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ABSTRACT

Objective: Social determinants of health (SDOH) are nonmedical factors that can influence health outcomes.

This paper seeks to extract SDOH from clinical texts in the context of the National NLP Clinical Challenges

(n2c2) 2022 Track 2 Task.

Materials and Methods: Annotated and unannotated data from the Medical Information Mart for Intensive Care

III (MIMIC-III) corpus, the Social History Annotation Corpus, and an in-house corpus were used to develop 2

deep learning models that used classification and sequence-to-sequence (seq2seq) approaches.

Results: The seq2seq approach had the highest overall F1 scores in the challenge’s 3 subtasks: 0.901 on the

extraction subtask, 0.774 on the generalizability subtask, and 0.889 on the learning transfer subtask.

Discussion: Both approaches rely on SDOH event representations that were designed to be compatible with

transformer-based pretrained models, with the seq2seq representation supporting an arbitrary number of over-

lapping and sentence-spanning events. Models with adequate performance could be produced quickly, and the

remaining mismatch between representation and task requirements was then addressed in postprocessing.

The classification approach used rules to generate entity relationships from its sequence of token labels, while

the seq2seq approach used constrained decoding and a constraint solver to recover entity text spans from its

sequence of potentially ambiguous tokens.

Conclusion: We proposed 2 different approaches to extract SDOH from clinical texts with high accuracy. How-

ever, accuracy suffers on text from new healthcare institutions not present in the training data, and thus gener-

alization remains an important topic for future study.
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INTRODUCTION

The World Health Organization defines Social Determinants of Health

(SDOH) as, “non-medical factors that can influence health outcomes”.1

Social factors like family support, economic factors like employment

status, and health behaviors like substance use generally account for

about 80% of the potentially controllable factors influencing health

outcomes.2,3 For example, socioeconomic status is strongly associated

with the prevalence of chronic disease such as diabetes4 and hyperten-

sion.5 Homeless people are at greater risk of COVID-19 infection due to

crowded living conditions and lack of access to screening and testing.6

Large-scale use of SDOH is hindered because it is most often

found in clinical note narrative text rather than in discrete fields of
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an electronic health record or in assigned billing codes.7,8 There is a

critical need for automatic methods to extract and classify patient

SDOH from clinical note text so that it can be used to improve inter-

ventions and to better understand outcomes.

Objective
We propose 2 deep learning approaches to the extraction of SDOH

from clinical text that we evaluate in the context of the National NLP

Clinical Challenges (n2c2) Track 2 challenge (https://n2c2.dbmi.hms.

harvard.edu/2022-track-2). Systems competed to extract substance

use, living status, and employment events. Performance was examined

across 3 subtasks which focused on the extraction of SDOH, general-

ization to data from new healthcare facilities, and transfer learning

adaptation to new facilities given additional training data.9

Background
Patra et al10 presented a systematic review of state-of-the-art natural

language processing (NLP) approaches for the extraction of SDOH

across 82 publications. They identify previous work that has

addressed substance use,11 employment,12 and homelessness,13

among many other kinds of SDOH.

They found that homelessness and other less-studied SDOH (eg,

education, financial problems, social isolation) are mostly identified

using rule-based methods,14 while machine learning-based classifica-

tion approaches are popular for identifying smoking status, sub-

stance use, and alcohol use. Some machine learning approaches

relied on traditional models like support vector machines (SVMs)15

whereas others took advantage of deep learning models such as

BiLSTM and BERT.16–18

For instance, Lybarger et al19 developed a novel deep-learning

classification-based approach to help assess the benefits of the active

learning technique used to create the SDOH corpus used in this

work. Their model is based on a BioþDischarge Summary BERT20

model, frozen to produce embeddings for subsequent trainable

BiLSTM, self-attention, and conditional random field (CRF) layers.

It conditions the extraction of event arguments on the extraction of

event triggers and relies on self-attention and CRF output to deter-

mine token spans.

