-

ephone encounters (TE) from the UCSF clinical data warehouse

between March 2017 and April 2020. The cohort demographics are

shown in Supplementary Table S1.

Annotation ontology
To create a model for extracting named entities related to SDoH

from clinical free-text notes, we defined an ontology, annotated the

dataset, and tuned and trained algorithms for NER (Figure 1). An

ontology covering 8 SDoH domains (Figure 1) commonly screened

in clinical practice43–47 was defined following an earlier study.48

During the study period, none of these SDoH were systematically

screened for in our healthcare system. Additionally, we included

mental health factors (anxiety and depression) as well as pain scores,

as these are relevant for our ongoing work in characterizing cLBP

population.49–54 Initial taxonomic ontology containing 68 second-
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level classes within 10 first-level classes was pruned based on anno-

tation availability (next section), down to 52 second-level classes

(Figure 1B and Supplementary Table S2). Entities within the first-

level classes not captured by specific second-level labels due to ambi-

guity or low occurrence were assigned a second-level label of “NA”

for “not applicable”.

Figure 1. Study design. (A) Workflow of the study. (B). Annotation ontology. Clinical notes were annotated such that text relevant to the 7 studied social risk fac-

tors (solid border) or 3 clinical factors (dashed border) were marked. Two levels of labels were used, such that the second level was a subcategory of the first.

Level 2 labels for each Level 1 annotation are shown in descending order of frequency. Level 2 annotations that comprised <1% of the group’s annotations are

not shown. Text that can be classified to the first level but not the second due to ambiguity or low frequency is designated as “NA”. Examples of selected text are

shown within the hypothetical clinical note.
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Manual annotations
The notes were annotated according to our ontology by 4 trained

annotators (physical therapy graduate students trained by domain

experts supervised by a family medicine physician) using MAE label-

ing software55 for NER task by highlighting and assigning a class to

the relevant phrases (Figure 1B). Each note was annotated by at least

2 annotators (Supplementary Figure S1A). The annotations were

additionally spot-checked by the supervising physician and cor-

rected. Initial annotations occasionally contained overlapping or

duplicate labels that were resolved using the Python spacy package

as described in Supplementary Methods. After all pre-processing

steps, document-level inter-rater agreement was evaluated using

span-level F1 and document-level Cohen’s kappa56 and Krippen-

dorf’s alpha (with Jaccard index metric),57,58 and metrics were

aggregated (see Supplementary Methods). We chose F1 as a span-

level metric as it is both symmetric and less sensitive to true nega-

tives, which dominate in NER tasks. In downstream applications

(model training and evaluation), annotations from each expert were

included. The data were split into 6 folds, while stratifying by the

number of entities and number of annotators per note and keeping

multiple annotations of the same note in the same fold.

The variance of annotation frequencies was analyzed using

ANOVA in R software. Pairwise difference between model F1 scores

was assessed using Wilcoxon test across folds.

cTAKES configuration
We used 3 configurations of cTAKES,27 a modular framework that

leverages UMLS vocabulary.59 We used 3 configurations (see Sup-

plementary Methods): (1) a default out-of-the box configuration, (2)

an InfoCommons configuration60 developed for general purpose

medical texts, and (3) a customized “SDoH” configuration that was

tuned to identify our domains of interest. Tuning was done using an

unlabeled set of notes and the labeling ontology definition.

NER model configuration
ML for the NER task was performed with spaCy software61 using a

transition-based parser based on either convolutional neural net-

work (CNN)62 or RoBERTa63 model. The “en_core_web_md”

word embeddings were used for initialization. The model was

trained with a variable batch size of 100–1000, 10% drop-out,

learning rate of 0.0002, and �30 epochs with early stopping. Model

was trained and evaluated in nested 6-fold cross-validation, with

4:1:1 for training:validation:test splits.

Hybrid model leveraging pattern matching and

classification with Bag-of-Words
A classification model was applied to text extracted based on key-

word matching patterns compiled for each first-level class based on

subject matter identification and literature. The patterns are

included in the code repository.64 Text was extracted around the

matching pattern (64 tokens), pre-processed by lemmatizing and

removing stop words, then embedded using a term frequency-

inverse document frequency vectorizer. Extracted text for each of

the first-level set of patterns was then classified using a Bag-of-

Words (BoW)65 multinomial logistic regression model into respec-

tive second-level subclasses according to manual labels, with

unmatched text spans receiving a special exclusion label. Model was

trained and evaluated in 6-fold cross-validation as described for the

CNN model above.

