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To better address the difficulties in designing green fruit recognition techniques in machine vision systems, 
a new fruit detection model is proposed. This model is an optimization of the FCOS (full convolution one-
stage object detection) algorithm, incorporating LSC (level scales, spaces, channels) attention blocks in 
the network structure, and named FCOS-LSC. The method achieves efficient recognition and localization of 
green fruit images affected by overlapping occlusions, lighting conditions, and capture angles. Specifically, 
the improved feature extraction network ResNet50 with added deformable convolution is used to fully 
extract green fruit feature information. The feature pyramid network (FPN) is employed to fully fuse low-
level detail information and high-level semantic information in a cross-connected and top-down connected 
way. Next, the attention mechanisms are added to each of the 3 dimensions of scale, space (including the 
height and width of the feature map), and channel of the generated multiscale feature map to improve 
the feature perception capability of the network. Finally, the classification and regression subnetworks 
of the model are applied to predict the fruit category and bounding box. In the classification branch, a 
new positive and negative sample selection strategy is applied to better distinguish supervised signals 
by designing weights in the loss function to achieve more accurate fruit detection. The proposed FCOS-
LSC model has 38.65M parameters, 38.72G floating point operations, and mean average precision of 
63.0% and 75.2% for detecting green apples and green persimmons, respectively. In summary, FCOS-LSC 
outperforms the state-of-the-art models in terms of precision and complexity to meet the accurate and 
efficient requirements of green fruit recognition using intelligent agricultural equipment. Correspondingly, 
FCOS-LSC can be used to improve the robustness and generalization of the green fruit detection models.

Introduction

With the successful application of artificial intelligence tech-
nology in many fields, the development of this modern tech-
nology has also stimulated the development of agriculture, 
making the application of intelligent agriculture in agricultural 
production more and more extensive. As an important part of 
automated agricultural intelligent equipment, vision systems 
have realized practical operations such as fruit picking, yield 
estimation, fruit counting, and crop type classification in agri-
culture [1,2]. Intelligent agricultural picking robots can replace 
or assist manual picking and reduce production costs, so effi-
cient fruit recognition and picking research has received a lot 
of attention in recent years as an important branch of agricul-
tural robotics [3–6]. Rapid recognition and accurate position-
ing of fruits in natural scenes can provide key technical support 
for the machine vision system of fruit-picking robots [7,8].

However, fruit growth in natural environments is charac-
terized by random distribution and mutual occlusion, and fruit 

images also change dynamically depending on light changes, 
shooting angles, and distances. In the unstructured agricultural 
environment, target fruit recognition has become a major chal-
lenge for agricultural intelligent devices in production appli-
cations [9]. In recent years, fruit detection has been the primary 
focus of research to identify target fruits from natural environ-
mental backgrounds [10]. Fruit recognition methods mainly 
include traditional recognition methods based on manual 
features and deep learning methods for automatic feature 
extraction.

Traditional fruit recognition algorithms mainly extract infor-
mation such as color, geometric shape, and texture features of 
targets and then classify and detect fruiting targets on the basis 
of machine learning methods. Arefi et al. [11] selected ripe 
tomatoes in a greenhouse environment for their experimental 
study and successively processed background informational 
and color information to finally achieve 96.36% detection accu-
racy, and the method showed excellent detection only for cases 
where the fruit color was more clearly distinguished from the 
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background. When the fruit target is close to the background 
color features, the shape and texture features between the fruit 
and the background are needed to determine the target region.

Kurtulmus et al. [12] combined color, shape, and texture 
features using 3 different scales of moving windows to scan 
unripe green citrus images, and the results of multiple voting 
window classifiers resulted in a final correct detection rate of 
75.3%. Jia et al. [13] segmented the collected apple images 
under Lab color space using the K-means clustering algorithm 
and inputted the extracted image red green blue (RGB) and 
hue saturation intensity color features and geometric shape 
features into a neural network for fruit recognition, achieving 
96.17% fruit recognition accuracy, but the algorithm was rel-
atively tedious to recognize over. Tian et al. [14] proposed a 
combination of depth images and RGB images to recognize 
apple fruits by locating the center of the target fruit using depth 
images and by segmenting it using RGB images with a final 
recognition efficiency of 96.61%, but the performance of this 
method was rather poor when dealing with overlapping fruits. 
Ji et al. [15] proposed an apple recognition and classification 
algorithm based on a support vector machine with a recogni-
tion success rate of 89%, but the algorithm was less effective in 
detecting fruit with branch and leaf occlusions. Moallem et al. 
[16] applied K-means clustering and multilayer perceptron to 
extract apple texture and geometric features and achieved 
92.5% and 89.2% classification accuracy.

The above traditional fruit recognition algorithm often 
involves a series of complicated operations, such as image pre-
processing, feature selection, and extraction, which affects the 
recognition accuracy and speed of the algorithm and makes it 
difficult to meet the requirements of real-time operation of intel-
ligent devices. Especially when the fruit is close to the background 
color, a large number of overlapping blocks lead to the inconspic-
uous shape of the fruit contour, while the change of lighting con-
ditions also leads to the loss of texture features, which seriously 
interferes with the recognition effect of the algorithm.

With the rapid development of convolutional neural net-
work (CNN), the end-to-end detection process and the advan-
tage of automatic extraction of depth features have reduced 
many complex operational steps in traditional algorithms. On 
the basis of this, numerous deep learning-based recognition 
algorithms such as Faster R-CNN [17], YOLO [18], SDD [19], 
YOLOv5, FoveaBox [20], and many other mainstream algo-
rithms have been developed, which are far more robust and 
accurate than traditional recognition algorithms and have been 
widely used in the field of fruit image detection and segmen-
tation [21–23]. Zhang et al. [24] replaced the original feature 
extraction network of Faster R-CNN with VGG19 through 
pretraining network migration and improved the region pro-
posal network structure of the network to improve the detec-
tion accuracy of the model for apple fruit and reduce the false 
detection rate.

