
METHODS

Regularized sequence-context mutational

trees capture variation in mutation rates

across the human genome

Christopher J. AdamsID
1, Mitchell ConeryID

1, Benjamin J. AuerbachID
1, Shane T. Jensen2,

Iain Mathieson3, Benjamin F. VoightID
3,4,5*

1 Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of

Pennsylvania, Philadelphia, Pennsylvania, United States of America, 2 Department of Statistics and Data

Science, The Wharton School at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of

America, 3 Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia,

Pennsylvania, United States of America, 4 Department of Systems Pharmacology and Translational

Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United

States of America, 5 Institute for Translational Medicine and Therapeutics, Perelman School of Medicine,

University of Pennsylvania, Philadelphia, Pennsylvania, United States of America

* bvoight@upenn.edu

Abstract

Germline mutation is the mechanism by which genetic variation in a population is created.

Inferences derived from mutation rate models are fundamental to many population genetics

methods. Previous models have demonstrated that nucleotides flanking polymorphic sites–

the local sequence context–explain variation in the probability that a site is polymorphic.

However, limitations to these models exist as the size of the local sequence context window

expands. These include a lack of robustness to data sparsity at typical sample sizes, lack of

regularization to generate parsimonious models and lack of quantified uncertainty in esti-

mated rates to facilitate comparison between models. To address these limitations, we

developed Baymer, a regularized Bayesian hierarchical tree model that captures the hetero-

geneous effect of sequence contexts on polymorphism probabilities. Baymer implements

an adaptive Metropolis-within-Gibbs Markov Chain Monte Carlo sampling scheme to esti-

mate the posterior distributions of sequence-context based probabilities that a site is poly-

morphic. We show that Baymer accurately infers polymorphism probabilities and well-

calibrated posterior distributions, robustly handles data sparsity, appropriately regularizes to

return parsimonious models, and scales computationally at least up to 9-mer context win-

dows. We demonstrate application of Baymer in three ways–first, identifying differences in

polymorphism probabilities between continental populations in the 1000 Genomes Phase 3

dataset, second, in a sparse data setting to examine the use of polymorphism models as a

proxy for de novo mutation probabilities as a function of variant age, sequence context win-

dow size, and demographic history, and third, comparing model concordance between dif-

ferent great ape species. We find a shared context-dependent mutation rate architecture

underlying our models, enabling a transfer-learning inspired strategy for modeling germline

mutations. In summary, Baymer is an accurate polymorphism probability estimation
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algorithm that automatically adapts to data sparsity at different sequence context levels,

thereby making efficient use of the available data.

Author summary

Many biological questions rely on accurate estimates of where and how frequently muta-

tions arise in populations. One factor that has been shown to predict the probability that a

mutation occurs is the local DNA sequence surrounding a potential site for mutation. It

has been shown that increasing the size of local DNA sequence immediately surrounding

a site improves prediction of where, what type, and how frequently the site is mutated.

However, current methods struggle to take full advantage of this trend as well as capturing

how certain our estimates are, in practice. We have designed a model, implemented in

software (named Baymer), that is able to use large windows of sequence context to accu-

rately model mutation probabilities in a computationally efficient manner. We use Bay-

mer to identify specific DNA sequences that have the biggest impacts on mutability and

apply the model to find motifs that have potentially evolved mutability between different

human populations. We also apply it to show that germline mutations observed as poly-

morphic sites in humans—those that have occurred in our recent evolutionary history—

can model very young mutations (de novo mutations) as well as polymorphism observed

in populations of closely related great ape species.

Introduction

Germline mutations are the primary source of genetic variation between and within species.

Quantifying where, what type, and how frequently mutations arise is therefore of fundamental

importance to population genetic inference and complex trait studies. Better estimates of

mutation rates improve tools designed to quantify population divergence times [1], demo-

graphic history [2], and the effects of background selection [3]. Moreover, models for the

underlying de novo mutation rate from which burden of mutations can be statistically assessed

have enabled discovery of genes [4,5] and non-coding sequences [6,7] contributing to complex

disease [4,5,8,9].

Our working hypothesis is that there exists an underlying structure to the context-depen-

dent effects that shape the mutation rate. Here, we focus on polymorphism probabilities as a

proxy for the mutation rate that we hypothesize share the same context-dependent architec-

ture subject to genetic drift, demography, selection, biased gene conversion, or additional phe-

nomenon that operate across population history. The frequency of polymorphisms varies

widely across the genome [10] and correlates with several genomic features [11–13], with new

mutations caused by both exogenous and endogenous sources [14]. There is considerable evi-

dence to suggest that local nucleotide context directly relates to the probability that a nucleo-

tide mutates. A classic example of this is the ~14-fold higher rate of C>T transitions at

methylated CpG sites, owing to spontaneous deamination of 5-methylcytosine [15–17]. Long

tracts of low-complexity DNA show elevated variability in mutation rates, which is hypothe-

sized to be the result of slippage of DNA polymerase during replication [18]. This prior work

suggests that local sequence context is integral to understanding variation in polymorphism

rates across the genome, and that the most predictive models will be best positioned to guide

elucidation of the underlying mutational mechanisms.
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Our previous work demonstrated that a sequence context window of seven nucleotides (i.e.,

‘7-mer’) provided a superior model to explain patterns of genetic variation relative to smaller

windows that are commonly used (e.g., 3-mers) [19]. While an advance, this model was funda-

mentally limited for three reasons: scalability, regularization, and uncertainty. First, the size of

the model–which increases by a factor of four for each nucleotide included–presents intrinsic

limits both computationally and in terms of statistical power. Second, while it is straightfor-

ward to assume that every sequence context is meaningful, a more parsimonious model–

informed by biological intuition–might be that only a subset of contexts contributes meaning-

fully to the observed variation in data. This is particularly important for inference of somatic

and de novo mutation rates or in other data-sparse situations (e.g., across species). Finally,

while our previous model provided a point estimate of the mean polymorphism probability, it

did not immediately emit uncertainty resulting from multinomial variance and heterogeneity

in larger sequence contexts. As sequence context sizes are expanded, there is functionally less

data and thus more uncertainty in estimates, making point estimates even more unreliable.

Quantifying uncertainty is also required for detecting differences in probabilities across mod-

els, for example when comparing differences in rates across populations [20–22] or at func-

tional genomic features [23]. Ideally, a method should scale the inferred context length

proportional to the amount of data and the biological signal that may be present within that

data while providing uncertainty in estimated parameters and underlying probabilities.