Evaluation of NER models
The performance of the NER systems was evaluated using preci-

sion, recall, and F1 scores using scikit-learn. The metrics were

calculated on first and second level of the labeling taxonomy.

For cTAKES model, predicted UMLS terms overlapping ground

truth labels were manually annotated as being matches (including

synonyms and child terms), or mismatches of respective first-level

and second-level ground truth categories, while accounting for

negation, history, and family history modifiers. Labels with at

least partial span overlap were scored as matches. Pairwise com-

parison between model performance metrics was performed using

paired t-test across all cross-validation folds (for CNN and

hybrid models) or respective data split folds (for cTAKES). Varia-

tion of model performance was analyzed using ANOVA and

nested linear model ANOVA.

Evaluation of an entailment model
A RoBERTA-based63 entailment38 model, previously fine-tuned in

an adversarial human-in-the loop setting,66 was evaluated with-

out additional training on our data. NER labels, transformed

into one or more hypotheses, and labeled sentences from the clin-

ical notes taken as premises, served as model inputs to obtain

entailment scores (see example in Figure 4). Pain scores, as well

as PHQ-9 and GAD-7 scores were excluded from this analysis as

they are not easily amenable for textual entailment task. Addi-

tional background and details are provided in Supplementary

Methods. For computational expediency, only sentences with at

least one NER label were examined. The results were aggregated

per premise sentence and label combination either (1) by taking

an average rate of entailment prediction over alternative hypothe-

ses (“mean”) or (2) by scoring a match if at least one of the

hypotheses was deemed to be entailed (“max”). Data were split

into six folds matching the folds of NER analysis. Wherever pos-

itive prediction was missing and thus precision was undefined, F1

was assigned the value of recall.

RESULTS

Gold standard dataset annotation
Four trained annotators annotated a set of 1576 clinical notes with

an average inter-rater agreement of 95.3%, as measured by Cohen’s

kappa and 83.4% as measured by Krippendorff’s alpha (pairwise

agreement is shown in Supplementary Table S3) and weighted F1 of

91.2% and macro average F1 of 88.9% (Supplementary Table S4).

The inter-rater agreement per each label is shown in Supplementary

Table S5. Of the 1576 notes, 39.7% (626) contained at least one

entity (Supplementary Figure S1A). Notes without annotations were

discarded from further analysis. H&P notes contained on average

the most annotations (6.2), followed by ED (5.6), progress notes

(4.4), TE (1.8), and patient instructions (1.5). The number of anno-

tations varied significantly with note type, but not with the annota-

tor on aggregate (P¼5e�14 and P¼0.3 in ANOVA). The number

of labels differed between note types (Figure 2). For example, Mari-

tal and partnership status and Pain Scores were frequently found in

H&P and progress notes, but rare in ED provider notes; Insurance

coverage was mainly present in TE and patient instructions notes. A

detailed breakdown of variance P-value per note type and annotator

is presented in Supplementary Figure S1B. All categories except Pain

Scores, Depression, Finances, and Food were significantly associated

with the note type (P<0.05 in ANOVA). When annotations were
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present in a note, the association between the length of note and the

number of annotations was significant (P<0.001, linear regression

R2¼0.52, Supplementary Figure S1C).

Tuning cTAKES tool for rule-based NER
We tuned and assessed cTAKES for the task of NER of targeted

SDoH domains, pain scores, and anxiety and depression. As the out-

of-the-box version of cTAKES (“default”) has shown limitations,60

we used a version configured for high throughput NER at our insti-

tution (“InfoCommons”), and additionally customized cTAKES to

identify SDoH for this study (“SDoH”). Tuning improved the per-

formance (Figure 3B, Supplementary Tables S6 and S7), with

weighted F1 achieving 38.9%, 37.9%, and 47.1% on first level for

the default, InfoCommons, and SDoH versions, respectively. Per-

formance at the second level of taxonomy was poor in all configura-

tions (17.5%, 22.2%, and 34.3%, respectively). False negatives

(resulting in suboptimal first-level cTAKES SDoH recall of 57.2%)

were commonly due to free-text wording lacking common keywords

that cTAKES is configured to match. Often, history or negation

modifiers were wrongly attributed due to challenges with sentence

segmentation. SDoH words and abbreviations are occasionally mis-

interpreted as abbreviations from other semantic domains (eg, “bus”

and “bf” in Figure 4). Additional qualitative analysis is provided in

Supplementary Results. In model comparisons below, we focus on

the best performing SDoH configuration.

