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ABSTRACT

Objective: The n2c2/UW SDOH Challenge explores the extraction of social determinant of health (SDOH) infor-

mation from clinical notes. The objectives include the advancement of natural language processing (NLP) infor-

mation extraction techniques for SDOH and clinical information more broadly. This article presents the shared

task, data, participating teams, performance results, and considerations for future work.

Materials and Methods: The task used the Social History Annotated Corpus (SHAC), which consists of clinical

text with detailed event-based annotations for SDOH events, such as alcohol, drug, tobacco, employment, and

living situation. Each SDOH event is characterized through attributes related to status, extent, and temporality.

The task includes 3 subtasks related to information extraction (Subtask A), generalizability (Subtask B), and

learning transfer (Subtask C). In addressing this task, participants utilized a range of techniques, including rules,

knowledge bases, n-grams, word embeddings, and pretrained language models (LM).

Results: A total of 15 teams participated, and the top teams utilized pretrained deep learning LM. The top team

across all subtasks used a sequence-to-sequence approach achieving 0.901 F1 for Subtask A, 0.774 F1 Subtask

B, and 0.889 F1 for Subtask C.

Conclusions: Similar to many NLP tasks and domains, pretrained LM yielded the best performance, including

generalizability and learning transfer. An error analysis indicates extraction performance varies by SDOH, with

lower performance achieved for conditions, like substance use and homelessness, which increase health risks

(risk factors) and higher performance achieved for conditions, like substance abstinence and living with family,

which reduce health risks (protective factors).
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BACKGROUND AND SIGNIFICANCE

Social determinants of health (SDOH) are the conditions in which

people live that affect quality-of-life and health, including social,

economic, and behavioral factors.1 SDOH include protective fac-

tors, like social support, which reduce health risks and risk factors,

like housing instability, which increase health risks.2 SDOH are

increasingly recognized for their impact on health outcomes and

may contribute to decreased life expectancy.3–6 As examples, sub-

stance abuse,7–9 living alone,10,11 housing instability,12 and unem-

ployment13,14 are health risk factors. Knowledge of SDOH is

important to clinical decision-making, improving health outcomes,

and advancing health equity.6,15

The electronic health record captures SDOH information through

structured data and unstructured clinical notes. However, clinical

notes contain more detailed and nuanced descriptions of many SDOH

than are available through structured sources. Utilizing textual infor-

mation from clinical notes in large-scale studies, clinical decision-

support systems, and other secondary use applications, requires auto-

matic extraction of key characteristics using natural language process-

ing (NLP) information extraction techniques. Automatically extracted

structured representations of SDOH can augment available structured

SDOH data to produce more comprehensive patient representa-

tions.16–19 Developing high-performing information extraction models

requires annotated data for supervised learning, and extraction per-

formance is influenced by corpus size, heterogeneity, and annotation

uniformity.

OBJECTIVE

This article summarizes the National NLP Clinical Challenges

(n2c2) extraction task, Track 2: Extracting Social Determinants of

Health (n2c2/UW SDOH Challenge). The n2c2/UW SDOH Chal-

lenge utilized a novel corpus of annotated clinical text to evaluate

the performance of a wide range of SDOH information extraction

approaches from rules to deep learning language models (LM). The

findings provide insight regarding extraction architecture develop-

ment and learning strategies, generalizability to new domains, and

remaining SDOH extraction challenges.

RELATED WORK

SDOH are increasingly being recognized for their impact on health,

and the body SDOH extraction research is also increasing.20 Clinical

corpora have been annotated for a range of SDOH, including sub-

stance use, employment, living situation, environmental factors,

physical activity, sexual factors, transportation, education, and lan-

guage.21–31 Annotated SDOH datasets typically assign labels at the

note-level or use a more granular relation-style structure.

Many annotated SDOH datasets have sentence or note-level

labels, approaching extraction as text classification.22–28 The i2b2

NLP Smoking Challenge introduced a corpus of 502 notes with

tobacco use status labels.22 Gehrmann et al.23 annotated 1610 notes

with phenotype labels, including substance abuse and obesity. Feller

et al.24 created a dataset with 3883 notes annotated for sexual health

factors, substance use, and housing. Chapman et al.25 annotated 621

notes for housing instability. Yu et al.26,27 created a corpus of 500

notes annotated with 15 SDOH concepts (marital status, education,

occupation, etc.). Han et al.28 annotated 3504 sentences for 13

SDOH including social environment, support networks, other factors.