Previous work has sought to address these challenges, though methods introduced to date do

not address all limitations simultaneously. Sparsity and scalability have been tackled through a

deep-learning framework [24] as well as an IUPAC-motif-based clustering approach [25] which

modeled polymorphism probabilities up through 9-mers. Another method explored polymor-

phism probabilities up through 7-mers using DNA shape covariates to reduce the parameter

space [26]. All three methods are robust and effective at measuring point estimates of polymor-

phism probabilities in expanded sequence contexts, however none explicitly estimates the uncer-

tainty of these parameters. Finally, the CIPI model [27] is a Bayesian method that addresses these

issues, but focuses on applications with smaller context-window motifs (5-mer) in variant settings

with fewer mutation events (e.g., somatic mutations in cancer or mutations in viral genomes) and

is not obviously scalable computationally to larger size context windows and sizes of contempo-

rary population genomics data sets in humans (e.g., hundreds of millions of polymorphic sites).

Here, we develop a method that addresses all three limitations embedded in a novel model.

We construct a Bayesian tree-based method that integrates sequence context window size,

handles sparse data, and captures uncertainty in estimates of mutation probability via the pos-

terior distribution. We subsequently apply our approach in multiple ways. First, we quantify

differences in polymorphism probabilities between continental populations and place bounds

on the effect sizes of potential undescribed context-dependent differences in the 1000

Genomes dataset [28]. Second, we explore the use of polymorphism datasets to predict de novo
mutations. We measure the effect of population history, variant age, and sequence context size

on model performance with the aim of generating a meaningful proxy to estimate the germline

mutation rate. Finally, we build models of different great ape species and assess the similarity

to human polymorphism models.

Description of the method

A tree-based sequence-context model captures variation in polymorphism

probabilities

We began by developing a model to describe the hierarchical relationship of sequence context

dependencies over increasing window sizes. We structured this as a rooted, tree-based graph,
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where each type of substitution class is represented distinctly (Fig 1A). Each level of the tree

represents an increasing window size of sequence considered, alternating between incorporat-

ing nucleotides to the window on the 30 end for even-sized contexts and on the 50 end for odd-

sized contexts. We fold over reverse complementary contexts to reduce the parameter count

Fig 1. Hierarchical relationship of sequence contexts and key algorithmic elements of Baymer. (A) Each mutation type is

represented by a separate sequence context tree, related by the shared ‘mer’ level parameters and joint multinomial likelihood

distribution. Each sequence context tree has a nested structure where information is partially pooled across each shared parent.

(B) Polymorphism probabilities are parameterized as the product of the series of edges that lead to the sequence context of

interest. (C) Sequence context trees are regularized using a spike-and-slab prior distribution.

https://doi.org/10.1371/journal.pgen.1010807.g001
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(S1 Text). To ease readability, we denote each mutation with the sequence context, the nucleo-

tide in scope underlined, and the polymorphism indicated with an arrow (e.g. TCC>T repre-

sents the polymorphism where the underlined cytosine has become a thymine). Each non-root

edge represents the log-transformed, multiplicative shift in polymorphism probability captured

by expanding sequence context. The root edge corresponds to an estimated base polymorphism

probability for a given mutation type. For a given sequence context, each node in the tree repre-

sents the probability of observing a polymorphic site in the central nucleotide (referred to here-

after as polymorphism probability), and is the product of all edges, starting from the root that

leads to the node (Fig 1B). As our previous work has shown for a specific level of sequence con-

text, the distribution of observed counts for each sequence context can be modelled via indepen-

dent multinomial distributions [19] facilitating likelihood calculation. The resulting

multinomial probability vector corresponds to the combination of individual polymorphism

probability estimates across each mutation type tree for each sequence context (S1 Text).

Within the model, we incorporate two features essential for downstream applications when

comparing the outputs of competing models. First, we employ a Bayesian formulation which

generates posterior distributions for polymorphism probabilities (S1 Text). This approach nat-

urally provides uncertainty around parameter estimates which is essential for comparison of

rates across different tabulated models. Second, we incorporate regularization in the parameter

estimation procedure for tree edges. Previous sequence context models estimated parameters

(ϕ) for all edges of the tree, meaning that all values of were effectively non-zero. However, our

previous work suggested that perhaps only a fraction of edges meaningfully contribute infor-

mation [19]. Hypothesizing that only a subset of edges is informative for estimating mutation

probabilities, we regularize our tree model by incorporating a spike-and-slab prior on the ϕ
parameters [29]. Our approach estimates the fraction of posterior samples in the slab, implying

a non-zero effect on polymorphism probabilities, and in the spike, which implies no effect.

Thus, the probability of an edge being included in the slab is the equivalent of the posterior

inclusion probability (PIP) for our model. We tune the model such that the slab is favored

when the evidence suggests a multinomial probability shift greater than 10% for a given con-

text level (Fig 1C). This value was chosen weighing the stability of model convergence with the

goal of inferring the largest possible effects.

Because the posterior distribution is not analytically tractable, we implemented an adaptive

Metropolis-within-Gibbs Markov Chain Monte Carlo (MCMC) sampling scheme [30] to sam-

ple from and thereby estimate the posterior distribution of this model. To further aid in con-

vergence and enforce intermediate nodes to have identifiable mutation probabilities, we

estimated parameters of the model level-by-level rather than all simultaneously, leveraging the

conditional dependency structure of the hierarchical tree. Under this set-up, the unseen

higher-order layers are assigned ϕa,b = 0 edges until their level has been sampled. We embed-

ded this model and sampling scheme into software (named Baymer) for further testing and

applications.

Verification and comparison

Asymmetric context expansion improves parsimony and model inference

The hierarchical tree-based Baymer graphs are constructed such that the difference in length

of flanking nucleotides on either side of the focal nucleotide is zero for odd-length contexts,

and one for even-length contexts. It follows that these trees can be constructed in three ways:

expanding sequence contexts by including even-length contexts (termed “asymmetric mod-

els”)–alternating expansions starting at either the (1) left, or 5’, end, or (2) starting with the

right, or 3’, end–or (3) expanding by exclusively using odd-length contexts (termed
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“symmetric models”; Fig 2A). When expanding an odd-length context by two nucleotides

(e.g., 1-mer to 3-mer), symmetric models require 16 edges per context as compared to 20

edges per context (16 edges + 4 intermediate edges) in the asymmetric model. Despite more

total edges in the asymmetric model tree architecture, we hypothesized the intermediate edges

would more efficiently capture signal and provide greater resolution to detect inflection points

in the tree where the local sequence context results in mutability changes. We implemented

and tested all three models on the same dataset. First, we observed that for our most challeng-

ing model (9-mers), rate estimates are very strongly correlated amongst all models (Fig 2B

and 2C). Furthermore, we observed that despite more total edges in the tree-graph, asymmet-

ric models include approximately 38% fewer overall edges with high confidence (Fig 2D), sug-

gesting greater parsimony. Finally, asymmetric models produced models that better fit

holdout data than the symmetric models (S1 Text and Fig 2E). This improvement arises spe-

cifically in situations where there is sufficient data to estimate 8-mer edges, but insufficient

data to confidently estimate 9-mer rates. Given our folding scheme, we opted for the

Fig 2. Exploration of different strategies to build out the Baymer sequence context hierarchical trees using gnomAD non-