ML-based NER prediction with CNN and RoBERTa
Next, we trained and evaluated performance of a CNN NER model

implemented using spaCy software. CNN NER and RoBERTa NER

models achieved an average weighted F1 of 82.7% and 84.4%,

respectively, on first-level and 69.4% and 72.2% on second-level

(see Figure 3, Supplementary Tables S6 and S7). On a more granular

level, RoBERTa NER significantly outperformed CNN only in

Depression (second level, P¼0.043) and approached significance

for Social Support (P¼0.08 and P¼0.06 for first and second level,

respectively). Similar to cTAKES, some of the false positives in ML

results were due to misinterpretation of context (eg, capture of

“depressed” referencing an anatomical finding or “home” in “plan

to discharge home” and “works as a home CNA” as housing-related

concepts). In some cases, negation markers, such as “denies”, and

misspellings, such as “derpession” for “depression”, were missed.

Hybrid text extraction and classification system
Next, we applied a hybrid approach, which extracts relevant text

segments by pattern matching and classifies with a logistic regres-

sion BoW model. The hybrid model displayed a high recall (86.5%

at first level), outperforming other methods (Figure 3, Supplemen-

tary Tables S6–S8), with an average first-level F1¼80.3%. Several

cases of failure may be attributed to fundamental limitations of the

underlying BoW model, such as cases that refer to people other than

the patient, eg, “her father lives with a partner” was interpreted as

“Lives with” category pertaining to the patient.

Comparison of NER model performance
The ML and hybrid models significantly outperformed the cTAKES

SDoH rule-based system in terms of F1 on the first level (P<1e�5)

and the second level (P<0.03) of the taxonomy in nearly all classes

(Figure 3, Supplementary Tables S6 and S8). While the NER-

RoBERTa model achieved the highest first-level F1¼84.38%

among all models (P<0.04), it scored on par (72.24%) with the

hybrid model (68.91%) at the second level F1 (P¼0.13). The hybrid

model had a consistently higher recall for all first-level categories

but was outperformed by the RoBERTa-based NER in terms of

first-level F1 in Marital status (P¼0.03) and in Social isolation

(P<0.001). All NER models performed poorly for the classes of

Food and second-level domains with low F1 agreement (35%–60%,

Supplementary Table S5), performed poorly in all methods (Supple-

mentary Figure S2). A multifactor ANOVA revealed that both the

method and the ontology class are significantly associated with the

F1 performance (P<2e�31 Supplementary Table S9). Additionally,

A B

Figure 2. Exploratory data analysis. (A) Histogram of number of entities in different note types. (B) Number of entities per note type and first-level annotated

domain. The pictorial legend contains the total number of notes and annotations per note type.
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per-class performance was correlated across methods (P<2e�5,

Supplementary Table S10). Inter-rater agreement F1 explains 6.76%

of between-label variation in F1 model performance (P¼2e�20 in

1-way ANOVA).

Evaluation of an entailment model
We hypothesized that general domain NLI models (trained on books

and Wikipedia) may be directly applied to SDoH and BDoH

domains due to semantic overlap between SDoH and general

domain texts. Thus, we evaluated performance of an entailment

model66 without fine-tuning, whereby a subset of note-derived

premise sentences containing named entities was passed together

with a set of hypothesis sentences compiled to reflect semantics of

interest. The aggregated metrics are shown in Figure 3 and examples

of prediction are shown in Figure 4, while granular metrics are pre-

sented in Supplementary Figure S2. Max-aggregation (suggesting at

least one of the hypotheses per class must hold) performed better

than mean-aggregation (one assuming all hypotheses must hold),

F1¼76.0% versus F1¼30.7% at the first level, respectively. This

together with qualitative analysis suggests that predictions are sensi-

tive to hypothesis wording. The entailment model outperformed the

NER models evaluated above in the categories of Transportation,

Finances, and Food (Figure 3). Entailment model performed poorly

on long lists (eg, past diagnoses) partially due to sentence segmenta-

tion issues. Further qualitative details are provided in Supplemen-

tary Results.