While most SDOH corpora use coarser note-level labels, some

SDOH corpora utilize a more granular annotation scheme where

spans and links between span are identified. Wang et al.29 annotated

691 notes using a relation-based scheme for substance use. Yetisgen

et al.30 annotated 364 notes using an event-based scheme for 13

SDOH (substance use, living situation, etc). Reeves et al.31 anno-

tated 8 SDOH concepts (living situation, language, etc.) with asser-

tion values (present vs absent) in a corpus of 160 notes.

SDOH information extraction techniques include rules, supervised

learning, and unsupervised learning.20,32 Rules-based approaches

include curated lexicons, regular expressions, and term expan-

sion.19,20,25,31–33 Supervised extraction approaches include discrete

input representations, like n-grams, term frequency-inverse document

frequency (TF-IDF), part-of-speech tags, and medical concepts. Dis-

crete classification architectures include Support Vector Machines,

random forest, logistic regression, maximum entropy, and conditional

random fields.20,28–30 Recent supervised extraction approaches utilize

deep learning architectures, such as convolutional neural networks,

recurrent neural networks, and transformers.20,21,23,26–28

MATERIALS AND METHODS

Data
The n2c2/UW SDOH Challenge used SHAC for model training and

evaluation.21 SHAC includes social history sections from clinical

notes annotated for SDOH using an event-based scheme.21 SHAC

was annotated using the BRAT, which is available online (https://

brat.nlplab.org/).34 Figure 1 presents an annotation example. Each

event includes exactly one trigger (in white) and one or more argu-

ments that characterize the event. There are 2 argument categories:

span-only (in green) and labeled (in blue). The trigger anchors the

event and indicates the event type (eg, Employment). Span-only argu-

ments include an annotated span and argument type (eg, Duration).

Labeled arguments include an annotated span, argument type (eg,

Status Time), and argument subtype (eg, past). Argument roles con-

nect triggers and arguments and can be interpreted as binary connec-

tors, because there is one valid argument role type per argument type.

For example, all Status Time arguments connect to triggers through a

Status argument role. Table 1 summarizes the annotated phenomena.

SHAC includes 4405 social history sections from MIMIC-III and

UW. MIMIC-III is a publicly available, deidentified health database

for critical care patients at Beth Israel Deaconess Medical Center

from 2001 to 2012.35 SHAC samples were selected from 60K

MIMIC-III discharge summaries. The UW dataset includes 83K

emergency department, 22K admit, 8K progress, and 5K discharge

summary notes from the UW and Harborview Medical Centers gen-

erated between 2008 and 2019. We refer to these social history sec-

tions as notes, even though each social history section is only part of

the original note. Table 2 summarizes the SHAC train, development,

and test partitions. The development (Ddev) and test (Dtest) partitions

were randomly sampled. The train partition (Dtrain) was 71%

actively selected, and the UW train partition (Duw
train) was 79%

actively selected using a novel active learning framework. The active

learning framework selected batches for annotation based on diver-

sity and informativeness. To assess diversity, samples were mapped
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into a vector space using TF-IDF weighted averages of pre-trained

word embeddings. To assess informativeness, simplified note-level

text classification tasks for substance use, employment, and living

status were derived from the event annotations and used as a surro-

gate for event extraction. Sample informativeness was assessed as

the entropy of note-level predictions for: Status Time for Alcohol,

Drug, and Tobacco; Type Employ for Employment; and Status Liv-

ing for Living Status. These labels capture normalized representa-

tions of social protective and risk factors. Active learning increased

sample diversity and the prevalence of risk factors, like housing

instability and polysubstance use. It improved extraction perform-

ance, with the largest performance gains associated with important

risk factors, such as drug use, homelessness, and unemployment.21

To prepare it for release, SHAC (D) was reviewed, and annota-

tions were adjusted to improve uniformity. The UW partition (Duw)

