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Abstract

Assessing the contribution of mobility declines to the control of Covid-19 diffusion is an

urgent challenge of global import. We analyze the temporal correlation between transmis-

sion rates and societal mobility levels using daily mobility data from Google and Apple in an

international panel of 99 countries during the period of March-December 2020. Reduced

form regression estimates that flexibly control for time trends suggest that globally, a 10 per-

centage point reduction in mobility is associated with a 0.05–0.07 reduction in the value of

the effective reproduction number, R(t). However, the strength of the association varies sub-

stantially across world regions and over time, being initially positive and strong in most world

regions during the 2020 spring period, but becoming weaker over the summer, especially in

Europe and Asia. We further find evidence that the strength of the association between

mobility and transmission rates is reduced where facial coverings rules were implemented.

Introduction

By some estimates, more than a third of the global population have been subjected to severe

mobility restrictions since the start of the Covid-19 pandemic. Numerous governments around

the world have resorted to such “lockdowns” as their primary strategy of limiting the transmis-

sion of infection, at enormous economic and social costs. As costs escalate, and transmission

rates decline in some countries, a growing debate has emerged regarding when and how lock-

downs should be eased, and whether it is possible to do so without unleashing additional

waves of infection. An assessment of the relation between mobility levels and transmission

rates can be of value in helping to navigate this policy dilemma and in understanding the

determinants of diffusion.

Multiple papers have estimated the declines in transmission rates that occurred following

lockdowns and other non pharmaceutical interventions (NPI) by using detailed case-level data

in specific localities or multiple countries [1–10]. In this paper, we use publicly available data

to empirically estimate the relation between transmission rates (effective reproduction num-

bers) and societal mobility levels using a large, international 126-country panel, covering the

period between late February and December 2020 (later periods are excluded from the analysis

because the appearance of new variants can bias the results). Our assessment employs a

reduced-form regression analysis based on daily mobility data provided by Google and Apple,

and estimates of daily transmission rates at the country level from Arroyo-Marioli et al. [10].
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While studying the effect of lockdowns is clearly important, we focus on the association

between transmission rates and mobility rather than on the association between transmission

rates and government issued Nonpharmaceutical Interventions (NPIs), and in particular, lock-

down orders. We do so for three reasons. The first is that evidence suggests an imperfect corre-

spondence between lockdowns and mobility levels, with mobility declining prior to lockdowns

(or even in their absence), and in certain cases increasing prior to formal lockdown easing

[11]. Second, as governments consider the degree to which lockdown conditions can be eased,

it is important to analyze the span of the relation between mobility and transmission rates and

not only the effects of discrete, large reductions in mobility resulting from lockdown orders.

As one example, government ordered lockdowns may have acted as a signaling device indicat-

ing the severity of the health crisis, thereby influencing individual behavior. Finally, lockdowns

may impact transmission rates not solely due to their direct effect on mobility rates, but also

through their impact on other forms of individual behavior. Future changes in mobility levels

need not necessarily come about in tandem with such changes in individual level behavior.

Several other papers have also analyzed the relation between mobility and Covid-19 trans-

mission rates at a wide range of scales [12–17]. This study analyzes the relation at a global sam-

ple covering 126 countries, and complements the approaches of previous studies by employing

established, reduced-form, panel data econometric methods. These methods do not depend

on process-based modeling choices, and enable progress on two gaps in the literature

highlighted in a recent review [18]. First, they enable us to separate the impacts of variation in

mobility from other confounding variables that vary across countries, or regionally over time,

and may also affect transmission rates. Second, they easily lend themselves to estimating not

only the magnitude of the relation between mobility and transmission rates, but also how that

relation changes in locations and times in which other NPIs (such as facial covering, for exam-

ple) are introduced by governments. From a policy point of view, understanding how govern-

ment interventions affect the relation between mobility and transmission rates is of

paramount importance, since they may allow countries to resume economic activity without

increasing transmission rates substantially.

A visual inspection of the country level data suggests mixed patterns regarding the relation

between transmission rates and mobility. In the U.K, for example (Fig 1, top panel), transmis-

sion rates seem to track mobility levels quire consistently throughout the year. In Australia

(middle panel), transmission rates also seem to track mobility levels initially. Steep reductions

in mobility are followed by significant reductions in transmission rates, while subsequent to a

rise in mobility commencing mid-April, transmission rates rise as well. However, later on,

transmission rates decline without a corresponding decline in mobility. In South Korea (bot-

tom panel), there is no clear indication of a consistent relation between transmission rates and

mobility levels.