Tu et al. [25] designed the model to fuse image color and 
depth image information with the help of an RGB-D camera 
and finally achieved 90.9% F1 score to effectively improve the 
detection accuracy of small target passion fruit. Liang et al. [26] 
first performed a series of data augmentation techniques to 
optimize the operation of the data, then redesigned the single 
shot multibox detector detection frame shape according to the 
processed dataset, and finally implemented a mango detection 
model with better performance than Faster R-CNN. Bresilla 
et al. [27] detected fruits on trees on the basis of an optimized 

YOLO model, which achieved 90% fruit detection precision 
by reducing convolutional and pooling layers to make the 
model shallower and to increase the speed without decreasing 
the detection precision. Wang et al. proposed a lightweight deep 
learning model YOLOv5s on the basis of channel pruning, 
which achieved accurate apple fruit detection with 95.8% detec-
tion precision [28].

The above methods require feature area selection based on 
anchors, requiring the design of anchors of various scales and 
shapes, and the setting of parameters such as scale, aspect ratio, 
and number of anchor frames also affects the detection perfor-
mance of the model. To overcome the drawbacks of anchor-
based algorithms, anchor-free algorithms are emerging. Jia 
et al. [29] used EfficientNetV2-S backbone and a bidirectional 
weighted feature pyramid network (FPN) as the backbone net-
work for feature extraction, and they used an adaptive training 
sample selection method to directly select positive and negative 
samples to obtain higher recall for green fruits at different 
scales, with detection precision of 62.3%. To eliminate the lim-
itation of the anchor boxes on the model in terms of speed and 
generalization ability situation, Jia et al. [30] embedded the 
position attention module in FoveaBox and MaskIoUhead mask 
calibration module, achieving efficient green fruit recognition.

Considering the problems of the anchor-based methods 
such as long training time and complicated calculation, the 
effective and accurate fruit detection model (full convolutional 
one-stage object detection) algorithm based on LSC attention 
blocks (FCOS-LSC) is proposed to recognize green fruit by 
improving anchor-free FCOS [31] as the base model. Instead 
of normal convolution operation, a deformation convolution 
[32] is adopted in the backbone network to better extract the 
fruit features with different shapes. In addition, attention oper-
ations [33] are introduced into the multiscale features on scale, 
space, and channel dimensions to enhance the feature rep-
resentation of the network. In the classification branch of the 
detection head, a new positive and negative sample selection 
strategy is employed to set loss weights for both positive and 
negative samples to better distinguish between positive and 
negative samples [34]. The method provides more discrimina-
ble supervisory signals and enhances the detection of fore-
ground targets and background environments.

In general, this study has at least the following contributions:

1. � In the backbone network, deformable convolution is 
introduced to better adapt to different fruit shape fea-
tures during detection.

2. � In the neck network, the LSC attention module is embed-
ded in the 3 dimensions of scale, space, and channel of 
the feature map, which suppress the noise interference 
in the feature map and make the model focus more on 
the effective pixel information.

3. � In the detection head, a new positive and negative sam-
ple determination method is designed to improve the 
discriminative ability for supervised signals.

4. � The proposed method outperforms other advanced 
methods in terms of accuracy and robustness, which 
is more suitable for detecting green fruits in complex 
orchards.

The rest of this paper is organized as follows: Materials and 
Methods presents the green fruit dataset including image 
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acquisition and dataset production. Next, this section illustrates 
the proposed FCOS-LSC model including the backbone net-
work, the feature fusion network, and various parts of the 
detection head, as well as the details of optimization. In Results, 
experiments are conducted to compare other advanced detec-
tion models from different aspects to validate the effective-
ness of FCOS-LSC in green fruit detection. Finally, Conclusion 
summarizes the proposed model and presents future research 
directions.

Materials and Methods

Dataset
There are many disturbances in the complex orchard environ-
ment that affect the detection of the vision system, making it 
difficult for fruit-harvesting robots to recognize green fruits 
from similarly colored green backgrounds. To better cope with 
the complexity of the detection task, this study collects and 
produces 2 green fruit datasets from actual orchards for the 
experiments, including green apples and green persimmons.

Data acquisition
Collection locations: Apple images are collected from the apple 
production base in Fushan District, Yantai City, Shandong 
Province, and persimmon images are collected from the back 
mountain of Shandong Normal University.

Image acquisition equipment: All images are taken with the 
same camera, Sony Alpha 7II. A total of 1,361 images of green 
apples and 553 images of green persimmons are taken at a 
resolution of 6,000 × 4,000 and stored in JPG format.

Acquisition environment: To get closer to the working con-
ditions of the picking robot, fruits in different lighting condi-
tions and different periods are selected as far as possible when 
capturing images.

Shown in Fig. 1A to D, the images of fruits are captured 
under soft light in the early morning, strong light at noon 
(which includes images of fruits under low backlight and high 
backlight conditions), and light-emitting diode lighting at 
night. As shown in Fig. 1E and F, images from different angles 
of distant and close views and different directions are captured 
to imitate the operation of the robot in actual orchards. There 
are many occlusions and overlaps in the image, including fruit 
overlapping each other and branch and leaf occlusions. The 
specific fruit images are listed in Fig. 1G to H.

Dataset production
The collected images take full account of the complexities 
of the orchard, with a certain degree of randomness and rep-
resentation, and are as close as possible to the requirements of 
the real-time operation of the machine and equipment. In this 
paper, the captured images are compressed and scaled to a size 
of 600 × 400 pixels to enable the fruit detection network to 

A Soft morning light B Low backlight C High backlight

D LED lighting E Far-field image F Close-up image

G Fruit overlap H Tree branch blocking I Leaf blocking

A Softff morning light B Low backlight C High backlight

D LED lighting E Far-fiff eld image F Close-upuu image

Fig. 1. (A to I) Green apple images in different scenes. LED, light-emitting diode.
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better adapt to the detection requirements of machine equip-
ment for low-resolution images.

LabelMe [35] software was used to annotate the information 
on green fruits, and corresponding category labels and anno-
tation points are generated and uniformly saved in JSON files. 
Finally, datasets are generated according to Microsoft COCO 
[36] format.

Datasets are divided into the training set and validation set 
according to the ratio of 7:3, in which the training set contains 
953 images and the validation set contains 408 images in the 
apple dataset. The persimmon dataset contains 388 images in 
the training set and 165 images in the validation set.