MATERIALS

Data
To train and evaluate the proposed SDOH models, we used 4 data-

sets: Medical Information Mart for Intensive Care (MIMIC), Social

History Annotation Corpus (SHAC), IN-HOUSE, and NO-SDOH.

MIMIC-III (MIMIC)21 is a corpus of deidentified critical care

patient data from the Beth Israel Deaconess Medical Center, col-

lected from 2001 to 2012. The corpus contains a variety of clinical

data, but only the clinical note text is used in this work.

The SHAC19 provides SDOH annotations for the social history

sections from a subset of MIMIC (SHACM) and from a corpus of

University of Washington Medical Center documents (SHACW).

An in-house corpus (IN-HOUSE) of deidentified, mostly inpatient

clinical notes from electronic health records was annotated for

SDOH by following the same annotation guidelines (https://github.

com/uw-bionlp/annotation_guidelines/blob/master/SDOH_annota-

tion_guidelines.docx) used for the SHAC corpora.

A corpus with no annotatable SDOH (NO-SDOH) was created

in an ad-hoc attempt to reduce false-positives that were observed in

non-SHAC MIMIC text. MIMIC documents were selected and then

minimally edited by deleting or modifying text so that nothing rose

to the level of annotatable SDOH.

Table 1 shows the number of documents in the corpora described

above.

Annotations
A subset of the SDOH event type annotations provided by SHAC19

was used in the n2c2 challenge: Substance use (ALCOHOL, DRUG, and

TOBACCO), LIVINGSTATUS, and EMPLOYMENT. An event is comprised of

a trigger that indicates the event type and one or more arguments

that provide further details. For example, an event may have the trig-

ger ALCOHOL and an argument STATUS¼NONE to denote that a patient

does not use alcohol. Another event may have the trigger LIVINGSTA-

TUS, an argument STATUS¼CURRENT, and an argument TYPE¼WITH_FAM-

ILY to denote that a patient is currently living with family members.

Table 1 also shows the number of event type annotations in the

corpora.

Pretrained models
Deep learning approaches benefit from large amounts of training

data, in quantities far beyond what were provided by SHAC and

even MIMIC. Since in-domain data are scarce, the approaches

described in this paper were built on top of publicly available pre-

trained models: T5,22 RoBERTa,23 and XLM-RoBERTa24 that have

been trained on enormous quantities of English language text.

METHODS

Sequence-to-sequence approach
The sequence-to-sequence (seq2seq) approach cast SDOH extrac-

tion as a translation task from text to a serialized, structured

sequence of events (source available at https://github.com/roma-

nows/SDOH-n2c2).

Representation
The source sequence was the full text of the social history section

from a clinical note. The target sequence was the sequence of SDOH

events, where each event was a sequence of arguments, and where

Table 1. Corpora used for training, development, and evaluation

# SDOH events

Corpus

#

Documents Substance

Living

status Employment

MIMIC 2 083 112 – – –

NO-SDOH 2001 0 0 0

IN-HOUSE 790 1332 354 421

SHACM (trainþdev) 1504 3923 1075 1072

SHACM (testA) 373 818 241 168

SHACW (testB) 2010 5913 1613 872

SHACW (testC) 518 1309 354 153

Note: Documents in MIMIC and NO-SDOH are entire clinical notes. Docu-

ments in SHAC and IN-HOUSE are only the social history section of a clinical

note. SHAC train, dev, and test splits were defined by the n2c2 challenge organ-

izers. SHAC test splits were released the day before the corresponding subtask

A, B, or C results were to be submitted. SHAC testB annotations were released

before subtask C results were due, to support transfer learning

MIMIC: Medical Information Mart for Intensive Care; SDOH: social

determinants of health; SHAC: Social History Annotation Corpus.
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each argument was a tuple of types, optional subtypes, and anno-

tated tokens. Events, event arguments, and tokens were ordered left-

to-right, according to the beginning token offset in the source text.