Our reduced form regression analysis is designed to estimate the average correlation

between mobility and transmission rates in a large international sample of countries. By pro-

viding such summary estimates at global scale, our analysis complements important studies

that analyze sub-national transmission dynamics and underlying epidemiological processes at

finer resolution.

Data and methods

Mobility data

The principal measure of mobility used in this analysis is taken from the Covid 19 Community
Mobility Reports provided by Google. We also use the Mobility Trends Reports provided by

Apple as a robustness test (see SOM). The Google data utilize anonymized location-based
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information to assess changes in the number of visits to several categories of locations in a

given date and country, as compared to a baseline value for that day of week. The baseline

period is the median value for the corresponding day of week, calculated during the 5-week

period Jan 3–Feb 6, 2020. The categories include retail and recreation, groceries and phar-

macy, parks, transit stations, workplaces, and residential. (see https://www.google.com/

Covid19/mobility/) It is available for 132 countries. We averaged mobility values at the weekly

level in each country in order to smooth high frequency variation. S1 Fig in S1 File plots Goo-

gle data on visits to workplaces over time, averaged in six world regions. S2 Fig in S1 File plots

variation in mobility over time and by country, grouped into regions, and shows there is a sub-

stantial degree of variation in mobility dynamics across countries, even though some broad

patterns are shared across countries in the same region. S3 Fig in S1 File plots the six measures

of Google mobility data over time, averaged over Europe.

Covid-19 transmission rates

The preferred indicator of Covid-19 transmission rates is the effective reproduction number R
(t), which measures the number of individuals an average infected person infects during the

period of infection. In the primary analysis, we make use of country level estimates of R(t),
provided by reference [10] between January 23rd and Dec 31st for 177 countries (temporal

coverage varies by country and begins after 100 cases are confirmed). To construct this proxy,

data on new cases, recoveries, and deaths is used to back out estimates of R(t) on the basis of

disease models [10]. Importantly, the data (and the estimates) are smoothed with Kalman-fil-

tering techniques. This means that discrete, high frequency movements in the actual effective

reproduction number will be difficult to observe in these estimates. In addition, the estimates

do not account for the delay between actual infection and official diagnosis. As such, they

reflect lagged infection rates, with a lag size that combines the delay between infection and

Covid-19 testing and the time between testing and official reporting of test results. Previous

studies report an average incubation period of 5 days [19,20]. In our analysis we assume an

overall lag of 2 weeks, although our results are not sensitive to using a lag of 1 week.

As is well known, a major limitation shared by all proxies based on confirmed case counts

is that they are likely to substantially underestimate the true number of cases in the population.

To the extent that the ratio of confirmed to actual cases is constant within countries (even if

not between countries), however, this will not bias the R estimates. Further, the estimation

method is argued to be robust even when new cases are imperfectly measured, or the true

dynamics of the disease do not follow the SIR model [10].

S4 Fig in S1 File plots R(t) estimates over time, averaged in six world regions. After declin-

ing from very high initial levels during the early phase of the pandemic, in the spring, R(t) var-

ies across regions, and shows a prominent second wave in Europe and North America over the

fall.

Sample

S5 Fig in S1 File reports the number of mobility and R observations (i.e. countries for which

data is available) by week. The main sample in our analysis includes 4,782 observations (week-

country combinations) from 126 countries (displayed in S6 Fig in S1 File) over the period

Fig 1. Plots of estimated effective reproduction numbers R(t) and Google workplace mobility indicators for the U.

K., Australia and South Korea. R(t) is plotted against the left axis. Mobility changes from baseline (in percentage

points, see data section) are plotted against the right axis. The vertical lines represent the partition of the study period

into the three sub-periods discussed in the main text.

https://doi.org/10.1371/journal.pone.0279484.g001
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March 13th—Dec 31st when using Google data. Data coverage is uneven across countries,

starting when the confirmed number of cases reaches 100 in each country.

Empirical strategy

We employ standard panel-regression techniques to estimate the association between trans-

mission rates (proxied by the R estimates described above) and mobility measures. A similar

reduced-form methodology has been used to study the correlation between the growth rate of

Covid-19 infections and non-pharmaceutical interventions [7]. The regressions include coun-

try specific fixed effects (intercepts) to flexibly account for all time-invariant country attributes,

thus basing estimates of the relation between transmission rates and mobility on the correla-

tion between these two variables over time within countries.