FCOS-LSC detection network
FCOS-LSC is an optimization method based on the one-stage 
object detection model FCOS. The overall framework of the 
FCOS-LSC model includes the backbone network for feature 
extraction, the feature fusion structure, the attention module 
of each dimension on the feature map, and the detection head. 
The detection head also includes subnetworks for processing 
classification, bounding box regression, and center point detec-
tion. As shown in Fig. 2, the optimized ResNet50 with the 
addition of deformable convolutional structures is used as the 
backbone network to improve the feature extraction capability 
of the network. FPN is utilized to fully fuse the extracted mul-
tiscale fruit features. Before input to the detection head, the 
attention mechanisms are added to the scale, space, and chan-
nel dimensions of the feature map by the convolution-based 
method, which helps the feature map to distinguish foreground 
fruit objects and background information more effectively. In 
the detection head, a new label assignment strategy is designed 
to distinguish between positive and negative samples, providing 
the detector with a more discriminative supervised signal.

Feature extraction and fusion network
As a feature extraction network, ResNet50 performs a series 
of convolution downsampling operations on the input fruit 
image to extract fruit feature information. The residual structure 
solves the problem of gradient disappearance, explosion, and 

degradation caused by deeper network layers by completely 
mapping shallow features into deeper networks.

However, in the feature extraction network, the convolution 
kernel is set to a fixed shape. Fruit feature maps are also limited 
to extracting valid information only in rectangular filters. The 
efficiency of fruit detection in complex orchard backgrounds 
is greatly reduced under uncontrollable conditions such as 
shooting angles and fruit growth forms, and the design of con-
volutional kernels with dynamically transformable shapes can 
adapt to targets with variable morphology and improve recog-
nition accuracy. Therefore, the deformable convolution [32] is 
added to the C3, C4, and C5 layers of the ResNet50 backbone 
network to improve feature extraction performance.

The deformable convolution structure is shown in Fig. 3. 
The size of the convolution kernel is set to 3 × 3, and the same 
padding as the normal convolution is used to ensure that the 
size of the output feature map is the same as the size of the input 
feature map. The 2 × 3 × 3 shift offset values in the convolution 
kernel correspond to the (x, y) offset values of each pixel in the 
3 × 3 convolution kernel, respectively.

To achieve greater degrees of freedom, different from deform-
able convolutional networks [37], a learning coefficient of sam-
pling points is added to it, and the coefficient of some useless 
background sampling points in fruit detection can be set to 0. 
This coefficient indicates that it has different weights for differ-
ent pixel values, which improves the feature expression capa-
bility. The feature output dimension of the ith stage is mapped 
to 1/2i of the input image. There are usually many layers that 
produce output maps of the same size. In this paper, the net-
work layers with the same mapping size are grouped into the 
same stage layer. After each stage of the ResNet50 layer {C2, C3, 
C4, C5}, the output feature map is mapped to the input image 
as {1/22, 1/23, 1/24, 1/25}, respectively, as shown in the backbone 
part of Fig. 2.

The output of the ResNet50 network is a relatively high-level 
feature map with high semantic information. However, the 
feature maps after a series of convolution and pooling opera-
tions have low resolution. The mappable features are easy to 
lose details such as boundaries when detecting small objects. 

Backbone Neck Head

L
S C LSC 

attention

21/2

31/2

41/2

51/2

2C
3C

4C
5C

3F

4F
5F
6F
7F

h × w × c 

h × w × 1 

h × w × 4 

loc

cls

×4

×4

Fig. 2. The overview of FCOS-LSC.
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FPN realizes the fusion of low-level detail information and 
high-level semantic information to solve the problem of mul-
tiscale prediction. The feature maps C3, C4, and C5 output by 
the last 3 layers after the ResNet50 network are horizontally 
connected to the FPN through 1 × 1 convolution. Then, the 
feature maps perform a 2-fold up-sampling and top-down 
method to fuse the information of each layer by element addi-
tion to obtain F3, F4, and F5. The F6 and F7 are obtained from 
F5 by 2 convolution operations with a convolution kernel of 
3 × 3 and a step of 2, as shown in Fig. 2, Neck section.

LSC attention module
To enhance the representational capability of the model, an 
attention learning module implemented by a convolution-based 
approach is added to the output of the feature fusion network. 
The LSC attention module is embedded behind the FPN to 
extract more feature information. The structure is shown in 
Fig. 2, and the specific implementation is shown in Fig.4.

In this paper, the feature maps output from the FPN are 
up-sampling and down-sampling to process the high feature 
layer and low feature layer map scales and adjust to the scale 
size of the middle feature layer. The feature map can be converted 
to a 4-dimensional tensor X ∈ RL×H×W×C, redefining S = H × W, 

where L denotes the feature level, H denotes the feature map 
height, W denotes the feature map width, and C denotes the 
feature channel. The 3-dimensional representation of the fea-
ture map is X ∈ RL×S×C. Focusing on the role of the 3 dimen-
sions of the feature map separately can help improve the model 
feature extraction.

Figure 4 shows the attention operations implemented in the 
convolution-based feature maps. First, feature maps improve 
the relationship between fruit scale size differences and fea-
tures at different levels by operating on the scale dimension. 
Scale attention can improve the representation ability of fea-
ture maps at different levels, thereby improving the perception 
ability of fruit scale features. Then, through the operation 
in the spatial dimension, the spatial location information of 
fruit detection with different geometric shapes is extracted 
to improve the spatial perception ability of fruit detection. The 
last part of the cascade operation is the feature channel. The 
multitasking of fruit detection and segmentation and target 
representation correspond to features on different channels. 
Improving the representation learning ability on the feature 
channel can effectively improve the perceptual ability of the 
fruit detection task. Finally, the processing in the 3 dimensions 
is concatenated and multiplied as the input of the detection 

  

Input

Output

Offsets

Offset field
Conv DCnv2 ReLU

Bottleneck:4
Bottleneck:3
Bottleneck:2
Bottleneck:1

3C

2×3×3

Conv 3 × 3

Fig. 3. Partially deformable convolutional structures in C3 are shown.