was deidentified using an in-house deidentification model36 and

through manual review of each note by 3 annotators. Most protected

health information (PHI) was replaced with special tokens related to

age, contact information, dates, identifiers, locations, names, and pro-

fessions (eg, “[DATE]”). However, the meaning of some annotations

relies on spans identified as PHI. To preserve annotation meaning,

some PHI spans were replaced with randomly selected surrogates

from curated lists. For example, named homeless shelters (eg, “Union

Gospel Mission”) are important to the Type Living label homeless,

and named shelters were replaced with random selections from a list

of regional shelters. Surrogates were also manually created to reduce

specificity. For example, an Employment Type span, like “UPS driv-

er,” may be replaced with “delivery driver.”

Subtasks
The challenge includes 3 subtasks:

• Subtask A (Extraction) focuses on in-domain extraction, where

the training and evaluation data are from the same domain. The

training data include the MIMIC-III train and development parti-

tions (Dmimic
train ;Dmimic

dev ), and the evaluation data include the

MIMIC-III test partition (Dmimic
test ).

• Subtask B (Generalizability) explores generalizability to an

unseen domain, where the training and evaluation data are from

Figure 1. BRAT annotation example.

Table 1. Annotation guideline summary

Event type Argument type Argument subtypes Span examples

Alcohol, Drug, & Tobacco Status Time* fnone, current, pastg “denies,” “smokes”

Duration — “for the past 8 years”

History — “seven years ago”

Type — “beer,” “cocaine”

Amount — “2 packs,” “3 drinks”

Frequency — “daily,” “monthly”

Employment Status Employ* femployed, unemployed, retired,

on disability, student,

homemakerg

“works,” “unemployed”

Duration — “for five years”

History — “15 years ago”

Type — “nurse,” “office work”

Living Status Status Time* fcurrent, past, futureg “lives,” “lived”

Type Living* falone, with family, with others,

homelessg
“with husband,” “alone”

Duration — “for the past 6 months”

History — “until a month ago”

*Indicates the argument is required.

Table 2. SHAC note counts by source

Source Train Dev Test Total

MIMIC-III 1316 (Dmimic
train ) 188 (Dmimic

dev ) 373 (Dmimic
test ) 1877 (Dmimic)

UW 1751 (Duw
train) 259 (Duw

dev) 518 (Duw
test) 2528 (Duw)

Total 3067 (Dtrain) 447 (Ddev) 891 (Dtest) 4405 (D)
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different domains. The training data are the same as Subtask A,

and the evaluation data are the UW train and development parti-

tions (Duw
train;Duw

dev).
• Subtask C (Learning Transfer) investigates learning transfer,

where the training data include in-domain and out-domain data.

The training data are the MIMIC-III and UW train and develop-

ment partitions (Dmimic
train , Dmimic

dev , Duw
train, Duw

dev), and the evaluation

data are the UW test partition (Duw
test).

Shared task structure
The n2c2/UW SDOH Challenge was conducted in 2022. To access

SHAC, participants were credentialed through PhysioNet for

MIMIC-III35 and submitted data use agreements for the UW parti-

tion. For Subtasks A and B, training data were provided on February

14, unlabeled evaluation data were provided on June 6, and system

predictions were submitted by participants on June 7. For Subtask

C, training data were released on June 8, unlabeled evaluation data

were released on June 9, and system predictions were submitted by

participants on June 10. Teams were allowed to submit 3 sets of pre-

dictions for each subtask, and the highest performing submission for

each subtask was used to determine team rankings.

Scoring
Extraction requires identification of trigger and argument spans, res-

olution of trigger-argument connections, and prediction of argument

subtypes. The evaluation criteria interprets the extraction task as a

slot filling task, as this is most relevant to secondary use applica-

tions. Figure 2 presents the same sentence with 2 sets of annotations,

A and B, along with the populated slots. Both annotations identify 2

Drug events: Event 1 and Event 2. Event 1 describes past intrave-

nous drug use (IVDU), and Event 2 describes current cocaine use.