Formally, we estimate the following baseline regression:

Tct ¼ mMc;t� 2 þ ac þ bt þ εct ð1Þ

where T is a proxy for Covid-19 transmission rates in country c (in region r) on week t as

described above, and M is one of the mobility measures described above, measured 1 week

before the date at which T is observed. The regression include country fixed effects αc and

week fixed effects βt. In a robustness test, we replace the global week fixed effects with world-

region specific week fixed effects βrt. In another test, we include regional fixed effects for the

time (in weeks) which have elapsed since the 100th case in each country. Because transmission

and mobility may exhibit temporal autocorrelation within countries, all standard errors are

clustered at the country level.

Since mobility measures are strongly correlated temporally within countries (S3 Fig in S1

File), separating out the effects of each type of mobility indicator demands statistical power

that is unlikely to be provided by the current sample. Our main regression models therefore

include a single measure of societal mobility as the explanatory variable. We focus on the Goo-

gle workplace mobility measure, being a natural proxy for economic activity.

We also estimate a related first-differences model in which both the outcome (transmis-

sion) and explanatory (mobility) variables are replaced with their changes compared to the

previous week:

ðTct � Tc;t� 1Þ ¼ mðMc;t� 2 � Mc;t� 3Þ þ ac þ εct ð2Þ

This more demanding first-difference model helps examine the robustness of a time series

model in general, and estimates whether short-term changes in mobility translate to short-

term changes in infection rates in the same manner that variation over flexible time scales does

(as captured in Eq 1).

General trends in mobility and transmission

Fig 2 (top panel) exhibits the European averages of Google workplace mobility and (unlagged)

R(t) estimates over time. During the earlier part of the sample period, the data exhibit signifi-

cant downward trends in both mobility and estimated transmission rates. As can be seen,

European mobility levels decline sharply between mid-February and March 2020 (with Google

workplace mobility declining by approximately 50 percentage points) and bottom in April.

Over the same time period, Fig 2 (top panel) shows a decline in estimated R values from 3.5 to

below approximately 0.8. Mobility then rises until June, when it begins declining again, albeit

not as strongly. During that time, R(t) rises as well, until fall. Starting in August, mobility rises

again until about November and then begins declining again.
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Fig 2. Plots of R(t) (red line) and Google (visit to workplaces) mobility (blue line) indicators over time, averaged

for Europe and Asia. R(t) is plotted against the left axis. Mobility changes from baseline (in percentage points, see data

section) are plotted against the right axis. Red circles represent country specific values of R(t). The vertical lines

represent the partition of the study period into the three sub-periods discussed in the main text.

https://doi.org/10.1371/journal.pone.0279484.g002
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Fig 2 (bottom panel) provides analogous information for countries in the sample within the

“Asia and Pacific” region. Similar to Europe, the figure indicates a decline of average R of

approximately 3.1 units from a peak of 4 to a value of 0.9, and a decline of 40 percentage points

in the Google workplace mobility measure. However, from May onwards, mobility recovers,

although not nearly fully, whereas R(t) remains quite stable and close to the threshold value of

R = 1.

Changes in average mobility levels mask a good deal of country-level heterogeneity (S2 Fig

in S1 File). Examining regional patterns only serves as motivation for the full sample country-

level analysis which follows below.

In Fig 3 we plot, on the horizontal axis, the decline in Google workplace visits for each

country in our sample, from its highest level, mostly occurring around mid March, to the low-

est value reached in each country, mostly occurring in April. In many of these countries, visits

to workplace mobility decline by 50–70 percentage points (p.p.), with Spain leading in Europe

with an almost 80 p.p. decline. On the vertical axis, we plot the change in R(t) over the same

time period in each country, which ranges from 0–2.5 units, depending on the country.

There is a clear positive relation between the two trends: countries which exhibit larger

decreases in Google workplace visits, also, on average, show a greater decline in R(t). This is

signified by the fitted trend line, which has a statistically significant positive slope of b = 0.17

units of R per 10 p.p. in workplace visits (p<0.001). The relation is stronger in Europe

(b = 0.31, p<0.001) than in Asia (b = 0.1, p<0.05) and South America (b = 0.1, p<0.001), and

statistically insignificant in Africa and the Middle East.