Scale 
attention

Space 
attention

Channel 
attention

×3

L

S
C L

S
C

ML MS MC

Fig. 4. Convolution-based implementation with attention mechanism on each dimension of the feature map. The implementation details of the 3 submodules are shown in Fig. 5.
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head. The operation of the attention module in 3 dimensions 
is as follows.

As shown in Fig. 5, the ML module is operated on the scale. The 
input feature map undergoes a global averaging pooling opera-
tion to compress the spatial and channel features into a real 
number with a global sensory field on space and channel. The 
linear function is approximated with a 1×1 convolution to gen-
erate weights for the feature layer scale by computation. Then, a 
linear rectification function (ReLU) is used to obtain the non-
linear relationship, which can fit the complex correlation between 
spatial channels. Finally, the approximate sigmoid is simulated 
by a hard-sigmoid activation function, which can also shorten 
the calculation time. The formula is expressed as follows.

where the f(⋅) linear function represents the 1 × 1 convolution 
and σ(⋅) is the hard-sigmoid activation function.

With the understanding of the importance of different 
semantic information between feature layers in the perception 
module, the feature map focuses more on the information of 
each spatial location of the fruit. This includes distinguishing 
areas where the spatial location of each target in the feature 
map coexists consistently with the feature layer. Considering 
the high dimensionality of the spatial dimension, we use 
deformed convolution to make the spatial feature awareness 
learning more sparse and then aggregate the features at the 
same spatial location across feature levels. Figure 5 illustrates 
the operation process of the MS module in space. The feature 
map input to this module is subjected to the convolution ker-
nel size of 3 × 3 deformation convolution to learn the offset 
and mask information of the spatial position. The feature map 
focuses on the spatial position of the intermediate layer 
that is not adjusted at this time and propagates the obtained 

information to other adjacent feature layers that need to be 
adjusted in subsequent executions. The input feature map 
adapts to the same size by performing up-sampling and down-
sampling operations on its neighboring feature maps accord-
ing to the feature level. Aggregate features across layers by 
simple summation and spatial attention can be learned to obtain 
more accurate information about offsets at spatial locations. 
Feature map F7, as the top layer, only carries out the up-sampling 
operation, while F3, as the lowest layer, only carries out the down-
sampling operation. The other remaining feature layers are 
scaled accordingly according to the layer determination. The 
spatial attention formula is expressed as follows.

Deformation convolution operation X′(l;   pn +  △ pn;   c) △ mn 
focuses on the pn +  △ pn position information of the cth chan-
nel of the lth layer feature, and the self-learning spatial offset 
is △pn used to move the position to focus on more obvious 
areas. The network learns to gain spatial weights Wl

n. We set 
learnable confidence weights for more important locations △mn.

The Dynamic ReLU [38] is applied in the MC module shown 
in Fig. 5 to execute the feature channel dimensionality aware-
ness module. The input feature map is subjected to global 
average pooling to compress features in space and scale, and 
2 fully connected layers perform channel dimension com-
pression and restoration. The full connection operation is 
used to predict the importance of each channel and to under-
stand the importance of different channels. The last normal-
ization layer restricts the output to be between [−1, 1]. The 
calculated weight values of each channel are multiplied by 
the 2-dimensional matrix of the corresponding channel in 
the input feature map to realize the weighting of its chan-
nel. The weighted feature is added to the input to obtain the 
output. Feature maps can be shared across spatial channels, 
channel-shared across spaces. Finally, the input parameters 
are used to filter the features through the function as the out-
put features.
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Fig. 5. Implementation details of each dimension of the feature map.
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[ac
1, bc

1, ac
2, bc

2] = θ(⋅) is a hyperfunction that learns to control 
the activation threshold.

Detection head for green fruit prediction
As shown in the head section of Fig. 2, the FCOS-LSC detector 
consists of task-specific subnetworks. The 3 subnetwork mod-
ules of classification, regression, and center point detection 
constitute the detector part. The classification subnetwork per-
forms the prediction of the confidence that each pixel on the 
feature map belongs to an apple or a persimmon. Moreover, 
the regression subnetwork predicts the distance to the 4 edges 
of the real bounding box of the fruit. The center point detection 
subnetwork predicts the offset from the target center and shares 
a portion of the network parameters with the regression net-
work, while the classification network module as a separate 
network does not share network parameters. Therefore, we use 
2 different full convolutional channels to perform specific pre-
diction tasks by decoupling the classification subnetwork and 
regression molecular network tasks.

The classification subnetwork processes each feature level 
output from the model Neck structure, and all feature maps 
share the parameters of the classification subnetwork. The mod-
ule has 4 convolutional layers with kernel size 3 × 3 and one 
convolutional layer that performs the prediction of fruit confi-
dence. The bounding box regression subnetwork and the center 
point detection subnetwork share a part of the fully convolu-
tional network. The full convolution of this part implements 4 
convolution layers in parallel with the classification subnetwork, 
with the size of the convolution kernel 3 × 3. Finally, two 3 × 3 
convolution branches are used to output the prediction results 
of the feature map bounding box and the predicted offset from 
the center point. The predicted offset is multiplied by the cate-
gory predicted by the classification subnetwork to output the 
final confidence score.

Positive and negative sample determination: The original 
FCOS model assigns positive and negative samples in such a way 
that the center of the real object bounding box is the center of 
the circle, and the positive sample area is delimited by a fixed 
radius. According to the step of feature level, the pixels on the 
feature map are converted to the coordinates of the correspond-
ing perceptual field region on the input image to directly deter-
mine whether the coordinates fall within the divided region. If 
it falls within the divided region, then it is considered as a positive 
sample; otherwise, it is a negative sample. When training the 
sample loss weights, the weights of negative samples are simply 
obtained from the weights of positive samples, resulting in no 
new supervisory information provided to the negative sample 
weights, which limits the detection performance. The proposed 
method provides more signal discriminative supervision to the 
detector from different perspectives by specifying the loss weights 
of positive and negative samples.