Event 1 is annotated identically by A and B. However, there are dif-

ferences in the annotated spans of Event 2, specifically for the trigger

(“cocaine” vs “cocaine use”) and Status Time (“use” vs “Recent”).

From a slot perspective, the annotations for Event 2 could be consid-

ered equivalent. The evaluation uses relaxed criteria for triggers and

labeled arguments that reflect the clinical meaning of the extraction.

The criteria and justification are presented below.

Trigger: A trigger is defined by an event type (eg, Drug) and multi-

word span (eg, phrase “cocaine use”). In SHAC, the primary function of

the trigger is to anchor the event and aggregate related arguments. The

text of the trigger span typically does not meaningfully contribute to the

event meaning. Consequently, trigger equivalence is defined using any

overlap criteria where 2 triggers are equivalent if: (1) the event types

match and (2) the spans overlap by at least one character. For Event 2 in

Figure 2, the trigger in A has the event type Drug and span “cocaine,”

and the trigger in B has the event type Drug and span “cocaine use.”

These triggers are equivalent under this any overlap criteria.

Arguments: Events are aligned based on trigger equivalence, and

the arguments of aligned events are compared using different criteria

for span-only and labeled arguments.

Span-only arguments: A span-only argument is defined by an

argument type (eg, Type), span (eg, phrase “cocaine”), and connec-

tion to a trigger. Span-only argument equivalence uses exact match

criteria, where 2 span-only arguments are equivalent if: (1) the con-

nected triggers are equivalent, (2) the argument types match, and (3)

the spans match exactly.

Labeled arguments: A labeled argument is defined by an argu-

ment type (eg, Status Time), argument subtype (eg, current), argu-

ment span (eg, phrase “Recent”), and connection to a trigger. The

argument subtypes normalize the span text and capture a majority

of the span semantics. There was often ambiguity in the labeled

argument span annotation. To focus the evaluation on the most sali-

ent information (subtype labels) and address the ambiguity in argu-

ment span annotation, labeled argument equivalence is defined

using a span agnostic approach, where 2 labeled arguments are

equivalent if: (1) the connected triggers are equivalent, (2) the argu-

ment types match, and (3) the argument subtypes match.

Performance is evaluated using precision (P), recall (R), and F1,

micro averaged over the event types, argument types, and argument

subtypes. Submissions were compared using an overall F1 score calcu-

lated by summing the true positives, false-negatives, and false-positives

across all annotated phenomena. The scoring routine is available

(https://github.com/Lybarger/brat_scoring). Significance testing was

performed on the overall F1 scores using a paired bootstrap test with

10 000 repetitions, where samples were selected at the note-level.

Systems
This section summarizes the methodologies of the participating

teams. Table 3 summarizes the best performing system for each

Figure 2. Annotation examples, A and B, describing event extraction as a slot filling task.
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team, including language representation, architecture, and external

data. Language representation includes: (1) n-grams—discrete word

representations, (2) pretrained word embeddings (WE)—vector rep-

resentation of words, like word2vec,42 and (3) pretrained language

models (LM)—deep learning LM, like BERT43 and T5.39 Architec-

ture includes: (1) rules—hand-crafted rules, (2) knowledge based

(KB)—dictionaries and ontologies, (3) sequence tagging þ text clas-

sification (STþTC)—combination of sequence tagging and text clas-

sification layers, and (4) sequence-to-sequence (seq2seq)—text

generation models, like T5, transform unstructured input text into a

structured representation. External data includes: (1) unlabeled

(U)—unsupervised learning with unlabeled data and (2) labeled

(L)—supervised learning with labeled data other than SHAC. Many

teams used pretrained WE and LM; however, U is only assigned for

additional pretraining, beyond publicly available models. For exam-

ple, ClinicalBERT37 would not be assigned U; however, additional

pretraining of ClinicalBERT would be assigned U.

Below is a summary of the teams that achieved first and second

place in each subtask. The top teams were determined based on the

performance in Table 4 and are presented below alphabetically.