Overall, the data show that countries which reduced workplace visits to a greater extent, on

average, also reduced transmission rates more (as discussed above, this does not necessarily

signify a causal relation). In the following section, we investigate the correlation between

Fig 3. Scatter plot of country level changes in R values vs. the change in Google workplace mobility from its

maximum (initial) to its minimum level. Marker colors indicate world region. The dashed line represents estimates

of a linear regression.

https://doi.org/10.1371/journal.pone.0279484.g003
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changes in R(t) and workplace mobility more formally and over the entire period extending

until the end of 2020.

Regression analysis results

Estimates of regression (1) are plotted in Fig 4, and tabulated in Tables 1–3.

Table 1 provides results of regressions that use estimates of the effective reproduction num-

ber (R) from [10] as the outcome variable, and a 2-week lagged measure of workplace mobility

from Google data. Google mobility data is coded here as the fraction decline from baseline lev-

els. For example, a 10 percentage point reduction in mobility is coded as -0.1. The coefficients

should therefore be interpreted as the associated decline in the effective reproduction number

associated with a 100 percentage point (p.p) decline in mobility. All specifications include

country fixed effects (intercepts) to account for all cross-country differences in transmission

stemming from time invariant country characteristics. To account for time trends, the specifi-

cation in Column 2 (Table 1) includes global date fixed effects and the specification in Column

3 includes region-by-date fixed effects. The specification in Column 4 includes country-spe-

cific fixed effects for each possible value of the number of weeks elapsed since it confirmed its

100th Covid-19 case. Column 5 reports estimates of the first-differences model (Eq 2).

Fig 4. Coefficients from regressions of estimated effective reproduction numbers R(t) observed at the country-date level on

Google workplace mobility indicators (see text for details). Black markers capture estimates from variants of the basic regression

model, whereas Grey markets indicate estimates from parallel first-differences regressions. The benchmark model includes country

and date fixed effects. Alternative models include additional controls as specified. Error bars indicate 95% confidence intervals

corresponding to standard errors that are clustered at the country level.

https://doi.org/10.1371/journal.pone.0279484.g004
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Across the four specifications (Columns 1–4) reported in Table 1, we estimate a positive

and statistically significant relation between effective reproduction numbers, R, and Google

mobility levels, indicating that increased mobility is associated with increased transmission.

The coefficient on lagged mobility ranges from 0.55 to 0.68, depending on the specification.

The estimates imply that a ten percentage point drop in the Google mobility measure is associ-

ated with a decline of between 0.05–0.07 units of R, depending on the specification used. The

first-differences model, which is based on short-term weekly variation alone, yields a some-

what smaller estimate of 0.37.

As additional robustness tests, S1 Table in S1 File reports similar estimations to Table 1

which, however, use alternative measures of transmission other than R(t), such as the growth

in the number of cases. S2 Table in S1 File reports parallel estimates to those reported in

Table 1 but which make use of Apple mobility data instead of Google mobility data.

S7 Fig in S1 File (top panel) plots the week specific intercepts (fixed effects) estimated in

regression (1), which reflect the average global weekly variation in transmission that is unex-

plained by mobility reductions or by time-invariant country specific factors. As can be seen,

the weekly fixed effects decline over time during the spring, indicating increased global sup-

pression of transmission rates stemming from measures unrelated to variation in mobility

(these measures could potentially include increased usage of masks, increased hygiene, favor-

able weather trends, etc); but then exhibit two additional “waves” over the course of the year,

albeit of much smaller magnitude than the first one. S7 Fig in S1 File (middle panel) plots the

country-level fixed effects estimated through regression (1). The figure provides a measure of

the variation in the reduction in transmission rates across countries that is unexplained by

mobility levels. The figure also plots (bottom panel) the fixed effects of a variant of specifica-

tion (1) which uses region, as opposed to country, fixed effects (estimated in relation to the

European value). A clear ranking emerges in regions’ ability to reduce transmission rates using

non-mobility suppression methods, with Asia most successful, North America least successful,

and European countries in between (the omitted regional fixed effect is Europe).

Table 2 reports estimates derived separately in five different geographical regions. As there

are only two countries in the North America region in our data, we do not run the regression

separately for that region. As can be seen, the positive relation between transmission rates and

mobility levels is concentrated in Europe and the Middle East regions, where a 10 p.p. reduc-

tion in mobility is associated with more than a 0.1 decline in the value of R. No statistically

Table 1. Baseline regression results relating estimated R values to two weeks lagged Google workplace mobility.