Finnish European (NFE) polymorphisms with derived allele count greater than or equal to two in non-coding accessible

regions. (A) Sequence contexts can be built by starting to alternate adding nucleotides with the left, or 5’, end of each odd-length

context (blue path), with the right, or 3’, end of each context (red path), or by only including odd-length contexts and adding a

nucleotide to both sides of the growing context (black path) for each expansion. (B) Baymer mean posterior estimates of 9-mer

polymorphism probabilities estimated using even base pair data with the right alternation pattern and the left alternation pattern

(Spearman correlation = 0.997; p< 10−100). (C) Baymer mean posterior estimates of 9-mer polymorphism probabilities estimated

using even base pair data with the right alternation pattern and a model exclusively using odd-length sequence contexts

(Spearman correlation = 0.998; p< 10−100). (D) Absolute count of edges in each tree architecture model with a PIP> 0.95 in a

9-mer model. (E) Multinomial likelihoods for each model are calculated on odd base pair NFE test data using 7-mer and 9-mer

models. Polymorphism probability estimates were linearly scaled to match the mean polymorphism probability of the holdout

dataset.

https://doi.org/10.1371/journal.pgen.1010807.g002
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biologically pragmatic choice of an even-length context tree architectural model that initiates

alternating context expansions with the right end (3’), as this captures CpG effect(s) as early as

possible in the tree without distributing the effect across more than one edge.

Evaluation of the model demonstrates robust inference of the underlying

rates with uncertainty

A key feature of Baymer is that it estimates posterior distributions for each parameter, allowing

for uncertainty in the probabilities of polymorphism at each sequence context. To evaluate the

coverage of the estimated posterior probabilities, we used simulations to assess how often our

posterior distribution captures simulated values. Using a pre-specified polymorphism proba-

bility table, we tested how frequently polymorphism probabilities estimated by Baymer cap-

tured the true value for each sequence context (S1 Text). We found that across all sequence

context sizes, 89%, 93%, and 97% of context simulations contained the true polymorphism

probability in the 90%, 95%, and 99% credible intervals, respectively (S1 Text and S1 Table).

A second important feature is that regularization is embedded into the method, allowing

for the creation of parsimonious models that capture most of the information with the fewest

non-zero parameters. This part is critical to address cases where the amount of data is not

large and limits power, or when considering larger windows of sequence context that are rare

and/or uninformative. If robustly calibrated, we would expect probabilities inferred in a hold-

out set to strongly correlate with those estimated during a test phase (i.e., minimal overfitting).

To evaluate the robustness of the inferred rates, we partitioned the human genome reference

into two sets–even and odd base pairs–and used SNPs of allele count 2 or greater observed in

the gnomAD [31] non-Finnish European (NFE) collection to independently train models

(S1 Text). We compared the concordance of probabilities for models with sequence context

windows up to 4 flanking nucleotides on either side (i.e., a 9-mer model) using the maximum

likelihood estimate approach [19] and Baymer (S1 Fig). For each comparison, in addition to

the Spearman correlation, we also calculated the root mean squared perpendicular error

(RMSPE) from each point to the x-y axis, as a measure of the tightness of the distribution from

the true, shared value (S1 Text). The maximum likelihood estimates of polymorphism proba-

bilities (Fig 3A, Spearman correlation ρ = 0.915; RMSPE = 0.117) were less correlated and con-

siderably less tightly distributed than those for Baymer-derived models (Fig 3B, ρ = 0.990;

RMSPE = 0.035). This result occurred even after omitting ~16,000 sequence contexts with

zero mutations in either dataset (odd and even base pairs) from the maximum likelihood

model comparison, rendering practical use of large swaths of the model useless due to substan-

tial overfitting at the 9-mer level. If zero-mutation contexts omitted from the maximum likeli-

hood model were included, the correlations would perform considerably worse (S1 Text and

S1D Fig, ρ = 0.876; RMSPE = 0.744), as these polymorphism probabilities are exclusively

determined by pseudo counts. Within the NFE dataset, Baymer inferences were also robust

across allele frequency bins (S2 Fig).

We next sought to evaluate the transferability of inferred models between experimental col-

lections; while internally consistent, the above procedure could simply reflect data set specific

biases [32]. For this, we compared non-admixed, non-Finnish European (EUR) samples

obtained from the 1000 Genomes (1KG) Project (re-sequenced by the New York Genome

Center) [33] with the gnomAD NFE sample described above. As before, we split the data into

even and odd base pairs but also applied a variant down-sampling procedure to match total

variant count and site-frequency spectrum between both sets (S1 Text). By comparing variants

found in the even base pair genome of gnomAD with the odd base pair genome of 1KG, this

strategy ensures no variation overlapped between data sets. We observed that the probabilities
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estimated from both sample sets were strongly correlated (ρ = 0.984; RMSPE = 0.045; Fig 3C)

though were slightly weaker than the correlations from each internal comparison and fit less

tightly (gnomAD ρ = 0.990; RMSPE = 0.035; Fig 3B; 1KG ρ = 0.986; RMSPE = 0.042; S3 Fig).

This result demonstrates that while some additional between-sample variation may exist, Bay-

mer infers probabilities of polymorphism that are broadly consistent with one another, sup-

porting the notion of model transferability across different data sets.

We next aimed to quantify how well the model selects meaningful context features. We

expected more proximal bases to the focal site to have a greater impact on polymorphism

probabilities for two reasons, (i) due to data richness, and (ii) that proximity to the polymor-

phic site would suggest more direct impacts on mutability, e.g., the CpG context. Consistent

with expectation, the fraction of edges with a PIP > 0.95 monotonically decreases as the

sequence context size is increased (Fig 3D). For any given 9-mer context, we find a median of

3 edges included with high confidence in the model (S4A Fig). The median window of con-

text-dependence for each 9-mer was 5 base pairs wide, although this inference is limited by the

sparsity of the model (S4B Fig).