The built positive sample weighting function takes the pre-
dicted fruit category confidence and the intersection over union 
(IoU) between the predicted box and the ground truth as input. 
This paper sets positive sample weight by estimating the degree 
of agreement between the class network and the regression 
network. The negative sample weight function takes the same 
input as the positive sample weight function, but the negative 
sample weight is represented by the product of the probability 

that the anchor frame is a negative sample and its importance 
if it is a negative sample. The fuzzy prediction frame with the 
same positive sample weight can get a finer supervision signal 
because of the different negative sample weights.

First, this paper constructs a set of candidate positive sam-
ples by selecting the detection box near the center point of the 
ground-truth bounding box. During testing, all predictions for 
the fruit category are appropriately ranked by a combination 
of a confidence score and the predicted IoU as a ranking metric 
to rank detection boxes in the candidate set. The correctness 
of each prediction box is checked from the beginning of the 
ranked list. Highly ranked fruit category prediction scores and 
high IoU are sufficient requisites for positive prediction. Positive 
sample weights are positively correlated with prediction scores 
and IoU. Therefore, the positive sample weighting function is 
defined as follows.

where s is the category score of the predicted fruit, and b, b' are 
the positions of the predicted box and the ground box. The s × 
IoUβ can indicate the degree of agreement between the predic-
tions of the classification network and the regression network 
in forward prediction. The β is used as a balancing factor. The 
exponential function is used to enhance the variance of positive 
sample weights. The μ is used as a hyperparameter to control 
the relative gap between different positive sample weights. 
Positive sample weight can emphasize that consistent boxes 
have higher classification scores and higher IoU, but inconsist-
ent boxes cannot be distinguished by positive sample weight. 
According to the IoU, to determine whether the detection box 
is incorrectly predicted, the IoU smaller than the threshold is 
the only factor to determine the negative sample probability 
denoted by Pneg.

The interval is divided into [0.5,0.95] according to the eval-
uation index of the COCO data format. When the IoU is less 
than 0.5, the lower limit of the evaluation interval, the proba-
bility of a negative sample is 1. When the IoU is greater than 
the upper limit of the evaluation interval, the probability of a 
negative sample is 0. In the evaluation interval, the negative 
sample probability takes the value [0,1], which satisfies the lin-
ear functional relationship. During inference, negative sample 
predictions with higher rankings in the index list can help the 
network to optimally distinguish difficult samples, so they are 
more important than negative sample predictions with lower 
rankings. The negative sample probability multiplied by the 
importance can be expressed as a negative sample weighting 
function.

where γ is the modulation factor. The k and b are the coefficients 
of the linear equation.
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The design of the weighting function of positive and negative 
samples can distinguish between important and non-important 
samples. The method dynamically assigns a separate loss weight 
for positive samples and loss weight for negative samples to detec-
tion boxes, which is highly compatible with evaluation metrics.

Loss function
The loss function reflects the error size between the predicted 
value and the real value of the model in this paper, which is 
helpful to the iterative optimization in the process of model 
training and to evaluate the effectiveness of the model to the 
detection fruit. The model loss in the object detector consists 
of a combination of fruit classification loss and positive sample 
prediction bounding box bias loss.

The loss Ldetection of the FCOS-LSC is composed of Lcls and Lreg. 
Here, Lcls denotes the predicted fruit category loss, Lreg repre-
sents the predicted regression loss, and λ is the modulation 
factor. N and M represent the number of detected frames in the 
candidate set and the number of detected boxes outside the 
candidate set, respectively. FL stands for focal loss [39]. GIoU 
is the regression GIoU loss [40]. b, b' are the positions of the 
predicted box and the real box.

Equations regarding FL in Eq. 10 and GIoU in Eq. 11 are 
shown below.

Here, α is responsible for balancing the importance between 
positive and negative samples, and η is responsible for regulat-
ing the rate of weight reduction for simple samples. Bboxmin is 
the smallest enclosing convex object of b and b'.

Results
In this paper, abundant experiments are conducted to verify the 
effectiveness of the optimized model for fruit detection. This 
section first introduces the experimental environment and the 
implementation details of the model during the training and 
testing periods. Then, the network is trained with the apple train-
ing dataset and the persimmon training dataset. The optimal 
training model is selected for testing on 2 validation datasets and 
for analyzing the results. Finally, state-of-the-art object detection 
algorithms are selected for experimental comparison in the same 
environment, and the results are analyzed and compared to verify 

the performance differences of the models in this paper in terms 
of fruit detection.

Experimental settings
Experiments run on Ubuntu 18.04 64-bit operating system, 
24 GB GTX 3090 graphics card, and 11.3 CUDA environment. 
All models use Python 3.7 version and Pytorch 1.11 version 
and build model components with the help of MMDetection 
2.22.0 version learning library.

Image preprocessing
ResNet50 is used as the backbone network to extract fruit image 
features and then is inputted to the FPN for feature fusion. The 
fused features are features learned in 3 dimensions—scale, 
space, and channel—to obtain better information representa-
tion. The output 5 feature layers are all in 256 channel dimen-
sions. The operation of the detection head is performed at each 
level, and its parameters are shared among each level. The final 
detection head outputs the prediction results for fruit category 
confidence and bounding box regression. Image preprocessing 
operations are performed before network training. First, the 
image is resized to a uniform scale. Next, the image is flipped 
with a random inversion probability of 0.5, then regularized, 
and finally padded to be divisible by 32 in downsampling. Image 
enhancement of the dataset prevents overfitting of the model 
due to insufficient data and enhances the generalization ability 
of the model.

Training
The learning rate for model training is set to 0.00125, the weight 
decay rate is set to 0.0001, and the momentum factor is set to 
0.9. In this paper, the mini-batch method is used for training 
iterations for 12 epochs. The batch size per iteration is set to 2 
fruit images, so the maximum number of iterations is 5,736. 
To prevent the gradient explosion during model training, the 
learning rate is adjusted using the warm-up strategy. The initial 
learning rate is adjusted linearly, i.e., the learning rate of the 
model increases linearly from 0.001 to 0.00125 in the first 1,000 
iterations. The gradient is updated using the stochastic gradient 
descent optimizer (SGD) [41], and then the learning rate trans-
formation is adjusted according to the number of iterations, 
that is, at the 8th epoch and 11th epoch of the iteration, it is 
reduced respectively to 1/10 of the original. The transformation 
of the learning rate is shown in Fig. 6.