At the top of Figure 1, an example sentence with SDOH event

annotations is shown. Here, the text “lives” is associated with both

the trigger LIVINGSTATUS and a related argument of the type STATUS-

TIME with its subtype value current. The trigger is also related to the

argument type TYPELIVING with its subtype value with_family, and

this argument is associated with the text “with her husband”. Our

seq2seq serialized representation of this event is shown in the middle

of Figure 1: ‘LIVINGSTATUS “lives” STATUSTIME current “lives” TYPE-

LIVING with_family “with her husband”’.

Training
The publicly available, pretrained T5 v1.1 large model (https://hug-

gingface.co/google/t5-v1_1-large) was further pretrained using its

standard unsupervised masked language modeling objective on a

sliding window of all MIMIC and IN-HOUSE text on one 80 Gb NVi-

dia A100 GPU for about 60 h.

Next, that model was fine-tuned in a translation task with source

text and target serialized event sequences from the SHACM, IN-HOUSE,

and NO-SDOH corpora on 4 80Gb NVidia A100 GPUs for about

24 h. The model checkpoint, taken after each fine-tuning training

epoch, that maximized the overall F1 performance on the

competition-provided SHACM dev split was selected to compete in the

extraction and generalization subtasks. That model was further fine-

tuned on the SHACW train split, and the end-of-epoch model check-

point that maximized the overall F1 performance on the SHACW dev

split was selected to compete in the transfer learning subtask. We var-

ied the learning rate, weight decay, and learning rate warmup parame-

ters but did not find any that performed better than the defaults.

Augmented training data
Initially, fine-tuning did not produce a model that output meaning-

ful target sequences. In a nod towards curriculum learning,25 a large

number of shorter examples were automatically derived from the

original training examples, and were used to augment the training

data. However, unlike curriculum learning, no attempt was made to

emphasize the shorter examples early in training and then to de-

emphasize them later. Every fine-tuning training epoch used the

entire augmented training dataset.

Shorter target sequences were constructed from contiguous sub-

sets of events in the original examples. A new example was created by

pairing a shorter target sequence with the shortest-possible contigu-

ous span of source text that covered it (the tight-text-bound example).

Another new example was created by pairing the same shorter target

sequence with the longest-possible contiguous span of source text that

covered it, without including text associated with other events (the

loose-text-bound example). This is shown in Figure 2.

The augmentation procedure increased the number of training

examples from 4,046 to 41,578. Fine-tuning on this dataset pro-

duced a model that successfully output usable target sequences.

Constrained decoding
During inference, greedy decoding occasionally produced ill-formed

target sequences. Errors included invalid argument subtypes and target

Figure 1. Example sentence with SDOH event annotations, followed by the human-readable versions of the seq2seq and classification representations. SDOH:

social determinants of health.

Figure 2. The top example (A) is the original training example. It has 2 SDOH

events, where the event triggers are “Tob” and “EtOH”. Example (B) is a

derived example that covers the same events as (A) but with source text cre-

ated according to the tight-text-bound. Example (C) is a derived example cov-

ering only the first event in (A). Example (D) is the tight-text-bound version of

example (C). The final derived example (E) covers only the second event in

(A), and the loose-text-bound version is equivalent to the tight-text-bound

version. SDOH: social determinants of health.
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sequence text that did not match the source text. (In one amusing case,

the T5 model helpfully corrected the misspelled source text “illicts”

and output the target text “illicits” (as in “illicit drugs”). Unfortu-

nately, the mismatch between source and target text caused problems

when attempting to recover token offsets during postprocessing.)

Constrained greedy decoding prevented the production of most

ill-formed target sequences. At each decoding step, candidates that

would have caused the target sequence to become ill-formed were

removed from consideration.

Some constraints enforced the argument type, subtype, and

token event structure in the target sequence. Other constraints relied

on the source text to enforce the strict left-to-right ordering of

events, arguments, and tokens. A list of possible constraints, and the

subset we considered to be worth implementing given our use of

greedy decoding, are shown in Table 2.

Constraint solving
The n2c2 task required text offsets for each extracted argument,

which necessitated further postprocessing.