Fig 3. Baymer model validation, transferability, and regularization in gnomAD non-Finnish European (NFE) polymorphisms with

derived allele count greater than or equal to two in non-coding accessible regions. (A) Empirical 9-mer polymorphism probabilities

for context mutations with at least one occurrence in both datasets (15,910 omitted context mutations) are plotted against one another

(Spearman correlation = 0.915; p< 10−100; RMSPE = 0.12). (B) Baymer mean posterior estimates for 9-mer polymorphism estimates in

even and odd base pair datasets (Spearman correlation = 0.990; p< 10−100; RMSPE = 0.035). (C) Baymer mean posterior estimates for

9-mer polymorphism estimates in odd base pair non-Finnish European gnomAD data and even base pair NYGC 1KG phase three data,

down-sampled to match total number of polymorphisms and site frequency spectrum (Spearman correlation = 0.984; p< 10−100;

RMSPE = 0.045). (D) Fraction of edges in the NFE model with a PIP> 0.95 in each sequence context window layer. Absolute count of

edges above bars. (E) For high-data contexts with at least 100,000 total instances in the non-coding genome and 50 total mutations,

fraction of edges at each sequence context window size across PIP bins. (F) Proportion of high-data contexts within each mutation type

at each sequence context window size with PIP>0.95.

https://doi.org/10.1371/journal.pgen.1010807.g003
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Larger contexts best explain patterns of variation genome-wide

We note that over 61% of all edges with a PIP > 0.95 are found in the 8-mer and 9-mer levels

of our model of polymorphism observed in the gnomAD NFE data. While fewer than 2% of

9-mer edges meaningfully impact the final estimates, they still account for the most total abso-

lute edges (7189 total edges > 0.95 PIP) and are enriched for larger effect sizes (S4C Fig). This

observation holds even after filters for data sparsity (S1 Text and Fig 3E). This implies a con-

siderable impact on polymorphism probabilities in extended sequence contexts, consistent

with previous work [19,23–25]. This general trend is similarly consistent across mutation

types (Fig 3F), although with a variable degree of impact, most notably with less additional var-

iability estimated in wider CpG>T edges (S4D Fig). We thus evaluated the overall improve-

ment in likelihood by expanding window sizes up to 9-mers. Compared to lower context

models (e.g., 3-mer, 5-mer, or 7-mer) on holdout data, 9-mer Baymer models substantially

improved the likelihood and best fit to the data (S1 Text and S2 Table).

Applications

Sequence context motifs are correlated with changes in polymorphism

probability

We next aimed to identify inflection points in the Baymer trees by examining the edges corre-

sponding to the largest ϕs across each layer. Unsurprisingly, the CpG>T edge had the largest

mean posterior ϕ magnitude (S3 Table). Consistent with our previous results [19], edges with

the largest absolute mean posterior ϕ are largely localized at the intersection of poly-A repeat-

rich sequences (lower rates of A>T substitutions) but particularly presented in 8-mer context

by poly-A tract of length 4, where the mutation type extends one of the repeated patterns (e.g.,

CGCGAGAGA>C or CCCAAAA>C), and the CAATN motif which increases A>G mutabil-

ity (2.35–2.99x increase, S3 Table).

Next, we attempted to discover specific motifs that are enriched in the highest or lowest 1%

of 9-mer polymorphism probabilities within each mutation type (S1 Text and S4 Table). We

recapitulate almost all previously reported motifs [19,23,25]. Consistent with previous reports,

we identify a preponderance of repeat-rich motifs, which is perhaps due to the impact of slip-

page in introducing mutations [18]. We discover numerous motifs with flanks extending 4

base pairs from the focal nucleotide that showed enrichment (21 motifs with p< 0.0001;

S4 Table), emphasizing the utility of expanded sequence context windows for modeling

mutability.

Frequency of polymorphism across populations do not differ substantially

across levels of sequence context

Prior work has centered around evaluating whether mutation rates have changed over evolu-

tionary time by evaluating differences in the proportions of sequence-context-dependent poly-

morphism between human populations [21,22,34–36]. To determine whether polymorphism

probabilities differ across human populations, we analyzed individuals from the NYGC rese-

quencing of 1000 Genomes Project (1KG) Phase III representing continental European, Afri-

can, East Asian, and South Asian groups. We extracted variants private to these continental

groups, down-sampling to match site-frequency spectra bins and overall sample sizes

(S1 Text). We then applied Baymer to each individual dataset to model probabilities up to a

9-mer window of sequence context. We compared estimates of polymorphism probabilities in

each population by assessing the degree to which the posterior distribution of each popula-

tion’s model parameters overlapped. The fraction overlap of each distribution is a proxy for
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the probability that the underlying parameters are the same. Due to the implicit tree structure

of sequence context models, polymorphism probability shifts in edges will affect all edges

downstream of the context in question. Therefore, we identified contexts where both the esti-

mated polymorphism probability and the immediate edge leading to that context were both

considered very likely to be different between populations.

Specifically, we identified contexts whose posterior estimates of polymorphism probabilities

and edges both overlapped less than 1% in pairwise comparisons between the four populations

(S5 Table). This included all the most notable previously reported 3-mer shifts across conti-

nental groups, including the increase in TCC>T mutations found in European relative to

non-European ancestry populations [20–22,34,35].

We next focused on the remainder of 3-mer and wider extended sequence contexts

(Table 1). While a handful of such sequence contexts have been implicated [34], these results

Table 1. Baymer modeled 1KG private continental context mutations with extreme polymorphism probability differences.

Population

Comparison

Context Mutation ln(Poly. Prob.

Fraction)

Poly. Prob. Fraction

Overlap

Shift Difference Shift Fraction

Overlap

Population

Specificity

European vs. African TCC>Tabc 0.291 0 -0.174 1.4E-157 European

TCT>Tabc 0.136 1.6E-18 -0.116 8.5E-16 European

GCAATTA>G 0.569 4.7E-03 -0.668 2.4E-03 -

TATATATC>G -0.660 7.2E-03 0.730 5.6E-03 African

European vs. South

Asian

TCC>Tabc 0.112 1.2E-09 -0.059 2.7E-03 European

TCT>Tabc 0.063 5.0E-03 -0.066 2.9E-03 European

CTATA>T -0.587 2.9E-03 0.493 7.3E-03 South Asian

ATCTTC>G -0.606 7.6E-03 0.668 5.4E-03 -

European vs. East Asian CCC>Tabc 0.081 1.4E-03 0.075 6.6E-04 -

TCC>Tabc 0.312 0 -0.156 2.4E-97 European

GCT>T -0.064 5.7E-03 0.095 6.1E-05 -

TCT>Tabc 0.133 3.0E-19 -0.102 9.6E-06 European

GCAACCA>G 1.056 5.3E-03 -1.104 5.0E-03 -

ATACCTC>A -1.029 4.2E-03 0.830 5.0E-03 East Asian

African vs. South Asian TCC>Tabc -0.179 1.7E-118 0.115 3.4E-12 -

CTATA>T -0.507 6.1E-03 0.482 7.4E-03 South Asian

CCCCCAG>G -0.818 2.6E-03 0.767 2.7E-03 -

TATATATC>G 0.668 3.3E-03 -0.738 2.2E-03 African

African vs. East Asian GCT>T -0.063 9.1E-03 0.074 2.2E-03 -

CTCGCG>T 1.240 2.8E-03 -1.243 3.6E-03 -

TAAAATA>T -1.160 3.9E-03 1.135 4.8E-03 -

ATACCTC>A -1.061 4.6E-03 0.829 5.7E-03 East Asian

TATATATC>G 0.712 3.9E-04 -0.748 1.3E-04 African

East Asian vs. South

Asian

TCC>Tabc -0.200 2.4E-155 0.097 5.4E-05 -

CTATA>T -0.519 5.3E-03 0.479 7.8E-03 South Asian

CTCGCG>T -1.244 2.0E-03 1.247 2.7E-03 -

ATACCTC>A 0.906 8.5E-03 -0.819 9.1E-03 East Asia

CCCCCAG>G -0.819 3.8E-03 0.764 4.4E-03 -

a previously reported in Mathieson and Reich [20]
b previously reported in Harris and Pritchard [22]
c previously reported in Aikens et al [34]

https://doi.org/10.1371/journal.pgen.1010807.t001
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are confounded by batch effects in the original 1KG sequencing data [37]. Since the data we

use for our analysis is derived from the New York Genome Center resequencing project [33],

we do not expect the same confounder. In our results, we observed the presence of nucleotide

repeats, e.g., TA / CG dinucleotides; poly-C / poly-A in several of the divergent contexts,

which could be explained by polymerase slippage [18].