Using the above training parameters, the model profiles are 
set up in this paper to obtain the training loss variation curves on 
the apple dataset and the persimmon dataset, as shown in Fig. 7.

Testing
The same data preprocessing operations are performed before 
the images are input to the network, such as image cropping, 
random inversion, regularization, and padding. After the net-
work prediction is over, the lower predicted values are filtered 
by setting a fruit confidence threshold of 0.4. The network then 
outputs the top 1,000 detection boxes with high confidence for 
each prediction layer. The network filters overlapping detection 
boxes by non-maximum suppression. The filtered detection 
boxes are still sorted by confidence. Each fruit image retains, at 
most, the first 100 confidence prediction boxes.

The models with the above test parameters are used to val-
idate the fruit images of the apple dataset and the persimmon 

(9)Ldetection = Lcls + �Lreg

(10)
Lcls=

∑N

n=1
−w

n

pos× ln
(

s
n
)

−w
n

neg× ln
(

1− s
n
)

+

∑M

m=1
FL

(

s
m, 0

)

(11)Lreg =

∑N

n=1
w
n

pos ×GIoU
(

b, b�
)

(12)

FL=

{

−�×
(

1− s
m
)�

× logsm s
m=1

−�(1−�)
[

1−
(

1− s
m
)]�

× log
(

1− s
m
)

otherwise

(13)

GIoUloss=1−GIoU
(

b, b�
)

= 1−

[

IoU−

Bboxmin−Uion
(

b, b�
)

Bboxmin

]

https://doi.org/10.34133/plantphenomics.0069


Zhao et al. 2023 | https://doi.org/10.34133/plantphenomics.0069 9

dataset. The change curve of average precision (AP) obtained 
is shown in Fig. 8.

Evaluation metrics
To better evaluate the FCOS-LSC model, this paper uses the 
AP and average recall (AR) under the IoU threshold of 
[0.5:0.05:0.95] to evaluate the performance of the model on 
fruit detection, where precision and recall can be expressed as 
the following formulas:

where TP is the number of fruits predicted as positive samples. 
FP is the number of backgrounds predicted as fruits, i.e., the 
number of false-positive samples. In addition, FN is the number 

of fruits not predicted as positive samples, i.e., the number of 
false-negative samples. Furthermore, the AP formula under a 
specific threshold can be obtained.

The AP at a certain threshold is obtained by taking the precision 
of 101 recalls at [0, 0.01, 1] and averaging them. This paper 
selects the IoU thresholds in the range of [0.5:0.95] every 0.05, 
a total of 10 thresholds, and averages them to obtain the eval-
uation indicators AP and AR. We also counted the AP and AR 
values at specific thresholds and different scales of large, 
medium, and small as the evaluation metrics for this experi-
ment. The PR curves at 10 different thresholds on the apple 
dataset are shown in Fig. 9. Parameters (Params) are used to 
examine the number of parameters contained in the model to 
measure the simplicity of the model; floating point operations 
(FLOPs) measure the computational complexity of the model.

Model detection effect
The proposed model is trained and tested on the apple dataset 
and the persimmon dataset, respectively. Figure 7 shows the 
visualization of all losses when our method is trained on the 
training set. The horizontal coordinates in the figure represent 
the number of iterations of the model during training, and the 
vertical coordinates represent the loss values. The red curve 
represents the total prediction loss of the model throughout the 
training period, including the negative sample weight loss 
change and positive sample weight loss change in classification 
loss. Negative and positive sample loss changes are presented 
by the blue and orange curves, respectively, as well as the green 
curve of regression loss change. The model optimizer SGD con-
tinuously optimizes until the model weight parameters con-
verge during the training process. During each training epoch 
iteration, the test set is evaluated by the AR and AP.

As shown in Fig. 8, the horizontal coordinate is the number 
of training iterations and the vertical coordinate is the predic-
tion precision. In the first row, the AP values with thresholds of 
0.75 and 0.5 for each epoch and AP with 10 thresholds within 

(14)Precision =
TP

TP + FP
× 100%

(15)Recall =
TP

TP + FN
× 100%

(16)APIoU=i =
1

101

∑

r ∈ Recall

Precision(r)

Fig. 6. Learning rate change during training.

Fig. 7. Changes in loss on 2 datasets in the model training phase. The left image is the apple dataset, and the right image is the persimmon dataset.
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the interval are indicated by the green, orange, and blue curves. 
As shown in Tables 2 and 3, the method in this paper achieves 
63% and 75% AP on the apple dataset and persimmon dataset, 
respectively. The second row of Fig. 8 compares the performance 
of the baseline model and FCOS-LSC on the green apple and 
green persimmon datasets, and the images show that FCOS-
LSC is more stable during training and its performance is much 
better than that of the baseline.

In this paper, fruit images under mixed environments such 
as different lighting conditions, fruit occlusion, and distant view 
are selected for detection. The proposed method can accurately 
detect randomly taken fruit images with almost no misses and 
false detections, realizing a high detection accuracy. Acceptable 
results are achieved even when fruit images are mixed with 
background images that are not easily distinguishable, especially 
in the 2 cases of backlighting and blurred distant fruit. The 
model can also output detection results in a friendly manner 
when there are severe fruit overlaps and branch occlusions in 
the captured images, whose fruit contours are not clear. It can 
be seen that the model in this paper can perform the detection 

Fig. 8. AP values under each epoch on the 2 datasets. (Left) Apple validation set. (Right) Persimmon validation set. The top row shows the change curves of AP values of FCOS-
LSC on the 2 datasets, and the bottom row shows the change curves of AP values of FCOS-LSC compared with the baseline model on the 2 datasets.

Fig. 9. P–R curves at different thresholds on the apple dataset.
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task accurately even with the occurrence of mixed interference 
conditions of various overlapping occlusions, lighting condi-
tions, and shooting angle distances for fruit detection. Thus, the 
model based on improved FCOS is competent for the task of 
green fruit detection in orchards.