First, the original text was searched for the target sequence tokens

associated with triggers and arguments. However, target sequence

tokens often matched multiple offsets in the original text. For exam-

ple, “-” is often used to indicate an absence of tobacco and/or alcohol

use, and so it may appear multiple times in a social history section.

To choose which of the candidate offsets in the original text

should be associated with an argument, the OR-Tools constraint

solver (https://developers.google.com/optimization, accessed Sep-

tember 2022) was used. This enforced the left-to-right ordering hard

constraints listed in Table 2.

To further reduce ambiguity, soft constraints selected for compact-

ness by minimizing the distance between the first and last characters of

tokens in events and event arguments. These heuristics were motivated

by an informal analysis of token span errors. For example, consider the

original source text “Tobacco -, hypertension -” and the target sequence

tokens “Tobacco” and “-”. The hyphen “-” in the target sequence

tokens could be associated with either the first or second hyphen in the

original text. The soft constraints bias the constraint solver towards a

solution that chooses the first hyphen, because it minimizes the distance

between “Tobacco” and “-” in the original text.

Related work
Our seq2seq approach was motivated by earlier success with deep

learning encoder-decoder models in text-to-structured-sequence

tasks such as Dong and Lapata’s conversion of text to its logical

form.26

The use of constrained decoding has a long history in language

processing, especially in automatic speech recognition. In NLP, an

interesting application was Zhang and Lapata’s poetry generation

system that enforced rhyming constraints during decoding.27

Our seq2seq approach happens to be quite similar to the Text2E-

vent system developed by Lu et al.28 Apart from the use of a con-

straint solver to recover text offsets, the differences between the 2

systems are subtle: sentence-level processing versus our section-level

processing, staged curriculum learning versus our all-at-once aug-

mentation approach, trigger-first ordering versus our left-to-right

ordering of triggers and arguments, and use of T5 versus our use of

T5 v1.1.

Classification-based approach
The multi-label, multi-class classification approach cast the SDOH

extraction problem as a token labeling task (source available at

https://github.com/abachaa/SDOH-n2c2).

Representation
A token covered by SDOH annotations was assigned a class label

that indicates the set of triggers and arguments associated with that

token. These sets were encoded as strings by sorting the triggers and

arguments and joining them together with underscores and dashes

like: I-TRIGGER_ARGTYPE-ARGSUBTYPE. This approach is similar to the

label powerset (LP) method, which transforms a multi-label problem

to a multi-class problem by mapping every observed set of coincid-

ing class labels to a single new class label.

Considering all possible combinations of triggers and arguments

in the n2c2 challenge annotation guidelines, there are 904 potential

class labels for tokens that are only associated with one SDOH

event. This number is larger when tokens participate in multiple

events. However, in practice, there were only 158 combinations

observed in the SHACM training data.

Each token in the source text was tagged using the IO format

(short for Inside and Outside) instead of the BIO tagging format

(Beginning, Inside, and Outside)29 to reduce the number of classes.

Tokens not associated with events were assigned the “O” label.

For example, an event about a nondrinker may have tokens

labeled with the trigger class I-ALCOHOL and tokens labeled with the

argument class I-ALCOHOL_STATUS-NONE. Or, the token “no” in text

like “no alcohol, tobacco, or drugs” could have the class label

Table 2. Constraints on valid target sequences used in constrained decoding and constraint solving

Use Constraint

D First output must be an argument type or the end-of-sequence (EOS) token

D Argument types must be followed by a compatible subtype or by at least one token

D Subtypes must be followed by at least one token

D Tokens may be followed by other tokens, an argument type, the event separator, or EOS

D Tokens must be subsets of the source text

D Argument types in the same event must be compatible

DS Within each argument ðT;A; ½p1; p2; p3�Þ, the tokens must be ordered left-to-right as p1 < p2 < p3 relative to the original source text

DS Within each event like ðT1;C1; ½p1; . . .�Þ þ ðT2;C2; ½q1; . . .�Þ it must be the case that p1 � q1

DS Within each event sequence like ðTa
1 ;C

a
1; ½p1; . . .�Þ þ ðTa

2 ;C
a
2; ½q1; . . .�Þ þ � � � & ðTb

1 ;C
b
1; ½r1; . . .�Þ þ � � � it must be the case that p1 � r1

Events must contain exactly one trigger argument type

Events must not contain duplicate argument tuples

Note: In the “Use” column, a D indicates a constraint used in constrained decoding. An S indicates a constraint used in constraint solving.
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I-ALCOHOL_DRUG_STATUS-NONE_TOBACCO. See Figure 1 for an addi-

tional example.