(1) (2) (3) (4) (5)

R R R R R

Google Workplace Mobility (Seven-day Lagged) 0.68*** 0.57*** 0.55*** 0.62*** 0.37***
(0.10) (0.12) (0.14) (0.13) (0.05)

Observations 4782 4782 4744 4743 4651

Adjusted R-squared 0.311 0.463 0.506 0.499 0.035

Week F.E. None Global Regional Global N

Weeks Since 100th Case F.E. N N N Regional N

Each column reports results from a separate regression. Regressions in columns 1–4 include country fixed effects. Column 5 reports estimates of a first-difference

model. Standard errors, clustered by country, are reported in parentheses. Stars indicate statistical significance

(* p<0.1

** p<0.05

*** p<0.01).

https://doi.org/10.1371/journal.pone.0279484.t001
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significant relation between transmission rates and lagged mobility is observed in the other

regions. To estimate R, it is required that the number of reported Covid-19 cases exceed 100

[10], implying that countries where infection rates climbed in later time periods are underrep-

resented in the sample.

Table 3 reports estimates derived separately in three different sub-periods: the “Spring”

(March-May), “Summer” (June-September) and “Winter” (October-December), as indicated

by the vertical lines in Figs 1 and 2. The separation is motivated by seasonal effects and by the

occurrence of the main waves of the pandemic in Europe and North America. The estimates

indicate strong associations in the spring and winter periods, which are remarkably similar in

magnitude, and a much smaller and insignificant association over the summer.

The results are summarized in Fig 4, which displays estimates for the main and the first-dif-

ferences models (black and gray markets, respectively) side by side in the different periods

(top panel) and regions (bottom panel) of the sample. Fig 5 offers greater detail, and plots

regional estimates in each of the three sub-periods. During the spring period, we find positive

associations in all five regions, and all but in Africa are statistically significant. Other than in

Table 3. Regression results relating estimated R values to 2 weeks lagged Google workplace mobility in three peri-

ods: Spring (March to May), Summer (June to September) and Winter (October to December).

(1) (2) (3)

R R R

Spring Summer Winter

Google Workplace Mobility

Mobility (7-day Lagged) 0.97*** 0.15 0.99***
(0.17) (0.14) (0.29)

Observations 1206 2188 1386

Adjusted R-squared 0.657 0.521 0.616

Each column report results from a separate regression. All regressions include country fixed effects and week fixed

effects. Standard errors, clustered by country, are reported in parentheses. Stars indicate statistical significance

(* p<0.1

** p<0.05

*** p<0.01).

https://doi.org/10.1371/journal.pone.0279484.t003

Table 2. Regional regression results relating estimated R values to 2 weeks lagged Google workplace mobility.

(1) (2) (3) (4) (5)

R R R R R

Africa Asia &

Pacific

Europe Middle East South/ Latin

America

Google Workplace Mobility

Mobility (7-day Lagged) 0.25 0.14 1.19*** 1.02*** 0.39

(0.27) (0.26) (0.21) (0.23) (0.29)

Observations 807 883 1598 508 866

Adjusted R-squared 0.558 0.379 0.554 0.309 0.512

Each column report results from a separate regression. All regressions include country fixed effects. Standard errors, clustered by country, are reported in parentheses.

Stars indicate statistical significance

(* p<0.1

** p<0.05

*** p<0.01).

https://doi.org/10.1371/journal.pone.0279484.t002
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Africa, where estimates remain stable over time, we see a reduction in the association between

transmission and mobility into the summer, especially in Asia, Europe and the Middle East.

However, with the onset of winter, the association remains low in Asia but bounces back in

Europe to even exceed its original strength.

Government actions and the mobility-transmission relation

We have seen above that there is a great deal of variation in the strength of the mobility-trans-

mission relation across countries and over time. A natural question to ask is whether other

forms of behavior change or limitation can help reduce the strength of the relation. From a

policy point of view, measures that would help reduce the strength of the relation are of para-

mount importance, since they may allow countries to resume economic activity–at least inso-

far as mobility to workplaces is concerned–without increasing transmission rates substantially.

