Table 4.
Class | LR |
L-SVM |
W2V CNN |
BERT-Base |
Bio_ClinicalBERT |
Support (N)d | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pa | Rb | Fc | Pa | Rb | F c | Pa | Rb | Fc | Pa | Rb | Fc | Pa | Rb | Fc | ||
Not a true cannabis mention | 1.00 | .99 | 1.00 | 1.00 | .99 | 1.00 | 0.97 | 0.99 | 0.98 | 0.99 | 1.00 | 0.99 | 1.00 | 0.99 | 1.00 | 135 |
Positive current use | .85 | .82 | .84 | .83 | .82 | .83 | 0.84 | 0.81 | 0.82 | 0.87 | 0.90 | 0.88 | 0.87 | 0.91 | 0.89 | 67 |
Positive past use | .73 | .80 | .77 | .73 | .78 | .75 | 0.77 | 0.83 | 0.80 | 0.89 | 0.83 | 0.86 | 0.89 | 0.78 | 0.83 | 41 |
Negative current use | .78 | .70 | .74 | .78 | .70 | .74 | 0.75 | 0.60 | 0.67 | 0.89 | 0.80 | 0.84 | 0.62 | 0.80 | 0.70 | 10 |
Weighted average | .91 | .91 | .91 | .90 | .90 | .90 | 0.90 | 0.90 | 0.90 | 0.94 | 0.94 | 0.94 | 0.93 | 0.93 | 0.93 | 253 |
BERT: Bidirectional Encoder Representations from Transformers; CNN: convolutional neural networks; LR: logistic regression; L-SVM: linear support vector machines.
Precision/positive predictive value.
Recall/sensitivity.
F score = 2×([Precision×Recall]/[Precision+Recall]).
Number of snippets included in model evaluation.