While the population-specific polymorphism probabilities estimated and polymorphism

counts are identical between each pairwise comparison and thus correlated, we still note that

15/28 pairwise differences are specific to a single continental group. Of these, only the two

canonical European context mutation differences (TCC>T and TCT>T) are in 3-mer con-

texts, otherwise all are found in 5-mer and greater window sizes. In South Asian samples, we

find that the mean CTATA>T polymorphism probabilities are approximately 1.6 times higher

than the remaining populations and in Africans TATATATC>G is approximately 1.9 times

higher. The largest population-specific effect was discovered in East Asians where

ATACCTC>A polymorphism probabilities are roughly 2.7 times higher than in European,

African, or South Asian models. None of these effects have been explicitly documented before.

Taken collectively, we observed relatively few instances of edges that were quantifiably dif-

ferent across continental groups, and those that were observed were largely confined to rela-

tively small windows of context where we might have anticipated well-powered tests (e.g., 3-

and 5-mers). To quantify the power of our specific analytic procedure for discovery and the

sample size necessary to identify true differences in polymorphism probabilities, we performed

simulations where true effect differences were ‘spiked-in’ between two populations over a

range of weak to stronger effects and across a sampling of different sequence contexts

(S1 Text). Differences in mutability between populations for this experiment are defined as

the natural log of the polymorphism probabilities ratio (NLPPR) between each simulated pop-

ulation. This allowed us to construct credible sets of effects that we were reasonably well pow-

ered (>80%) to discover (Table 2). Unsurprisingly, the power scaled proportional to the

number of context instances, simulated mutations in the dataset, and the size of the spiked-in

differences (S5 Fig). Notably, extremely subtle shifts (NLPPR < = 0.01; 0.99–1.01-fold change)

were not detectable at any sequence context size. On the opposite side of the spectrum, we

found that we were reasonably powered to identify shift differences where NLPPR > 1.0 (fold

decrease� 0.37 or fold increase� 2.72) up through 5-mers and in 6-mers with large sample

sizes. For reference, the TCC>T polymorphism has an NLPPR = 0.291 (~1.34 fold increase)–

the largest difference of any 3-mer by our calculation.

In contrast, our experiment had essentially no power to discover 9-mer polymorphism

probability changes and extremely limited power for 8-mers, even for large differences. Thus,

there may exist large differences at these sizes that we could not reliably capture. These results

are consistent with our comparisons in the real data (Table 1), as only differences within the

detectable range at each mer-level were implicated. These power calculations suggest that,

given the experiment we performed grouping all mutations together (agnostic to allele fre-

quency or age, see Discussion), if any 3-mer differences greater than the TCC>T shift exist,

we would have discovered these effects for a broad range of modest to very strong effects across

a range of sequence contexts window sizes. This effectively sets bounds on the differences pos-

sible for this analysis scheme in this data.

A sequence context model that captures variability in de novo mutational

rates

Given its formulation in handling data sparsity, we next sought to apply Baymer to develop a

model that best captures rates of de novo mutations across the genome. We took advantage of
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a recent collection of 2,976 WGS Icelandic trios that identified 200,435 de novo events[38] and,

analogous to the above, we partitioned de novo variants into even (for training) and odd (for

testing) base pairs. We observed substantial improvement in the overall likelihood in the test-

ing set for 5-mer size windows compared to 3-mers (3-mer vs 5-mer, ΔLL = 2,144), but only

minimal improvement for increasing windows sizes further (5-mer vs 9-mer, ΔLL = 265,

S6 Table). Indeed, Baymer did not select any sequence context feature beyond the 5-mer level

with PIP > 0.95. This is not unexpected given our approach to regularization, as the number

of events in larger sequence contexts is increasingly sparse, it is desirable to only include infor-

mative contexts to avoid overfitting.

We next used Baymer to improve upon this baseline model. Previous work has demonstrated

that inference of de novo mutational probabilities can be captured via rare variant polymorphism

data obtained from population sets as a proxy [23]. We hypothesized that a partitioned set of

polymorphism data based on: (i) larger sample sizes that (ii) closely matched the ancestry of the

de novo set and (iii) focused on rare variants as a proxy to capture the most recent mutation

events would generate the most transferrable model and robust rate estimates. To build variant

partitions, we used variant call set data from gnomAD, focused on either a population-matched

proxy (i.e., NFE, the non-Finnish European subset) or variant calls from all samples in gnomAD

regardless of ancestry (i.e., ALL). For each of these, we created three partitions focused (i) exclu-

sively on variants with one allele count (i.e., singletons; for NFE labeled NFE-1), (ii) exclusively

on variants with two allele counts (i.e., doubletons; for NFE labeled NFE-2), and (iii) variants

with allele count of two or greater (for NFE labeled NFE-2+). Beyond this, we also identified a set

of putatively derived substitutions in the human lineage by comparing the GRCh38 human refer-

ence genome with ancestral sequences obtained from primates[39].

We applied Baymer to each variant set independently, comparing the likelihoods of each

model to explain rates of de novo mutation in the test set after downscaling probabilities

Table 2. Power estimates for 1KG continental private polymorphism probabilities.

abs(ln(adj. poly. prob / null poly. prob.)) # Contexts Sample Size Percentile Fraction of Contexts with >80% Power at Each ‘mer’ level