To examine this question empirically, we make use of detailed data on a range of responses

undertaken by governments to the Covid-19 outbreak at a daily time scale [21] by the Oxford

COVID-19 Government Response Tracker (OxCGRT). The data attributes a severity index to

a range of potential responses by country and date. Responses are grouped into four types, of

which the type of greatest interest for our purpose are health system policies, which consist of

public information campaigns, contact tracing and facial coverings. Data on containment and

closure policies are also of potential interest, as they are designed to reduce mobility. In results

which are omitted for brevity, we find that these policies indeed reduce mobility [21]. These

Fig 5. Coefficients from regressions of estimated effective reproduction numbers R(t) observed at the country-week level on

Google workplace mobility indicators (see text for details). Markers indicate estimates from variants of the basic regression

model at specific regions and periods of the year (Spring: March to May, Summer: June to September, Winter: October-

December). All regressions include country and week fixed effects. Error bars indicate 95% confidence intervals corresponding

to standard errors that are clustered at the country level.

https://doi.org/10.1371/journal.pone.0279484.g005
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are the measures in the data set which may help induce protective behavior by individuals,

thus potentially reducing the magnitude of the mobility-transmission relation. When incorpo-

rating this data into the analysis, our sample is slightly reduced to include 4642 observations

from 121 countries.

To estimate the degree to which these results are effective, we estimate an interaction model

of the form:

Tct ¼ mMc;t� 2 þ nRc;t� 2 þ lMc;t� 2 � Rc;t� 2 þ ac þ bt þ εct ð3Þ

which is similar to regression (1) except that it includes a term for a government intervention

R and its interaction with mobility, all estimated with a two week lag. OxCGRT data encodes R

with a severity index detailed in Table 4, with 0 indicating no such action was taken, and

higher integer numbers between 1–4 indicating progressively severe action. Even though data

is available for the three types of responses mentioned above, in practice, we only use data on

contact tracing and facial coverings, since public information campaigns are imposed by the

great majority of governments throughout the study period, leaving little variation to use in

the estimation. While the interaction regression yields strong and large effects, we prefer to

avoid reporting a result which is based on a very small sample size of countries which did not

implement public information campaigns.

Table 5 reports estimates of regression (3) for the two relevant types of government inter-

ventions, i.e. facial coverings (panel A) and contact tracing (panel B). In these estimates, R is

taken as a categorical variable for greatest flexibility, with a separate coefficient for its possible

value and its interaction with mobility. The coefficient on the government response terms rep-

resents its direct impact on transmission, while its interaction represents the degree to which it

reduces the strength of the effect of mobility on transmission. The leftmost Column (Columns

1 and 5) in each panel report the share of the sample in which R assumes each of its possible

values. The other three columns (Columns 2–4 and 6–8) represent estimates from three regres-

sion models with differing controls.

We also summarize these estimates in Fig 6, where, for simplicity, we reduce each R to a

binary variable separating “low” and “high” values. For contact tracing, we choose high values

to include the value 2 (comprehensive tracing) and above, and for facial coverings, we choose

Table 4. Codes for government action variables used in the analysis, adapted from the OxCGRT website (https://github.com/OxCGRT/covid-policy-tracker/blob/

master/documentation/codebook.md).

Response Description Values

Public Information

Campaign

Record presence of public info campaigns 0—no Covid-19 public information campaign

1—public officials urging caution about Covid-19

2- coordinated public information campaign (eg across traditional and

social media)

Contact Tracing Record government policy on contact tracing after a positive

diagnosis

Note: we are looking for policies that would identify all people

potentially exposed to Covid-19; voluntary bluetooth apps are

unlikely to achieve this

0—no contact tracing

1—limited contact tracing; not done for all cases

2—comprehensive contact tracing; done for all identified cases

Facial Covering Record policies on the use of facial coverings outside the home 0—No policy

1—Recommended

2—Required in some specified shared/public spaces outside the home

with other people present, or some situations when social distancing not

possible

3—Required in all shared/public spaces outside the home with other

people present or all situations when social distancing not possible

4—Required outside the home at all times regardless of location or

presence of other people

https://doi.org/10.1371/journal.pone.0279484.t004
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high values to include the values 3 and 4 (in which coverings are required in all, rather than

some shared/public spaces outside the home). The results indicate opposing findings for the

two types of responses. Contact tracing does not show a direct significant beneficial effect on

transmission, and also does not seem to reduce the effect of mobility. In contrast, sweeping

facial covering rules reduce transmission rates by 0.2, and also reduce the strength of the

mobility-transmission relation by more than half of its size. In the absence of facial covering

rules, a 10 p.p. increase in mobility increases transmission rates by 0.07. When such rules are

imposed, the effect of the same mobility increase reduces by 0.037.