Modeling
A token-based classifier was built on top of a pretrained

transformer-based model by adding a token classification head (a

linear layer on top of the model hidden state outputs). We experi-

mented with several pretrained models such as BERT,30 Clinical-

BERT,31 and RoBERTa.23 After several experiments on the

validation set, we selected and used RoBERTa-large without further

pretraining. Models were trained on 4 24Gb NVidia K80 GPUs and

hyperparameters were optimized with the Ray Tune library (https://

docs.ray.io/en/latest/tune/index.html).

Ensemble modeling
Ensemble modeling has been shown to provide better performance

than single models in tasks such as medical concept extraction32,33

and relation extraction.34,35 Ensemble models rely on multiple mod-

els to improve the overall performance either by combining their

predictions/outputs or by combining their features. We designed sev-

eral ensemble methods and training strategies (eg, fine-tuning the

head layers with the models frozen for the first k epochs) and com-

pared them on the validation set. The best ensemble relied on the

concatenation of the final hidden states of a RoBERTa-base model

and a XLM-R-base model. Both models were used without further

pretraining.

Postprocessing
A postprocessing step generated the event relations between triggers

and arguments from the sequence of class labels.

The SHACM training data was used to create a set of event tem-

plates. An event template specified which types of arguments could

participate in an event with a particular type of trigger. For example,

one event template was constructed to allow an association between

ALCOHOL and STATUS types, since these kinds of events were seen in

the training data. Similarly, an event template that allowed the asso-

ciation between ALCOHOL, STATUS, and AMOUNT was included. How-

ever, an event template that allowed the association between

ALCOHOL and AMOUNT was not included, since such an event was

never seen in the training data.

Each event template was considered for each target. An event

template was satisfied when a mapping was found from the template

trigger and argument slots to entities with types marked by class

labels. When there were multiple entities that could satisfy one argu-

ment, the entity that was closest to the trigger entity’s text span was

chosen.

From the set of satisfied event templates, only those with the

greatest number of arguments were kept. For example, this would

favor the event template with ALCOHOL, STATUS, and AMOUNT over

the event template with just ALCOHOL and STATUS. From this reduced

set, the event template that occurred most often in the SHACM train-

ing data was chosen. For example, this would choose the ALCOHOL,

STATUS, and AMOUNT event template over the ALCOHOL, STATUS, and

TYPE event template.

Related work
Token-level classification has been widely and efficiently used in

several tasks such as named entity recognition (NER)36,37 and part-

of-speech tagging.38 Our classification approach is similar to de

Sousa et al,39 who developed BERT-based classification models30 to

support multi-label clinical NER in Portuguese. They adopted the

LP transformation-based method for multi-label classification and

used the SemClinBr multi-label NER corpus of clinical notes man-

ually labeled with Unified Medical Language System (UMLS)

semantic types. Apart from the target domain involving SDOH, our

system differs through its use of postprocessing to generate event

relationships between the extracted entities.

RESULTS

Table 3 presents the official results evaluated with respect to our

submissions on previously unseen SHAC data, released during the

n2c2 competition week, and processed by our seq2seq and classifier

systems. Participants could submit at most 3 runs per subtask. For

the first 2 subtasks, we submitted the output of the seq2seq system,

the output of the RoBERTa-based classifier system, and the output

of the RoBERTa-ensemble classifier system. For the final subtask,

we submitted the output of a seq2seq system where the model was

first fine-tuned only on SHACM and then subsequently fine-tuned

only on SHACW, a seq2seq system that was fine-tuned simultane-

ously on SHACM and SHACW together, and the output of the non-

ensemble variant of the classifier system. The seq2seq approach

outperformed the classification approach and ranked above all other

models in the competition.9

DISCUSSION

Representation benefits
While not required in the n2c2 challenge, it is worth noting that the

seq2seq representation can capture spans covering any subset of the

source text and that it can capture discontinuous annotation spans.