• Children’s Hospital of Philadelphia (CHOP) designed a BERT-

based pipeline consisting of trigger identification and argument

resolution. Triggers were extracted as a sequence tagging task

using BERT with a linear prediction layer at the output hidden

states. For argument extraction, a unique input representation

was created for each identified trigger, where the segment IDs

were 1 for the target trigger and 0 elsewhere. Arguments were

identified using multiple linear layers applied to the BERT hidden

states, to allow multi-label token predictions. Encoding the tar-

get trigger using the segment IDs allowed BERT to focus the

argument prediction on a single event. Argument subtype labels

were resolved by creating separate tags for each subtype (eg,

“LivingStatus¼alone”).

• Kaiser Permanente Southern CA (KP) assumed there is at most

one event per event type per sentence, similar to the original

SHAC paper. Trigger and labeled argument prediction was per-

formed as a binary text classification task (eg, no alcohol vs has

alcohol; no current alcohol use vs current alcohol use) using

BERT with a linear layer applied to the pooled state. Trigger and

span-only arguments spans were extracted using BERT with a

linear layer applied to the hidden states, with separate models for

each. Within a sentence, the extracted trigger and arguments for

a given event type were assumed to be part of the same event.

The trigger-argument linking was implicit in the assumption that

there is at most one event per SDOH per sentence.
• Microsoft (MS) developed a seq2seq approach with T5-large as

the pretrained encoder-decoder. T5 was further pretrained on

MIMIC-III notes. In fine-tuning, the input was note text, and the

output was a structured text representation of SDOH. Additional

negative samples were incorporated using MIMIC-III text that

does not include SDOH, and additional positive samples were

created from the annotated data by excerpting shorter samples

(�9 new samples per note). In addition to the challenge data, MS

used an in-house dataset with SDOH annotations; however, an

MS ablation study indicated this in-house data had a marginal

impact on performance. A constraint solver post-processed the

structured text output to generate the text offsets for the final

span predictions.
• University of Florida (UFL) designed a multi-step approach:

(1) span extraction, (2) relation prediction, and (3) argument

subtype classification. Trigger and argument types were div-

ided into 5 groups, where overlapping spans are minimized

within each group. The trigger and argument spans for each

group were then extracted using a separate BERT model with

a linear layer at the hidden states. Relation prediction was a

binary text classification task using BERT, where the input

included special tokens demarking target trigger and argument

Table 3. Summary of top performing system for each team

Team (in alphabetical order) Team abbrv. Language rep. Architecture External data Subtasks

Children’s Hospital of Philadelphia* CHOP LMc STþTC — A, B, C

IBM* IBM LMc unknown — C

Kaiser Permanente Southern CA* KP LMc,b STþTC — A, B

Medical Univ. of South Carolina* MUSC n-grams KBu, rules — A, B, C

Microsoft* MS LMt seq2seq U, L A, B, C

Philips Research North America* PR LMt seq2seq — A, B, C

University Medical Center Utrecht* UMCU LMi, WE STþTC U A, B, C

University of Florida* UFL LMi STþTC U A, B, C

University of Massachusetts UMass unknown unknown — A, C

University of Michigan* UM n-grams STþTC, rules — A, B

University of New South Wales UNSW n-grams, WE STþTC, rules — A, B

University of Pittsburgh Pitt n-grams rules — A

University of Texas at San Antonio* UTSA LMr, WE STþTC — A, B, C

University of Utah* UU LMc STþTC — A, C

Verily Life Sciences Verily LMc STþTC — A

*Indicates the team submitted an abstract.
cIndicates ClinicalBERT.37

bIndicates BioBERT.38

tIndicates T5.39

iIndicates an in-house BERT variant pretrained on institutional data.
uIndicates the Unified Medical Language System (UMLS).40

rIndicates RoBERTa.41
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spans. Argument subtype classification was similar to relation

prediction, except the targets were the subtype labels. UFL

used an internal BERT variant, GatorTron, which was trained

on in-house and public data.

