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Objective: Immune responses to severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) mRNA vaccines in people with HIV (PWH) with a history of late
presentation (LP) and their durability have not been fully characterized.

Design: In this prospective, longitudinal study, we sought to assess T-cell and humoral
responses to SARS-CoV-2 mRNA vaccination up to 6months in LP-PWH on effective
combination antiretroviral therapy (cART) as compared to HIV-negative healthcare
workers (HCWs), and to evaluate whether previous SARS-CoV-2 infection modulates
immune responses to vaccine.

Methods: SARS-CoV-2 spike (S)-specific T-cell responses were determined by two
complementary flow cytometry methodologies, namely activation-induced marker
(AIM) assay and intracellular cytokine staining (ICS), whereas humoral responses were
measured by ELISA [anti-receptor binding domain (RBD) antibodies) and receptor-
binding inhibition assay (spike-ACE2 binding inhibition activity), before vaccination
(T0), 1month (T1) and 5months (T2) after the second dose.

Results: LP-PWH showed at T1 and T2 significant increase of: S-specific memory and
circulating T follicular helper (cTfh) CD4þ T cells; polyfunctional Th1-cytokine (IFN-g,
TNF-a, IL-2)- and Th2-cytokine (IL-4)-producing S-specific CD4þ T cells; anti-RBD
antibodies and spike-ACE2 binding inhibition activity. Immune responses to vaccine in
LP-PWHwere not inferior to HCWs overall, yet S-specific CD8þ T cells and spike-ACE2
binding inhibition activity correlated negatively with markers of immune recovery on
cART. Interestingly, natural SARS-CoV-2 infection, while able to sustain S-specific
antibody response, seems less efficacious in inducing a T-cell memory and in boosting
immune responses to vaccine, possibly reflecting an enduring partial immunodefi-
ciency.

Conclusions: Altogether, these findings support the need for additional vaccine doses
in PWH with a history of advanced immune depression and poor immune recovery on
effective cART.
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Introduction
The incidence of coronavirus disease 2019 (COVID-19)
among people with HIV (PWH) has been reported
similar [1–3] or even lower [4–6] than in the general
population, suggesting that HIV per se is not a risk factor
for severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection. Likewise, studies evaluating
COVID-19 outcome in PWH have yielded conflicting
results due to multiple confounding factors [7,8],
displaying similar [9,10] or higher [3,11–13] disease
severity and mortality compared to people without HIV.

Data on the efficiencyof immune response to SARS-CoV-
2 in PWH are controversial [14]. T-cell and humoral
responses after SARS-CoV-2 infection have been reported
not inferior to those in HIV-negative peers in two previous
studies [15,16], and yet related to CD4þ/CD8þ ratio [15].
Conversely, others found lower andmore exhaustedSARS-
CoV-2–specific T cells [17–19], or reduced humoral
responses [6] in PWH recovered from COVID-19,
especially in those with detectable HIV viremia and low
CD4þ T-cell counts. Furthermore, in a murine model of
acute SARS-CoV-2 infection, the depletion of CD4þ T
cells led to diminished antibodies response and delayed
viral clearance [20], highlighting the paramount role of
CD4þ T cells in controlling viral replication and regulating
SARS-CoV-2–specific immune responses.

The observation that PWH have lower responses to
hepatitis B virus vaccination [21,22], show more rapid
wane of neutralizing antibodies after yellow fever
vaccination [23], and mount variable humoral responses
to other vaccines depending on CD4þ T-cell counts [24],
raise the concern that PWH, especially those with
incomplete immune reconstitution despite virally effec-
tive combination antiretroviral therapy (cART), may not
adequately respond to SARS-CoV-2 vaccines.

Despite such concerns, several studies have recently
shown that immune responses to mRNA vaccines in
PWH with optimal immunological response are compa-
rable to those in healthy individuals but may be reduced in
PWH with poor CD4þ T-cell recovery [25–31].
Likewise, vaccine effectiveness, namely the ability of
vaccine to protect against symptomatic illness and
hospitalization/death, has been proven among a large
population-based cohort of PWH with well controlled
HIV infection after two doses of SARS-CoV-2 vaccine
[32], yet it remains to be determined in PWH who have
moderate to severe immunodeficiency.

However, studies carried out so far mainly evaluated
humoral immunogenicity, overlooking magnitude and
functionality of T-cell responses [25–28,30,31]. T cells
have been described to play a pivotal role in vaccine-
induced protection as they defend against severe disease
and hospitalization, while neutralizing antibodies
primarily protect against acquisition of infection [33–
41]. Of note, T-cell dysfunction has been long
acknowledged as a hallmark of HIV infection [42],
particularly in people with a history of late presentation
[43–48] and poor immunological recovery [49–56],
raising the concern that these populations may not mount
adequate T-cell responses to SARS-CoV-2 vaccines.

Additionally, while COVID-19–recovered individuals
have been proven to mount stronger immune responses
to SARS-CoV-2 vaccines compared to virus-naive ones
in the general population [57–59], whether previous
SARS-CoV-2 infection may modulate T-cell and
humoral responses to such vaccines in PWH is still a
matter of debate.

Hence, in this study, we sought to longitudinally
investigate the magnitude and the quality of T-cell and
humoral responses to mRNA-1273 vaccine up to
6months apart from the primary cycle in successfully
cART-treated PWH who had started therapy as late
presenters (LP-PWH), compared to HIV-negative peers.
We also aimed to evaluate the role of previous SARS-
CoV-2 infection in conditioning immune responses to
vaccine in this population.