It can also be trivially modified to output arguments that are not

associated with any text span offsets, which may allow for cheaper

annotation or more-reliable annotation when interannotator agree-

ment on text spans is low.

Representation errors
Both the seq2seq and classification approaches output a sequence

whose representation is lossy with respect to the ground truth.

The classification approach fails to capture relationships

between entities in the same event. It cannot capture consecutive nor

overlapping entities of the same type and cannot predict combina-

tions of annotations that were not seen during training. Postprocess-

ing heuristics that generate event relationships have a bias towards

events with more arguments, whether this is warranted or not.

The seq2seq approach fails to unambiguously capture the associ-

ation between entities and text spans. The constraint solver reduces

the ambiguity but does not always completely resolve it. Soft con-

straints have a bias towards compact events, whether this is war-

ranted or not. It is also possible for the constraint problem to be

unsatisfiable if the model output even slightly violates one of the

hard constraints.

To investigate the accuracy impact of the lossy seq2seq represen-

tation, we replace the model target sequence output with a target

sequence derived directly from the ground truth annotations. This

ideal target sequence is postprocessed and scored on all SHAC splits.

The scores range from a low of 0.9844 on the SHACW dev split to a

high of 1.0000 on the SHACM dev split. While it is possible that this

representation is unnecessarily hard to learn for the seq2seq model,

or that the postprocessing implementation is unduly affected by
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model output errors, we take the above results as evidence for the

practical fidelity of the seq2seq representation.

Span recovery
Unlike the classification approach, the seq2seq approach required

postprocessing to recover token spans. To investigate the impact of

span recovery errors, we scored the competition model with and

without considering token offsets on the SHACM test data. When

token offsets are considered, the overall F1 is 0.9008, and when

token offsets are ignored, the score is 0.9186. We take this as evi-

dence that the postprocessing method is sufficiently accurate in

recovering token spans for this task.

Scaling issues
The number of class labels in the classification approach may not

scale well as new entity types and subtypes are introduced. In the

worst case, the number of class labels can nearly double when new

types are added. As the number of class labels grows, there will be

fewer training examples available for each particular label.

The target sequence length in the seq2seq approach may not

scale well as new entity types and subtypes are introduced. The clas-

sification approach always outputs the same number of class labels

as there are input tokens, but the seq2seq approach can output

sequences with more tokens that the source text when most of the

source text is covered by many overlapping events. However, at the

other end of the spectrum, source text with no SDOH only requires

the output of a sequence with the end-of-sentence marker.

Model size
To examine the effect of model size in the seq2seq approach, we

trained a new post-competition (after the competition, we found

that smaller AdamW betas ½0:8;0:99� gave smoother learning curves

for SHACM train and dev splits. We used these AdamW parameters

to reduce the test split variance of postcompetition models selected

based on dev split performance) T5 v1.1 large model (T5-large) and

a new postcompetition T5 v1.1 base model (T5-base). On SHACM

test, the T5-large overall F1 score was 0.9034 while the T5-base

score was 0.8914 This difference is not significant according to a

stratified approximate randomization hypothesis test (P¼ .1692).40

However, on the combined SHACW train, dev, and test splits, there

is a significant difference between the T5-large score of 0.7738 and

T5-base score of 0.7447 (P< .0001). The larger model helps with

the generalization subtask.

Additional pretraining
To examine the effect of additional pretraining, we fine-tuned a T5

v1.1 large model that was not pretrained on MIMIC nor IN-HOUSE

data on SHACM train and compared it to the postcompetition

model. The performance difference is statistically significant, with

the former scoring 0.8754 overall F1 on SHACM test versus 0.9034

F1 (P¼ .005). The difference is larger when the models are scored

on the combined SHACW train, dev, and test splits, with the former

scoring 0.7308 overall F1 versus the baseline 0.7738 F1 (P< .0001).