RESULTS

Table 4 presents the overall performance for Subtasks A, B, and

C, including significance testing. Table 4 includes the results

from teams with F1 greater than the mean across all teams. Since

the original SHAC publication, the UW SHAC partition was dei-

dentified, and the entirety of SHAC was reviewed to improve

annotation consistency. Additionally, the scoring routine used in

the challenge differs from the original SHAC publication. Conse-

quently, the results in Table 4 should be considered the current

state-of-the-art for SHAC. MS achieved the highest overall F1

across all 3 subtasks; however, the MS performance was not stat-

istically different from the second team in each subtask: UFL for

Subtask A, KP for Subtask B, and CHOP for Subtask C. Per-

formance was substantively lower for Subtask B than Subtasks A

and C. No in-domain training data was used in Subtask B.

Additionally, the Subtask A and Subtask C evaluation data were

randomly selected; however, the evaluation data for Subtask B

included actively selected samples that intentionally biased the

data toward risk factors.

Error analysis
We explored the performance by event type, argument subtype, and

event frequency per note. The error analysis presents the micro-

averaged performance of the top 3 teams in each subtask (Subtask

A—MS, UFL, and KP; Subtask B—MS, KP, and CHOP; and Sub-

task C—MS, CHOP, and UTSA). Subtask B performance is pre-

sented separately for Duw
train and Duw

dev, because of the differing

sampling strategies (active vs random).

Figure 3 presents the extraction performance by subtask and

includes the total number of gold events (n) and average number of

gold events per note (þ). Subtask A focused on in-domain extraction,

and Subtask B focused on generalizability. The performance drops

from Subtask A to Subtask B (Duw
dev) at �0.04 DF1 for triggers, �0.07

DF1 for labeled arguments, and �0.07 DF1 span-only arguments (All

category in figure). The largest performance drop is associated with

Living Status at �0.14 DF1 for triggers and �0.17 DF1 for labeled

arguments. Subtask C explored learning transfer, where both in-

Table 4. Performance of top performing teams

Team P R F1 Significance

MS UFL KP CHOP PR UTSA UMCU Verily

MS 0.909 0.893 0.901 — � � � � � � �

UFL 0.878 0.908 0.893 — — � � � � � �

KP 0.884 0.884 0.884 — — — � � � � �

CHOP 0.870 0.889 0.879 — — — — � � � �

PR 0.862 0.842 0.852 — — — — — � � �

UTSA 0.847 0.827 0.837 — — — — — — � �

UMCU 0.864 0.653 0.744 — — — — — — — �

Verily 0.797 0.529 0.636 — — — — — — — —

(a) Subtask A

Team P R F1 Significance

MS KP CHOP UFL UTSA PR — —

MS 0.811 0.740 0.774 — � � � � � — —

KP 0.790 0.748 0.768 — — � � � � — —

CHOP 0.761 0.770 0.766 — — — � � � — —

UFL 0.761 0.713 0.736 — — — — � � — —

UTSA 0.737 0.665 0.699 — — — — — � — —

PR 0.739 0.655 0.695 — — — — — — — —

(b) Subtask B

Team P R F1 Significance

MS CHOP UTSA RP UFL UMCU IBM —

MS 0.891 0.887 0.889 — � � � � � � —

CHOP 0.874 0.888 0.881 — — � � � � � —

UTSA 0.880 0.841 0.860 — — — � � � � —

PR 0.885 0.780 0.829 — — — — � � � —

UFL 0.923 0.683 0.785 — — — — — � � —

UMCU 0.886 0.553 0.681 — — — — — — � —

IBM 0.538 0.788 0.640 — — — — — — — —

(c) Subtask C

Significance evaluated for F1 score at P < .05. � indicates the systems were statistically different, and � indicates the system were not statistically different.

1372 Journal of the American Medical Informatics Association, 2023, Vol. 30, No. 8



domain and out-domain data are available. Comparing Subtask B

(Duw
dev) and Subtask C, incorporating in-domain data increased perform-

ance, such that performance for Subtasks A and C are similar. The per-

formance difference between Duw
train and Duw

dev in Subtask B demonstrates

the actively selected samples are more challenging extraction targets.