3-mers 4-mers 5-mers 6-mers 7-mers 8-mers 9-mers

0.01 0–25% 0 0 0 0 0 0 0

26–50% 0 0 0 0 0 0 0

51–75% 0 0 0 0 0 0 0

76–100% 0 0 0 0 0 0 0

0.1 0–25% 0.44 0.11 0 0 0 0 0

26–50% 0.63 0.04 0 0 0 0 0

51–75% 0.73 0.03 0 0 0 0 0

76–100% 0.58 0.10 0 0 0 0 0

0.5 0–25% 1.00 0.92 0.30 0.21 0.01 0 0

26–50% 1.00 1.00 0.68 0.15 0.01 0 0

51–75% 1.00 1.00 0.76 0.27 0.02 0 0

76–100% 1.00 1.00 0.87 0.20 0.03 0 0

1 0–25% 1.00 0.99 0.81 0.34 0.20 0.02 0

26–50% 1.00 1.00 1.00 0.73 0.23 0.06 0

51–75% 1.00 1.00 1.00 0.87 0.24 0.04 0

76–100% 1.00 1.00 1.00 0.87 0.37 0.08 0

1.5 0–25% 1.00 1.00 0.96 0.61 0.25 0.08 0

26–50% 1.00 1.00 1.00 0.91 0.39 0.18 0.02

51–75% 1.00 1.00 1.00 0.99 0.59 0.20 0

76–100% 1.00 1.00 1.00 0.99 0.69 0.26 0

https://doi.org/10.1371/journal.pgen.1010807.t002
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proportional to the sample size. First, we observed that for 3-mer sequence context models, the

set of variants obtained from the de novo training set outperformed all other models despite

102 to 1,377 times fewer variants contributing to them than the polymorphism datasets

(Fig 4A and S6 Table). In contrast, for larger windows of context (i.e., 7-mer and 9-mer), sev-

eral of the polymorphism partitions explained the data better than one trained directly from de
novo events. This result indicates that increased sample size is required to detect meaningful

shifts in polymorphism probabilities in larger sequence context windows.

Despite evidence to suggest singleton datasets should best recapitulate de novo variation

[4,23,31], we observed that models that trained exclusively on singletons and ALL-2 performed

considerably worse than the rest across all windows of sequence context (Fig 4A and

S6 Table). While our prior intuition that larger numbers of variants would have provided bet-

ter rate estimates from increased power deeper in the context tree, rate models exclusively esti-

mated with singletons suffer the most from the impact of recurrent mutations [20,40],

especially at CpG sites, which include the highest polymorphism probability mutation type

(CpG>T) (S6 Table).

Alternatively, population concordance between training and test and/or the quality of vari-

ant calls used in training the model could also impact performance. As such, we next sought to

explore the effect of noise in low allele count variants. Although we only used variants that

passed gnomAD quality control checks, this filter still included a large proportion of variants

with a negative log-odds ratio of being a true variant (AS_VQSLOD < 0; S6 Fig). This pattern

was also evident for other variant allele counts but were most striking in singletons and the

ALL-2 variant groups. Stricter quality filters (AS_VQSLOD > 5–10) considerably improved

model performance, but still did not surpass the de novo training model at the 3-mer level

(S6 Table). Our NFE singleton Baymer model trained on the strictest quality filter tested

Fig 4. Modeling de novo mutation probabilities using polymorphism datasets. Even base pair Halldorsson et al. de
novo training data modeled by Baymer is compared to Baymer-modelled polymorphism datasets partitioned by allele

count. (A) Multinomial likelihoods for each model are calculated on odd de novo base pair test data at various

sequence context sizes. Polymorphism probability estimates were linearly scaled to match the mean polymorphism

probability of the holdout dataset. (B) Polymorphism datasets were down-sampled to match the size of the even base

pair de novo data (70,364 variants) and multinomial likelihoods were calculated on odd de novo base pair data. Each

dataset was down-sampled using 5 different random seeds. The Log Likelihood of the 9-mer de novo training model is

indicated with the blue dotted line.

https://doi.org/10.1371/journal.pgen.1010807.g004
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(AS_VQSLOD > 10) nearly equaled our best performing model, NFE-2+, with ~ 1/30th the

number of variants, but came up just short. In summary, we observed that training from a

population matched sample which excluded singletons, NFE-2+, best predicted rates of de
novo mutations in 5-mer or larger contexts, better than models trained on de novo events

directly.

Next, we sought to determine which sample set best modelled the de novo test set adjusting

for the total number of variants within the partition. To control sample size differences, we

downsampled each partition to match the number of variants observed in the de novo training

set (n = 70,364) five times. After down-sampling and when considering 9-mer context models,

we observed that the partitions which included NFE exclusively (noted in green, Fig 4B) per-

formed on average better than using the entirety of gnomAD, “ALL” (noted in orange in

Fig 4B), which included a more diverse panel of individuals within Europe (e.g., Finnish) but

also beyond Europe (e.g., East and South Asian, African and African American). This is con-

sistent with prior belief that, after controlling for the total sample size, variants that derive

from samples where ancestries more closely match are the most informative.

A grafted tree approach provides superior estimates of de novo mutational

probabilities

Given the observations that de novo models only outperform polymorphism-based models

when either small sequence contexts are used (Fig 4A) or the sample size is controlled

(Fig 4B), we next sought to explore a transfer learning-inspired [41] strategy to improve upon

our model performance. Transfer learning has previously been employed in a sequence con-

text modelling setting [24]. We hypothesized that regularization means that de novo models

have reduced performance with expanded sequence contexts due to low sample sizes. Indeed,

our de novo model did not have the power necessary to confidently (PIP> 0.95) include any non-

zero shifts in sequence contexts larger than 5-mers in the model (Fig 5A). The larger polymor-

phism datasets, however, were well-powered to detect shifts in every level of the tree (Fig 5A).

The nested tree structure of our polymorphism probability models provides a natural strat-

egy where specific branches of the estimated trees can be interchanged, i.e., a “grafted” tree.

We asked how similar estimates for edges in expanded sequence contexts are between our de
novo model and the best-performing polymorphism model, NFE-2+. In edges in 2-mer and

greater levels where the de novo training model is powered enough to detect shifts

(PIP > 0.95), the mean posterior estimates of shifts are highly correlated (Fig 5B). This sug-

gests a grafted tree approach is feasible, leveraging the polymorphism datasets for those edges

the de novo model is incapable of estimating properly due to sparsity (Fig 5C). Therefore, we

built a grafted tree model using 1- to 3-mer edges estimated in the de novo training data

model, and 4- to 9-mer edges estimated using the NFE-2+ data model. The resulting combined

model had a greater fit to the holdout de novo data than either the NFE-2+ model or de novo
model alone (Fig 5D and S1 Text).

Sequence context-dependent mutability is shared between closely related

great ape species

Finally, we examined how well human polymorphism models could capture variability in poly-

morphism levels observed in populations of great ape. Using polymorphism data from the

Great Ape Genome Project [42], we built Baymer models of Pan troglodytes and Gorilla gorilla
(S1 Text). We note broad agreement in estimated polymorphism probabilities between

humans and chimpanzees (S7A Fig, Spearman correlation ρ = 0.950; RMSPE = 0.089) or goril-

las (S7B Fig, Spearman correlation ρ = 0.942; RMSPE = 0.103). These results indicate that the
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rates of polymorphism at higher orders of sequences contexts are similar across closely related

great ape species. As we were especially interested in how human polymorphism models com-

pared with chimpanzee and gorilla models in predicting holdout data in each respective spe-

cies, we then tested models on odd base pair data in each species, training models using even

base pair data for the species in focus (S1 Text). For both chimpanzee (S7C Fig) and gorilla

(S7D Fig) tests, species-matched 9-mer models outperformed all other models. While human-

derived models are outperformed at the 9-mer level, it is notable that human 9-mer models are

more likely than chimpanzee 7-mer models against chimpanzee data and gorilla 5-mer models

against gorilla data (S7 Table). Taken collectively, these results suggest the rates of polymor-

phism at higher orders of sequences contexts are similar across closely related great ape spe-

cies, with within-species models best capturing variability in observed polymorphism levels.