DISCUSSION

In this study, we developed a corpus of annotated clinical notes cov-

ering a spectrum of SDoH domains, together with anxiety, depres-

sion, and pain scores for cLBP patients. This corpus provides a basis

for training ML models and serves as a benchmark for predictive

models for SDoH NER. By evaluating various NER pipelines, we

identified strengths and weaknesses of both rule-based (cTAKES)

and ML-based approaches for identifying SDoH. For most of our

evaluated categories, the ML methods outperformed cTAKES. Some

of cTAKES’ performance limitations appeared to be due to a failure

to account for non-affirmative mentions (in questionnaires), missing

rare keywords, or polysemous abbreviations.

Comparing all models, we noticed that some SDoH domains

were consistently harder to detect across methods, which suggests

constraints due to both fundamental variability of phrasing in free-

text notes, as well as data availability. Additionally, levels of inter-

rater variability across SDoH domains explain this pattern to a small

degree. In our dataset, the least documented categories were Insur-

ance status, Transportation access, Food security, and Finances.

This may be due to low frequency of these risk factors in our popu-

lation, lack of social risk screening, and/or under-documentation of

these risks. Most of these rare categories were detected with low and

highly variable performance. On average across categories, the

CNN model performed best, yielding up to the hybrid and rule-

based models for a few data-poor classes.

Evaluation of an out-of-the-box entailment RoBERTa67 model

trained on general domain texts, yielded promising results. Without

fine-tuning, this model performed similar to NER ML models

trained on our corpus in most categories. Direct comparison of our

study performance (F1¼76%) to the original study67 (accuracy of

50%–93%) is not possible, as our data lack annotation for contra-

diction relation. However, our analysis suggests that the model gen-

eralizes reasonably well to the SDoH domain. Thus, we believe that

entailment models may be readily deployed in user-facing tools for

clinical text exploration and retrieval, such as EMERSE,67 thus

allowing researchers to query data based on custom criteria.

A B

Figure 3. Comparison of model performance. (A) Comparison of F1 performance in 4 best performing models per model class. Second-level metrics are aggre-

gated using weighted average over first-level domains. (B) Comparison of F1, precision, and recall in all studied models. Metrics are aggregated using weighted

average.
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However, sensitivity of the model to the hypothesis wording

observed in this study needs to be taken into consideration when cre-

ating fine-tuning data, directly applying to new data, or querying

with different hypotheses. Additional fine-tuning on medical- and

SDoH-related corpora may further increase performance and should

be further explored.

A

B

C

Figure 4. Examples of predictions from 4 best models per model class. Left: NER models. Right: RoBERTA entailment model. Probabilities of 3 possible relations

are shown as shaded horizontal bars and numerically together with a final relation prediction.
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Our study should be interpreted with consideration of its limita-

tions. First, the generalizability of the models validated here may be

affected by the fact that clinical notes came from an urban academic

medical center, where fewer patients may experience—or fewer pro-

viders may document—social risk factors, versus the Veterans

Affairs or safety-net hospitals. Our study may therefore be better

generalizable to similar settings. Related, our study focused on notes

for patients with chronic LBP specifically. We included, however, a

diverse set of note types from different settings that may improve the

generalizability to patients with other conditions. Further validation

of the presented models across different medical centers and patient

cohorts may be conducted. Second, as previously noted, some SDoH

domains had particularly low counts of annotations, such as food

security and finances. The strength and capacity of our models over-

all are limited by the quality of notes that were annotated. Third,

dictionaries constructed during tuning of rule-based and hybrid

models were composed based on the complete dataset (though

before annotation); thus, data leakage may not be completely

excluded. Finally, as noted above, our study’s resources limited our

ability to fine tune cTAKES and further refine our models overall.

Differences in performance between the models may therefore exag-

gerate the limitations of cTAKES for identifying SDoH as compared

to other methods. This study, however, outlines how cTAKES, as

well as the other models, can be improved upon.

CONCLUSION

This study is an important step toward understanding the differences

between, and strengths and limitations of, a diverse set of NLP

methods for detecting SDoH domains within clinical notes. To our

knowledge, this is the first study to compare a broad panel of 10

domains of SDoH, BDoH, and pain scores with 52 granular sub-

domains. This study lays the foundation for better detecting social

risk factors in cLBP patients, which can advance our understanding

of how social risks impact low back pain treatment access, utiliza-

tion, and outcomes. Our findings and open-source methods can also

be applied to other settings and patient populations, to fuel the

growing momentum to apply ML techniques to the detection of

SDoH in EHRs.
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