Discussion

Understanding the determinants of Covid-19 transmission rates is one of the most pressing

policy questions facing society. This paper provides an empirical analysis of this question, uti-

lizing comprehensive data at global scale and panel data econometric methods to analyze the

correlation between mobility levels and transmission rates over time within countries. As

such, it provides an important complement to detailed epidemiological modeling of the spread

of Covid-19.

Several aspects of our approach are worth noting. As in every cross country study (in con-

texts not limited to Covid-19 transmission), we analyze relations between country-wide

Table 5. Regression results relating estimated R values to lagged Google mobility, indicators of strictness of government actions (contact tracing, panel A; facial

covering mandates, panel B), and their interactions.

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Contact Tracing Panel B: Facial Covering

% Sample Regression Estimates % Sample Regression Estimates

Mobility 0.57*** 0.54*** 0.42* 0.57*** 0.59*** 1.00***
(0.12) (0.12) (0.24) (0.12) (0.13) (0.27)

Action = 1 33% -0.10 -0.08 8% -0.09 -0.20

(0.06) (0.10) (0.07) (0.12)

Action = 2 61% -0.03 0.02 22% -0.03 -0.02

(0.07) (0.10) (0.05) (0.08)

Action = 3 46% -0.11** -0.24***
(0.05) (0.09)

Action = 4 21% -0.07 -0.24**
(0.06) (0.10)

Action = 1 X Mobility 0.02 -0.54

(0.24) (0.42)

Action = 2 X Mobility 0.19 0.16

(0.26) (0.28)

Action = 3 X Mobility -0.57**
(0.28)

Action = 4 X Mobility -0.79**
(0.31)

Observations 4782 4642 4642 4782 3978 3978

Adjusted R-squared 0.463 0.460 0.460 0.463 0.497 0.512

Government action is encoded in integer values, with 0 (omitted category) indicating no action, and the numbers 1–4 indicating increasingly stricter policy (see text for

details). In each panel, the left column (Columns 1 and 5) reports the share of the sample belonging to each value of the strictness indicator. Each of the columns 2–4

and 6–8 report results from a separate regression. All regressions include country fixed effects and week fixed effects. Standard errors, clustered by country, are reported

in parentheses. Stars indicate statistical significance (* p<0.1,** p<0.05,*** p<0.01).

https://doi.org/10.1371/journal.pone.0279484.t005
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population-weighted averages of variables which may also exhibit intra-country variation.

Econometric theory posits that if a certain relation holds between these variables at the local

(sub-national) level, it will be recovered by the country-level analysis, albeit with potentially

lower statistical precision related to the smaller sample size. If the local relation varies in mag-

nitude sub-nationally, the country-level analysis will recover the average magnitude of the

effect.

Additionally, there are significant challenges in interpreting the transmission-mobility rela-

tion we estimate. The limited precision of transmission indicators may introduce substantial

measurement error into the data, making it hard to identify a correlation. Second, changes in

mobility may also endogenously respond to infection rates. Third, variation in mobility levels

may be correlated with variation in other forms of preventative behavior, whether voluntary or

government dictated, or with environmental factors [22], meaning that any observed correla-

tion can be wrongfully attributed to changes in mobility levels.

We employ standard panel data techniques to address this challenge. In particular, we base

our estimates only on variation in mobility and transmission that occur within countries over

time, rather than on variation across countries, which is especially prone to omitted variable

bias (e.g. economic development levels, infrastructure, health system functionality). Further,

we include various forms of flexible temporal trends in our regressions to capture some of the

temporal variation in potential confounders that may occur within countries over time. We

also note, with the appropriate caution, that many of the potential unobserved confounders

Fig 6. Coefficients from regressions of estimated effective reproduction numbers R(t) observed at the country-

week level on Google workplace mobility indicators, indicators of aggressive government action and their

interaction. Left panel: Government action is defined as comprehensive contact tracing (in relation to no or limited

tracing). Right panel: Government action is defined as requiring face covering is worn in all situations of gathering

outside the home (in comparison to weaker or no requirement). See text for details). All regressions include country

and week fixed effects. Markers indicate point estimates and error bars indicate 95% confidence intervals

corresponding to standard errors that are clustered at the country level.

https://doi.org/10.1371/journal.pone.0279484.g006
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would tend to bias our estimates on the relation between mobility and transmission rates

upwards, as variation in these confounders likely served to reduce transmission rates in tan-

dem with mobility restrictions (examples include increased mask usage and hygiene).