Ablation experiment
To verify the effect of the LSC attention module and the positive 
and negative sample judgment methods, this paper further ver-
ifies the effectiveness of the 2 methods through ablation exper-
iments. To understand the contribution of the 2 methods to the 
model, the new positive and negative sample selection method 
constructed is applied to the base model for a before-and-after 
comparison of apple detection effects, and the LSC module is 
added to further compare the effects. The experimental results 
are shown in Table 1.

First, on the basis of the original FCOS network, the positive 
and negative sample determination method is applied to the 
detection head, under the condition that the model parameters 
and computational complexity are the nearly same as the orig-
inal model. The LSC module is then added to this, and after 
adding only a small number of parameters, the precision is 
improved by 1.0 percentage point and the complexity of the 
model is reduced. Therefore, the positive and negative sample 
determination method can better improve the ability to distin-
guish between green fruits and complex green backgrounds 
during training. Meanwhile, the LSC module enhances the 
ability of the model to represent features. The results are shown 
in Table 1. Although a small number of model parameters is 

added, the combination of the 2 methods results in an AP 4.4 
percentage point higher than the original mode.

Comparisons
To further analyze the effectiveness of this model in the imple-
mentation of fruit detection tasks, this paper selects the most 
advanced object detection algorithms for comparison. The 
comparison models include 2-stage anchor-based algorithms 
Faster R-CNN, Mask R-CNN, and its variant MS R-CNN, as well 
as one-stage anchor-based algorithms RetinaNet, YOLOv3, and 
ATSS, where ATSS is also compared as a label assignment policy 

Table 1. Validation of the 2 methods on the apple dataset. Input 
size: (600,400).

Model AP Params/M
FLOPs/
GFLOPs

Baseline 58.4 31.84 48.62

+New sample 
selection 
method

61.8 (+3.4) 31.91 (+0.07)
49.90 

(+1.28)

+LSC 
attention 
module

62.8 (+1.0) 38.65 (+6.74)
38.72 

(−11.18)

Fig. 10. Apple dataset.
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method. Compared with the one-stage FCOS algorithm without 
anchor boxes, there is also the FoveaBox algorithm. All models 
are trained and tested on the apple dataset and persimmon dataset. 
The detection effect of each model is shown in Tables 2 and 3.

It is observed that, compared with other algorithms, FCOS-
LSC has strong competitiveness in the performance of each 
evaluation metric on both the apple and the persimmon data-
sets. Despite considering the accuracy of model detection, it 

Table 2. Comparison of algorithms on the apple dataset. The best-performing experimental data in the table are represented by bold numbers.

Method Backbone + Neck AP AP0.5 AP0.75 APs APm APl AR ARs ARm ARl

Two-stage anchor-based

Faster R-CNN ResNet50 + FPN 59.6 85.9 65.8 43.6 67.0 84.3 65.5 51.5 72.4 88.3

Mask R-CNN ResNet50 + FPN 60.1 86.3 66.5 44.9 67.4 84.9 66.4 53.2 73.0 88.2

MS R-CNN ResNet50 + FPN 60.2 86.3 67.3 45.3 67.1 84.9 66.4 53.6 72.6 87.9

One-stage anchor-based

RetinaNet ResNet50 + FPN 57.6 84.9 62.6 42.2 65.1 82.8 65.1 50.8 72.6 87.5

YOLOv3 DarkNet53 59.4 84.6 65.2 40.8 65.9 87.5 65.9 51.6 71.9 91.7

ATSS ResNet50 + FPN 62.1 87.9 64.7 46.1 67.2 88.8 69.3 56.4 75.0 92.0

One-stage anchor-free

FoveaBox ResNet50 + FPN 58.6 86.2 63.8 43.8 63.6 83.5 66.6 54.7 72.0 87.2

FCOS ResNet50 + FPN 58.4 86.8 63.4 42.6 64.3 83.7 65.6 51.7 72.9 87.9

Ours

FCOS-LSC ResNet50 + FPN + LSC 63.0 87.2 68.1 47.1 69.5 89.9 71.3 58.5 77.3 92.7

Fig. 11. Persimmon dataset.
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is also necessary to examine the capacity and computational 
complexity of the algorithm to balance the quality of the 
model design. Under the premise that the input image size is 
uniformly 600 × 400, each detection model capacity and com-
plexity are calculated as shown in Table 4. Although FCOS-
LSC is slightly inferior to ATSS in AP0.5 in the apple dataset 
and AP0.75 in the persimmon dataset as well as APs, its algo-
rithm complexity is reduced by 11.07G compared to ATSS. 
Compared with the model capacity and computational com-
plexity of other algorithms, FCOS-LSC has the lowest com-
putational complexity after introducing a small number of 
model parameters.

In this paper, Faster R-CNN, Mask R-CNN, YOLOv3, and 
ATSS algorithms are selected for the detection of fruit images 
in the apple dataset, as shown in Fig. 12. MS R-CNN, RetinaNet, 
FoveaBox, and FCOS algorithms are selected for the detection 
of fruit images in the persimmon dataset, as shown in Fig. 13. 
From the figure, it is easy to find that the fruits with clear fruit 
contours can be detected and have the highest detection accu-
racy performance. At the same time, fruits with blurred edges 
and even unlabeled fruits can be detected accurately, as shown 
in the first image of the apple dataset. This is very helpful to 
deal with the situation of fruit detection in complex orchards 
with multiple interference factors.

In summary, the FCOS-LSC model is more concise in design, 
has fewer requirements on memory and calculation, and realizes 
the prediction of higher probability values, which can meet the 
real-time orchard operation tasks and present more compre-
hensive and efficient results.

Failure detections
This section further analyzes the difficult problems of the existing 
detection tasks in orchards. To better illustrate the detection 
effectiveness of FCOS-LSC, we chose fruits with a heavy overlap 
in the orchard and fruits under a distant and backlight condition. 
The visualization of all the models mentioned in this paper on 
the apple dataset is presented as shown in Fig. 14. FCOS-LSC 

can still accurately detect the target fruit in the presence of 
missed detection by other comparison models. However, not all 
target fruits can be detected, as detailed in the marked section. 
The model misses the obscured target fruits in the close-up 
images because of the severe shape deficit, and this is also a com-
mon problem with other models. In addition, when dealing with 
backlight images, the model does not work well because of 
factors such as the small size of the fruit and the presence of 
occlusion.