Additional pretraining for one or 2 epochs speeds convergence, leads

to better performance on SHACM, and better generalizes to

SHACW.

IN-HOUSE advantage
To examine the benefits of the IN-HOUSE data in pretraining and

fine-tuning, we trained a postcompetition model that did not use the

IN-HOUSE corpus. On the SHACM test data, the performance differ-

ence was not significant: 0.9005 overall F1 versus the postcompeti-

tion baseline of 0.9034 F1 (P¼ .2915). However, the performance

difference was significant on the combined SHACW train, dev, and

test splits: 0.7540 overall F1 versus 0.7738 F1 (P< .0001). It seems

that the non-MIMIC IN-HOUSE data help with generalization to

other non-MIMIC datasets for the seq2seq approach.

We also experimented with varying the data used to train the

classification approach. Table 4 presents the results of fine-tuning

the RoBERTa-based classifier on the SHACM, SHACM þSHACW,

and SHACM þIN-HOUSE data. The addition of the IN-HOUSE dataset

to training improves overall F1 performance for the classifier

approach, although not as much as the addition of the SHACW

dataset.

False positives on non-social history section text
The NO-SDOH corpus was created because we happened to observe

spurious SDOH annotations on text not included in the SHAC cor-

pus. To examine the effect of this additional fine-tuning data, a

model was trained with and without the NO-SDOH dataset. The dif-

ference in overall F1 on the SHACM test split between these 2 mod-

els was not statistically significant (P¼ .95).

Table 3. Runs submitted during the n2c2 competition week and their scores as reported by contest organizers

Subtask Run System Precision Recall F1

A 1 Seq2seq 0.9093 0.8925 0.9008

2 Class-Ensemble 0.8360 0.8692 0.8522

3 Class-RoBERTa 0.8213 0.8580 0.8392

B 1 Seq2seq 0.8108 0.7400 0.7738

2 Class-RoBERTa 0.6921 0.7256 0.7085

3 Class-Ensemble 0.6916 0.7170 0.7041

C 1 Seq2seq (SHACM ! SHACW) 0.8906 0.8867 0.8886

2 Seq2seq (SHACM þ SHACW) 0.8800 0.8804 0.8802

3 Class-RoBERTa (SHACM þ SHACW) 0.7423 0.8468 0.7911

Note: Subtasks A, B, and C correspond to extraction, generalization, and transfer learning. “Class-Ensemble” is the ensemble of the classification-based

approaches while “Class-RoBERTa” is the classification approach that used RoBERTa alone. In the transfer learning subtask C, “SHACM ! SHACW” means

that a model was first fine-tuned on SHACM and then fine-tuned on SHACW. “SHACM þ SHACW” means that a model was fine-tuned on both SHACM and

SHACW together. The highest scores are bolded.

SHAC: Social History Annotation Corpus.
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To explore whether the NO-SDOH corpus did indeed suppress

false positives on some clinical text, a new dataset containing 6713

examples was sampled from MIMIC. No attempt was made to edit

this dataset to remove SDOH; instead, we focused on the relative

rates of SDOH annotations output by the 2 models. The model

trained with NO-SDOH produced annotations on 76 examples,

while the model trained without NO-SDOH produced annotations

on all 6713 examples.

NO-SDOH does reduce the amount of spurious SDOH annota-

tion output; however, it is unknown whether the seq2seq model is

broadly robust to false positives on more-general collections of text.

CONCLUSION

With sufficient training data, deep-learning approaches can leverage

pretrained models to extract SDOH.

Future work could involve exploring data augmentation, soft

constraints that take advantage of model attention activations dur-

ing constraint solving, and explainable modeling approaches41 to

recovering text spans for SDOH labels.

Generalization to new clinical text styles and conventions (and

to nonclinical text42) is one of the more persistent problems in clini-

cal NLP. Given the expense and expertise needed to annotate data,

improvements should be pursued.
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