Fig 5. Tree grafting strategy to share information between Baymer models. (A) For each de novo proxy model, we

calculated the fraction of context polymorphism probability edges with a PIP> 0.95 in 2-mer through 9 mer-levels as a

proxy for the degree of regularization in each model. (B) Edges in the de novo training model that are included with

high-confidence (PIP>0.95) are very similar in magnitude and direction to their equivalents in the best-performing

proxy model, NFE-2+, in 2-mer through 9-mer levels, implying a shared polymorphism probability shift structure. (C)

Proposed tree-grafting schema for modeling de novo mutations that leverages mer-levels where de novo data is

plentiful (1-mer through 3-mers) and uses polymorphism data to model the remainder of each model in larger mer-

levels (4-mer through 9-mers) where the de novo model is underpowered. (D) The grafted tree method outperforms

the previously best-performing model, NFE-2+.

https://doi.org/10.1371/journal.pgen.1010807.g005
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Discussion

Here, we present Baymer, a Bayesian method to model mutation rate variation that computa-

tionally scales to large windows of nucleotide sequence context (S2 Text and S8 Table),

robustly manages sparse data through an efficient regularization strategy, and emits posterior

probabilities that capture uncertainty in estimated probabilities. Consistent with previous

studies [24–26], we show that expanded sequence context models in most current human data-

sets are overfit with classic empirical methods but considerably improve model performance

when properly regularized. As a result, this method allows for renewed evaluation of experi-

ments that originally were statistically limited to polymorphism probability models with small

sequence context windows.

We examined differences in polymorphism probabilities between the continental popula-

tions in the 1KG project. While differences in 3-mer polymorphism probabilities have been

well-documented [20–22] and expansions up to 7-mers have been tested [34], both methods

rely on empirical models with frequentist measures of uncertainty. Here, we expanded the

search space out to 9-mer windows and leverage the uncertainty estimated in the model to

directly quantify differences in these populations. We note that many of the differences discov-

ered contain poly-nucleotide repeats. There is some prior literature on the mechanism of slip-

page in polymerases during replication of such sequences [18], so differential efficiencies of

these enzymes across populations could conceivably result in these patterns. However, it is

also very possible that artifacts from sequencing errors with differential effects across popula-

tions could explain the differences.

Despite being well-powered to identify a large range of differences in 3-mer and smaller

contexts, we identified very few contexts that differ with high probability between the popula-

tions tested. This implies that if large-scale population differences in the mutation spectrum

do exist at these window context sizes, they may be comprised of numerous subtle shifts rather

than a few large changes, in agreement with conclusions from prior work [22].

We also explicitly placed bounds on the magnitude of differences that could possibly exist

in these data without being detected, quantifying what differences we can expect to be discov-

ered given the way variants are grouped in this experiment. Even though the 1KG project is

relatively small compared to current datasets, the number of sequence contexts available for

modeling is dataset-independent and inherently limited by the sequence diversity of the

human genome. Thus, while more polymorphism data could lead to the discovery of addi-

tional smaller shifts in the future, bigger datasets will not improve the power to detect larger

shifts in this allele frequency agnostic setting. In fact, for very large samples, polymorphisms in

some contexts can become saturated [43], reducing the information content in a similar man-

ner as overly sparse data. Thus, both to increase power and to improve modeling resolution, it

will become necessary to partition the data (e.g., by allele frequency or variant age [36], or

other genomic features).

It remains a challenge to disentangle the contribution of demography [20,35,44] versus

changes in the underlying mutation rate on the mutation spectrum. Here, we control for the

site frequency spectrum of variants included, but the next stage of this model will need to

incorporate more sophisticated demographic features. Integrating Baymer-derived trees with

a joint mutation spectrum and demographic history method, such as mushi [35], is a promis-

ing future direction. While this work focuses on modeling mutability in regions minimally

affected by background selection, constraint could also bias estimates. Given prior work [19]

we do not expect the underlying sequence-context-mediated mutability to behave any differ-

ently in constrained regions, suggesting future Baymer-estimated codon-aware models to

explicitly model expected variation in coding regions.
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We also aimed to address the degree to which polymorphism datasets could be used to

approximate the de novo mutation rate. Currently, true de novo mutation datasets are limited

in size, which place bounds on the scope of inference for adequate sequence context modeling.

We demonstrate that polymorphism datasets are accurate proxies for de novo mutation models

and largely share the same context-dependent mutability shifts, though in contrast to reports

in the literature [4,23,31], the focus exclusively on singleton variants (at least, using gnomAD

calls) performed poorly relative to all other considered models. Indeed, our experiment indi-

cates that it is preferable to use germline mutation models based on large polymorphism data-

sets that can estimate shifts through the 9-mer level than it is to use the largest 3-mer de novo

dataset, as is commonly used in the literature [4,5,31]. Including exclusively variants from

either polymorphism data or de novo data was also suboptimal, however, as the best possible

model we built for estimating de novo mutation rates used de novo mutations in concert with

polymorphism datasets. The success of this experiment implies a general context-dependent

mutability architecture that underlies the human mutation spectrum. The similarity of the

derived dataset, which in theory represents the oldest subset of variants tested, to the de novo
variation further strengthens this argument. We note this dataset could in theory be biased

towards European samples given the history of the Human Genome Project [45], and as such,

refinements will need to be made as more diverse representations of the human genome are

created. Overall, this work suggests that although there have been some well-documented

small changes in context-dependent mutation rates, the general architecture remains largely

conserved during modern human history.

Our experiments modeling great ape variation suggests this general architecture might be

more pervasive across the tree of life. While some specific mutation spectra differences have

been documented [22,46], we note broad agreement amongst closely related species as well as

similar signals in extended sequence contexts. For those non-human species with WGS data-

sets, cohort-sizes are usually very small (< 100), however, Baymer is well-suited to handle

these sparse data situations. Furthermore, for those species with very little data, this work

opens the exciting possibility to leverage closely related species’ models as priors for estimating

variation in less well-characterized relatives. Further work is necessary to model species across

the tree of life to determine the extent that sequence context-dependent mutability is shared

and how transferable 9-mer models can be.