Our main estimates indicate that overall, a 10 percentage point decline in the Google work-

place mobility measure is associated with a 0.05–0.07 unit decline in the estimated reproduc-

tion number R. Based on these estimates, it is instructive to analyze the share of the overall

decline in transmission rates during the early phase of the pandemic (spring) that can be

explained by mobility reductions.

Overall, Google mobility rates in Europe declined by approximately 50 percentage points

by the beginning of April 2020, which our estimates imply is associated with a reduction in R
of 0.25–0.35 units. The fraction of the overall decline in R that is explained by this mobility

reduction depends on the time window chosen for the calculation. By April 11th, the mean

value of R across the European countries in our sample had declined to 0.95. Given the

assumption of a seven-day lag between actual and observed R in the international data, the val-

ues corresponding to a given date refer to the R estimated seven days afterwards. Taking the

starting date for the calculation as February 21st, when R = 3.1, implies an overall decline in R
of 2.2 units, meaning that mobility reductions explain about 12%-16% of this decline. How-

ever, data from February is still very sparse, and derived from only a few countries. If we more

conservatively choose the starting time of the calculation to be a month later, on March 11th,

when R = 2.1—at this point data is available from more than 20 countries, and most of the

European mobility reduction has yet to take place—the overall reduction in R is reduced to 1.1

units, so that mobility reductions explain approximately 22%–30% of the decline in R.

Analogously, in countries within the “Asia and Pacific” region the decline in average Goo-

gle mobility measures—approximately 40 percentage points to date—imply a reduction of

0.24–0.36 units in R. Again, the fraction of the overall decline in R explained by mobility

depends on the time frame chosen. Taking the starting date of the calculation to be March 11

(average R = 1.7), and given the April 11th average value of R of approximately 1.27, we obtain

that mobility reductions in Asia explain approximately 30%-41% of the reduction in R.

These back of the envelope calculations suggest that mobility reductions by themselves

played an important role in reducing transmission in the early phases of the pandemic, but

they were far from being the only, or even dominant factor. In fact, similar calculations would

indicate that in order to reduce the value of R(t) from a typical level of 1.5 during a wave to a

stable level of R = 1 solely through mobility reductions, it would be necessary to reduce mobil-

ity by approximately 80 percentage points. This is important to note, given the enormous eco-

nomic costs associated with such reductions. It is also worth keeping in mind that our

estimates most likely exaggerate the contribution of mobility restriction, insofar as they are

correlated with other forms of behavior change that might reduce transmission.

Our results also speak to the beneficial impact of government interventions such as facial

coverings in easing the tradeoff between the economic cost of mobility limits and the health

costs of increased transmission rates. For example, given a transmission rate of R = 0.9, our

estimates indicate that when facial coverings are in widespread use, mobility can increase by

approximately 30 percentage points prior to R exceeding the threshold level of 1. In contrast,

when facial masks are not prevalent, mobility can only increase by approximately 15 percent-

age points prior to exceeding the threshold level.

Changes in the strength of the relation between mobility and transmission over the course

of 2020 are also noteworthy. Our estimates suggest the relation was positive and strong in

most regions during the spring period, but then declined over the summer, especially in

Europe and Asia. Remarkably, however, during the fall and early winter, the magnitude of the

relation essentially recovers its original strength in Europe, but remains low in Asia. This
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disparity may reflect a failure to implement and sustain the lessons of the first spring wave of

the pandemic in Europe, vis-a-vis Asia.

Related to that, we also find evidence that facial coverings rules were able to reduce the

strength of the relation by more than half of its size, but that contact tracing showed no such

effectiveness. This latter failure may be a result of the difficulty of accurately capturing the effi-

cacy of contact tracing implementation across countries in the OxCGRT data. It may well be

that this efficacy varies considerably across countries which formally implement such mea-

sures comprehensively, at least on paper. It is also known that when the number of new cases

is large, such contact tracing programs become very difficult to implement effectively. In con-

trast, the effectiveness of facial covering rules we estimate is remarkably high, especially given

its low economic costs. This effectiveness offers an important lesson for policy makers attempt-

ing to strike a balance between trying to contain a pandemic and minimizing its economic

impacts.
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