Table 3. Comparison of algorithms on the persimmon dataset.

Method Backbone + Neck AP AP0.5 AP0.75 APs APm APl AR ARs ARm ARl

Two-stage anchor-based

Faster R-CNN ResNet50 + FPN 70.7 91.2 81.4 33.3 72.3 83.6 76.1 41.3 78.2 87.1

Mask R-CNN ResNet50 + FPN 72.0 91.9 82.4 35.4 73.7 85.4 77.2 45.8 78.7 88.9

MS R-CNN ResNet50 + FPN 73.1 92.1 83.7 34.9 75.1 85.9 77.9 48.5 79.3 88.8

One-stage anchor-based

RetinaNet ResNet5 0 +FPN 65.4 88.8 76.6 22.4 68.6 77.9 72.3 34.5 74.8 83.8

YOLOv3 DarkNet53 70.3 87.2 79.2 29.7 71.3 86.4 75.7 40.3 77.0 90.5

ATSS ResNet50 + FPN 73.5 92.5 84.1 38.5 73.9 87.2 80.3 55.2 81.2 91.2

One-stage anchor-free

FoveaBox ResNet50 + FPN 69.6 91.3 80.0 30.2 71.4 81.8 76.4 46.0 78.1 86.6

FCOS ResNet50 + FPN 69.9 91.9 79.3 34.7 71.4 82.3 76.7 48.4 77.9 87.6

Ours

FCOS-LSC ResNet50 + FPN + LSC 75.2 93.5 83.8 32.1 76.7 89.1 80.9 51.3 82.2 92.4

Table  4. Comparison of the number of parameters and flops 
computational complexity of models. Input size: (600,400).

Method Params/M
FLOPs/
GFLOPs

Two-stage anchor-based

Faster R-CNN 41.12 61.52

Mask R-CNN 43.75 113.0

MS R-CNN 60.01 113.0

One-stage anchor-based

RetinaNet 36.10 50.55

YOLOv3 61.52 47.88

ATSS 31.89 49.79

One-stage anchor-free

FCOS 31.84 48.62

FoveaBox 36.01 50.06

Ours

FCOS-LSC 38.65 38.72
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Original manual labeling diagram

FCOS-LSC

ATSS

Mask R-CNN

Faster R-CNN

YOLOv3
Fig. 12. Detection results of different algorithms on the apple dataset.
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Original manual labeling diagram

FCOS-LSC

MS R-CNN

RetinaNet 

FoveaBox

FCOS
Fig. 13. Detection effect of different algorithms on the persimmon dataset.
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Discussion
In previous studies, a combination of deep learning techniques 
and image processing has made significant progress in target 
fruit recognition tasks [42]. The 2-stage detection model has 
high detection accuracy relative to the 1-stage model but 
involves the design of the anchor frame, and the complexity and 

computational volume of its model increase along with it. 
Considering the needs of orchard robot operations, designing 
algorithms with high detection accuracy and low computational 
cost is the key to coping with the target fruit identification and 
localization problem. Object detection task embedding visual 
attention during model training is an effective way [43–46] to 
focus on some of the input features instead of the whole input 
for solving the target task. In addition, to improve the general-
ization ability and robustness of the model, it is crucial to design 
a more reasonable positive and negative sample selection strat-
egy [47,48].

Experimental results show that the proposed model achieves 
better accuracy with relatively fewer parameters and fewer 
FLOPs. The proposed FCOS-LSC model outperforms other 
state-of-the-art algorithms in terms of detection accuracy and 
efficiency. As shown in Tables 1 and 4, FCOS-LSC exhibits high 
AP, and the analysis reveals that the model does not have its 
model computational complexity enhanced by the addition of 
the LAC module but instead has the least FLOPs, which is due 
to the dimensional adjustment of the feature map that promotes 
the model to focus more on effective features, as described in 
detail in the “LSC attention module” section. Although FCOS-
LSC performs well in the visualization effect map, it is relatively 
poor in small target fruits, as shown in Tables 2 and 3, where the 
enhancement effect of model optimization shows APl > APm > 
APs. This phenomenon is caused by the positive and negative 
sample selection strategy. The method first selects the detection 
frame with the true bounding box near the center point to better 
discriminate the supervised signal, which may lead the method 
to be more focused on important samples compared to samples 
near the target fruit boundary, while this method is friendly to 
large targets. In conclusion, the high accuracy and robustness 
of the model provide further possibilities for its deployment with 
intelligent agricultural equipment, which can meet the needs of 
real-time operations

Conclusion
The purpose of this study is to deploy and apply the technology 
of green fruit detection to agricultural intelligent equipment to 
meet the task of fruit identification in complex orchards. The 
one-stage anchor-free FCOS model is optimized to avoid the 
reliance on anchors in the fruit detection process, thus short-
ening the detection time, which can be widely applied to other 
agricultural fields. The deformable convolution is added in the 
backbone network to better adapt to the green fruit target with 
different shapes. The convolution-based attention operation is 
applied to the fused features, which combines low-level detail 
information and high-level semantic information to improve 
the scale, space, and channel feature representation of the fea-
tures. Moreover, this operation helps the network deal with 
overlapping occluded fruits to achieve better detection results. 
To distinguish the green target fruit from the background, a 
new sample selection strategy is constructed to provide more 
discriminable supervised signals by specifying loss weights for 
positive and negative samples and applying them directly to 
the detection head.

Although the FCOS-LSC model achieves better detection 
results on green apple and persimmon datasets, there is still 
space for improvement. More types of green fruit images are 
collected to verify the effectiveness of the model, and the model 
is designed to improve the detection of small target fruits. In 

Ground truth 

Faster R-CNN 

Mask R-CNN 

MS R-CNN 

RetinaNet 

YOLOv3

ATSS

FoveaBox 

FCOS

Ours

Fig.  14.  The visualization of all the models mentioned in this paper on the apple 
dataset.
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the practical application of unstructured orchards, the accuracy 
and time efficiency of the model need to be considered, so the 
model will be further optimized to improve the overall effi-
ciency of the model by shortening the computation time while 
improving the detection accuracy.
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