One limitation of the model is the treatment of multi-allelic sites. Currently, multi-allelic

sites are treated as separate polymorphisms which violates assumptions of the multinomial

model, where only one outcome is possible for each locus. When we excluded multi-allelic

sites, we observed biases in the rates of CpG>A and CpG>G mutations, which are dispropor-

tionately filtered as a side-effect of sharing the same sequence contexts with CpG>T muta-

tions. A more nuanced approach that models multiallelic and biallelic sites separately and then

integrates jointly would deal with this issue, though multiple mutations at the same nucleotide

position with the same allele change would require additional effort [40].

Finally, although we can identify regions of the tree where polymorphism probabilities

diverge and thus infer critical points in the tree, this model is tailored towards polymorphism

probability estimation rather than explicitly for motif discovery [27]. Our objective is to esti-

mate polymorphism probabilities rather than finding those contexts with the largest effect

sizes. Although including even-length contexts yields better-performing models, the current

tree architecture only explicitly captures the effects of half of such contexts. While adding one

nucleotide at a time pseudo-symmetrically for tree generation reduces the computational sam-

pling load, it makes for more difficult interpretation of the resulting mono-nucleotide impacts.

Baymer’s formulation also does not model the mutability of target contexts independent of

mutation type, which currently requires post-hoc analysis to identify motifs that have non-
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specific mutability signatures. Future work will therefore need to integrate all possible paths

through the sequence context tree and share information across contexts between mutation

type trees.

In all our experiments, we focused on the entirety of the non-coding genome that is accessi-

ble to sequencing. That said, Baymer can easily be applied to any genomic features of interest

for both polymorphism probability estimates and comparisons of feature-dependent sequence

context mutability changes. Our approach does not currently incorporate genomic features in

the model, but given genomic area bounds, polymorphism probabilities can be tailored to a

biological question of interest. Addressing questions regarding the impact of genomic features

on observed polymorphisms will be enhanced with well-regularized models, as smaller geno-

mic areas or specific variant conditions can induce considerable data sparsity by reducing the

number of contexts and/or polymorphisms available. Therefore, Baymer paves the way for

exciting possibilities to study the effects of genomic features, variant age, and smaller subpopu-

lations on sequence context-dependent mutation rate variation.

Supporting information

S1 Fig. Empirical even odd polymorphism probability scatter plots for the NFE dataset

including contexts with zero mutation variants. Baymer mean posterior estimates for (A)

3-mer models (Spearman correlation = 0.999; p< 10−100; RMSPE = 0.0009), (B) 5-mer models

(Spearman correlation = 0.999; p< 10−100; RMSPE = 0.0063), (C) 7-mer models (Spearman

correlation = 0.992; p< 10−100; RMSPE = 0.0459), and (D) 9-mer models (Spearman correla-

tion = 0.876; p < 10−100; RMSPE = 0.7441) in even and odd base pair datasets. Polymorphism

probabilities in the bottom two and top left quadrants correspond to those contexts where no

mutations are present for the given mutation type in the respective datasets. These polymor-

phism probabilities are exclusively calculated using pseudocounts.

(EPS)

S2 Fig. Comparison of Baymer mean posterior estimates for differing allele frequency

(AF) bins in the NFE dataset. (A-D) AF 0.02–0.05 compared against 0.05–0.15 AF, 0.15–0.30

AF, 0.30–0.50 AF, and 0.50–0.85 AF, respectively. (E-G) AF 0.05–0.15 AF compared against

0.15–0.30 AF, 0.30–0.50 AF, and 0.50–0.85 AF, respectively. (H-I) 0.15–0.30 AF compared

against 0.30–0.50 AF and 0.50–0.85 AF, respectively. (J) 0.30–0.50 AF compared against 0.50–

0.85 AF.

(EPS)

S3 Fig. Comparison of empirical and Baymer-derived 9-mer polymorphism probabilities

in NYGC-resequenced 1000 Genomes Phase 3 non-admixed non-Finnish European (EUR)

polymorphisms with derived AC� two in non-coding accessible regions. (A) Empirical

9-mer polymorphism probabilities for context mutations with at least one occurrence in both

datasets (102,875 omitted context mutations) are plotted against one another (Spearman cor-

relation = 0.862; RMSPE = 0.175). (B) Baymer mean posterior estimates for 9-mer polymor-

phism estimates in even and odd base pair datasets (Spearman correlation = 0.986;

RMSPE = 0.042).

(EPS)

S4 Fig. Overview of the characteristics of edge mutability change dynamics in Baymer

models of the NFE dataset. (A) Histogram of the number of edges per 9-mer that were

inferred to confidently change polymorphism probabilities (PIP > 0.95). (B) Histogram of the

maximum edge size per each 9-mer that was inferred to confidently change polymorphism

probabilities (PIP > 0.95). (C) Estimated distributions of phi for each mer size level. (D) The
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distribution of the fractional differences of each 9-mer mean posterior polymorphism proba-

bility with their respective nested 3-mer mean posterior polymorphism probability estimates,

partitioned by mutation type.

(EPS)

S5 Fig. Fraction overlap of simulated datasets trained by Baymer at varying sequence con-

texts and log changes to the null polymorphism probability.

(EPS)

S6 Fig. Variant Quality Scores reported in gnomAD by allele count. Distribution of gno-

mAD AS_VQSLOD quality scores in non-Finnish European samples (“NFE”; A-C) and in all

populations (“ALL”; D-F), separated into singletons (A,D), doubletons (B,E), and variants

with allele count greater than or equal to 3 (C,F).

(EPS)

S7 Fig. Comparison of Homo sapiens Baymer model (NFE-2+ model) estimates with Pan
troglodytes and Gorilla gorilla great ape species. (A) Mean polymorphism estimates of Homo
sapiens model plotted against mean polymorphism estimates of Pan troglodytes model (Spear-

man correlation = 0.957; RMSPE = 0.088). (B) Mean polymorphism estimates of Homo sapiens
model plotted against mean polymorphism estimates of Gorilla gorilla model (Spearman cor-

relation = 0.950; RMSPE = 0.097). (C) Multinomial likelihoods for each model are calculated

on odd base pair Pan troglodytes test data at various sequence context sizes. Pan troglodytes
model is trained on even base pair data only. (D) Multinomial likelihoods for each model are

calculated on odd base pair gorilla gorilla test data at various sequence context sizes. Gorilla
gorilla model is trained on even base pair data only. Polymorphism probability estimates were

linearly scaled to match the mean polymorphism probability of the holdout dataset.

(EPS)

S1 Table. Calibration of credible sets across mer levels by measuring number of simula-

tions capturing the truth value.

(XLSX)

S2 Table. Likelihood of even base pair NFE Baymer models on 9-mer odd base pair holdout

NFE data.
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S3 Table. Top 5 largest mean posterior phi estimates for each context size.
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S5 Table. Baymer modeled 1KG private continental context mutations with extreme poly-

morphism probability differences.
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S6 Table. Sample sizes and test likelihoods for each de novo comparison dataset.
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S7 Table. Sample sizes and test likelihoods for each great ape comparison test.
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