SHAC annotations capture normalized SDOH factors through

the arguments: Status Time for substance use, Status Employ for

Employment, and Type Living for Living Status. Figure 4 presents

the performance for these factors and the average number of gold

events per note (þ). The student and homemaker labels for Status

Employ are omitted, due to low frequency. For substance use, the

none label has the highest performance where descriptions tend to

be relatively concise and have low linguistic variability (eg,

“Tobacco use: none” or “Denies EtOH”). Performance is lower for

current and past subtype labels, which are associated with more lin-

guistic diversity and have higher label confusability. Performance is

lower for Drug than Alcohol and Tobacco because of the more het-

erogeneous descriptions of drug use and types (eg, “cocaine

remote,” “smokes MJ,” and “injects heroin”). Regarding Employ-

ment, the retired label has the highest performance, due to the con-

sistent use of the keyword “retired.” The employed and unemployed

labels have similar performance that is incrementally less than

retired. The on disability label has the lowest performance, which is

partially attributable to annotation inconsistency and classification

Figure 3. Performance for top performing teams in Subtasks A, B, and C. The left-hand y-axis is the micro-averaged F1 for triggers, labeled arguments, and span-

only arguments (vertical bars). The right-hand y-axis is the average number of gold events per note (þ).
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confusability associated with disambiguating the presence of disabil-

ity and receiving disability benefits (eg, “She does not work because

of her disability” vs “On SSI disability”).

Figure 5 presents the performance for Subtask B (Duw
train) by the

number of gold events per note for a given event type (referred to as

event density): 1 (1), 2 (2), and 3 or more (3þ) events per note. Fig-

ure 5 also includes the total number of gold events (þ). Across event

types, performance is lower for multi-event notes (density > 1) than

single-event notes (density ¼ 1). Multi-event notes tend to have

more detailed and nuanced options of the SDOH. All aspects of the

extraction task, including span identification, span linking, and

argument subtype resolution, are more challenging in multi-event

notes. The Supplementary Appendix includes similar figures for Sub-

task A, Subtask B (Duw
dev), and Subtask C. Subtask B (Duw

train) is pre-

sented here because it has the highest event density.

Formatting, linguistic, and content differences between the

MIMIC and UW data resulted in lower performance in Subtask B

(train on MIMIC, evaluate on UW), relative to Subtask A (train and

evaluate on MIMIC). The inclusion of UW data improved perform-

ance in Subtask C (train on MIMIC and UW, evaluate on UW),

largely mitigating the performance degradation. We manually

reviewed the predictions from the top 3 teams in each subtask (same

Figure 4. Performance breakdown by argument subtype label for Subtasks A, B, and C. The left-hand y-axis is the micro-averaged F1 for the argument subtype

labels (vertical bars). The right-hand y-axis is the average number of gold events per note (1).
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data as Figures 3–5) focusing on the notes with lower performance,

to explore domain mismatch errors and challenging classification

targets.

The UW data include templated substance use, which differs in for-

mat from MIMIC. In Subtask B, unpopulated templates, like “Tobacco

use: _ Alcohol: _ Drug Use: _,” resulted in false positives. There are

differences in the substance use vocabulary that resulted in false nega-

tives in Subtask B. For example, the UW data include descriptions of

“toxic habits” and uses “nicotine” as a synonym for tobacco.

The UW data contain living situation descriptions that lack suffi-

cient information to resolve the Type Living label, a necessary condi-

tion for a Living Status event. In Subtask B, there were frequent

Figure 5. Performance breakdown by event density for Subtask B (Duw
train). The left-hand y-axis is the micro-averaged F1 for triggers, labeled arguments, and span-

only arguments (vertical bars). The right-hand y-axis is the total number of gold events (1).

Journal of the American Medical Informatics Association, 2023, Vol. 30, No. 8 1375



false positives associated with living situation descriptions, like

“Lives in a private residence,” which are not present in MIMIC. The

MIMIC data include homogeneous descriptions of housing instabil-

ity (eg, “homeless”), whereas the UW data include more heterogene-

ous descriptions (eg, “undomiciled” or “living on street”) and

references to regional named shelters (eg, “Union Gospel Mission”).

In Subtask B, this difference resulted in false negatives and misclassi-

fied Type Living. The UW data also include residences that are

uncommon in the MIMIC data, like skilled nursing facilities or adult

family homes, contributing to false negatives in Subtask B.

