Skip to main content
. 2023 Apr 26;30(8):1418–1428. doi: 10.1093/jamia/ocad080

Table 3.

Performance of conventional machine learning, deep learning, and transformer-based classifiers of preoperative cannabis use status documentation in unstructured narrative clinical notes

Class LR
L-SVM
W2V CNN
BERT-Base
Bio_ClinicalBERT
Support (N)d
Pa Rb Fc Pa Rb F c Pa Rb Fc Pa Rb Fc Pa Rb Fc
Not a true cannabis mention .99 .98 .98 .80 .95 .87 .99 .98 .98 1.0 .96 .98 .98 .99 .99 44
True mention not reporting use status .83 .72 .77 .77 .77 .77 .89 .71 .79 .89 .71 .79 .84 .76 .80 12
Positive past use .37 .35 .36 .56 .41 .47 .71 .54 .61 .71 .56 .63 .70 .56 .62 10
Negative current use .63 .77 .69 .80 .83 .81 .74 .70 .72 .64 .67 .65 .84 .83 .84 20
Positive current use .92 .94 .93 .95 .95 .95 .91 .96 .93 .91 .99 .95 .94 .99 .96 108
Weighted average .88 .90 .89 .90 .91 .91 .91 .91 .91 .90 .92 .91 .93 .95 .94 192

BERT: Bidirectional Encoder Representations from Transformers; CNN: convolutional neural networks; LR: logistic regression; L-SVM: linear support vector machines.

a

Precision/positive predictive value.

b

Recall/sensitivity.

c

F score = 2×([Precision×Recall]/[Precision+Recall]).

d

Number of snippets included in model evaluation.