Employment performance in Subtask B was negatively impacted

by references to the employment of family members, confusability

between having a disability and receiving disability benefits, and lin-

guistically diversity. The linguistic diversity was especially challeng-

ing when a common trigger phase, like “works,” is omitted, as in

“Cleans carpets for a living.”

More nuanced SDOH descriptions, where determinants are rep-

resented through multiple events, were more challenging classifica-

tion targets. Figure 6 presents gold examples from Subtask C that

were challenging targets. Figure 6A presents a sentence describing

drug use, including the denial of use and positive toxicology. Extrac-

tion requires creating separate events for the drug denial and posi-

tive toxicology report, including correctly identifying the

appropriate triggers among several commonly annotated trigger

spans (“Drug Use,” “drug use,” and “polysubstance use”).

Figure 6B describes smoking and alcohol use history in the first sen-

tence and refutes substance use in the second sentence. SHAC

annotators annotated events using intra-sentence information,

where possible, resulting in the conflicting Status Time labels.

Extraction requires identifying multiple triggers and resolving the

inconsistent Status Time labels. Figure 6C presents a Living Status

example where separate events are needed to capture previous and

current living situations and there are multiple commonly annotated

trigger spans (“Residence” and “living”). Here, homelessness must

be inferred from “Compass housing,” a regional shelter. The

nuanced descriptions of SDOH in Figure 6 are also more challenging

to annotate consistently, contributing to the extraction challenge.

DISCUSSION

The top-performing submissions utilized pretrained LM. A majority

of the submissions, including the top-performers, utilized a combi-

nation of sequence tagging and text classification. However, the best

performing system across subtasks was Microsoft’s seq2seq

approach. The success of Microsoft’s seq2seq approach may be

related to the classifier architecture (seq2seq vs sequence tagging

and text classification), LM architecture (T5 vs BERT), data aug-

mentation (additional shorter training samples), LM pretraining,

and/or use of additional supervised data. Systems that utilized data-

driven neural approaches performed better than systems based on

rules, knowledge sources, and n-grams.

The top-performing teams demonstrated good domain generaliz-

ability to the UW data in Subtask B (Duw
dev) for alcohol, drug, tobacco,

and employment, with lower generalizability for living status.

Figure 6. Error analysis examples from Subtask C (Duw
test ). (A) Multiple gold Drug events in a sentence with conflicting Status Time labels. (B) Multiple gold Tobacco

and Alcohol events in note with conflicting Status Time labels. (C) Multiple gold Living Status events in a sentence with conflicting Status Time and Type Living

labels.
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Incorporating in-domain data in Subtask C increased performance,

resulting in similar performance in both domains (MIMIC for Subtask

A and UW for Subtask C). The error analysis indicates SDOH risk

factors tend to be extracted with lower performance than protective

factors: (1) performance for current and past substance use is lower

than substance abstinence, (2) performance for current and past drug

use is lower than for alcohol and tobacco, (3) performance for being

on disability is lower than other employment categories, and (4) per-

formance for homelessness is lower than living with family or (stably)

alone. The error analysis also indicates extraction performance

decreases as the density of SDOH events increases. Qualitatively,

notes with more SDOH events tend to express more severe social

needs (eg, polysubstance use, long history of tobacco use, and more

frequent living situation transitions). The analysis of SDOH factors

(Figure 4) and event density (Figure 5) suggests notes describing higher

risk SDOH are more challenging extraction targets.

CONCLUSIONS

SDOH impact individual and public health and contribute to mor-

bidity and mortality. The n2c2/UW SDOH Challenge explores the

automatic extraction of substance use, employment, and living sta-

tus from clinical text using SHAC.21 The top-performing teams in

this extraction challenge used pretrained LM, with most using a

combination of sequence tagging and text classification. A novel

seq2seq approach achieved the best performance across all subtasks

at 0.901 F1 for Subtask A, 0.774 F1 Subtask B, and 0.889 F1 for

Subtask C. SDOH risk factors tend to be more challenging extrac-

tion targets than protective factors. Future work related to SDOH

extraction should consider this potential for bias, especially for

patients with higher-risk SDOH.
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