Methods

Study design
In this prospective, longitudinal study, we consecutively
enrolled LP-PWH (CD4þ T-cell nadir < 350 cells/ml
and/or history of AIDS-defining events) on virologically
effective cART (HIV-RNA < 20 copies/ml), who
received mRNA-1273 vaccine (two doses 28 days apart)
at the Clinic of Infectious Diseases and Tropical
Medicine, ASST Santi Paolo e Carlo, Department of
Health Sciences, University of Milan, Milan, Italy. HIV-
negative healthcare workers (HCWs), who received
BNT162b2 (two doses 21 days apart) were also consecu-
tively enrolled as controls.

Peripheral blood samples were collected in EDTA tubes
from all study participants before vaccination (T0),
1month and 5months after the second dose (T1 and T2,
respectively) (Figure S1, Supplemental Digital Content,
http://links.lww.com/QAD/C879). Plasma was sepa-
rated by centrifugation and stored at –808C. Peripheral
blood mononuclear cells (PBMCs) were obtained by
Ficoll density gradient centrifugation and stored at
–808C and then in liquid nitrogen.

Demographic and clinical characteristics of the study
population as well as HIV-related features of LP-PWH
were also collected.

The study was approved by the Institutional Ethics
Committee and written informed consent was obtained
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from each participant. All research was performed in
accordance with the Declaration of Helsinki.

SARS-CoV-2-specific T cells
SARS-CoV-2-specific T cells were determined within
PBMCs by means of two complementary flow cytometry
methodologies, i.e. activation-induced marker (AIM)
assay and intracellular cytokine staining (ICS) [60,61]
(Figure S2, Supplemental Digital Content, http://links.
lww.com/QAD/C879).

Briefly, 1.5� 106 thawed PBMCs were plated in
complete RPMI containing 10% human serum supple-
mented with 1% penicillin–streptomycin–glutamine.
Overnight-rested PBMCs were stimulated for 20 h with
a pool of 15-mer peptides (1mg/ml) covering the
immunodominant sequence domain of the wild-type
spike (S) protein (PepTivator SARS-CoV-2, Miltenyi
Biotec). Staphylococcus enterotoxin B (SEB, Sigma-
Aldrich) (1mg/ml) was used as positive control, while
negative controls were left untreated.

For AIM assay, PBMCs were washed in FACS buffer
(PBS with 2% BSA) and stained with the appropriate
surface antibodies for 20 min at 48C in the dark, fixed
with 2% paraformaldehyde (PFA) for 30 min at 48C,
washed, and resuspended in 500ml of phosphate
buffered saline (PBS). Dead cells were labeled using
Viobility Fixable Dye (Miltenyi Biotec). Antibodies used
were: CD4–APC-Vio770, CD8–PerCP-Vio700,
CXCR5–APC (Miltenyi Biotec), CD45RA–BV421,
CCR7–PE, CD69–FITC (BD Biosciences), and
CD137–PeCy-7 (BioLegend).

For ICS assay, brefeldin A (1mg/ml) was added after 1 h
of stimulation. Cells were harvested and stained for
surface markers for 20 min at 48C in the dark; after 2%
PFA fixation, cells were permeabilized with 0.2%
saponin and stained for intracellular cytokines for 30
min at room temperature. Dead cells were labeled using
Viobility Fixable Dye (Miltenyi Biotec). Antibodies
used were: CD4–APC-Vio770, CD8–PerCP-Vio700,
IL-2–APC (Miltenyi Biotec), IL-17A–PE, IL-4–
FITC, TNF-a–VioBlue, IFN-g–PE-Vio770 (BD
Biosciences).

Samples were acquired using FACSVerse cytometer (BD
Biosciences) and FCS files were analyzed using FlowJo
10.7.2 (BD Biosciences).

T-cell subsets were defined as: CCR7þCD45RAþ
(naı̈ve, N), CCR7þCD45RA– (central memory,
CM), CCR7–CD45RA– (effector memory, EM),
CCR7–CD45RAþ (effector memory re-expressing
CD45RA, EMRA), CD4þCXCR5þ (circulating T
follicular helper, cTfh), CD8þCXCR5þ (circulating T
follicular cytotoxic, cTfc).
SARS-CoV-2-specific T cells were measured subtracting
unspecific background activation (AIM) or cytokine-
production (ICS) in paired unstimulated control samples
from stimulated samples; negative values were set to
zero. By AIM assay, frequencies (percentage, %) of
CD69þCD137þ [58,60] within total, CM, EM, EMRA,
and cTfh/cTfc CD4þ and CD8þ T cells were measured.
By ICS assay, cytokine (IFN-g, TNF-a, IL-2, IL-4, IL-
17A)-producing T cells were determined and expressed as
both frequency (percentage,%ofCD4þ andCD8þTcells)
and integrated median fluorescence intensity (iMFI,
obtained by multiplying the frequency by the MFI for
each cytokine-producing subset). T-cell polyfunctionality
was assessed by using the FlowJo Boolean Gating tool and
SPICE 6.0 to identify single-, dual-, triple- cytokine-
producing SARS-CoV-2-specific Th1 cells.

Total anti-receptor binding domain antibodies
Total anti-receptor binding domain (anti-RBD) anti-
bodies were determined in plasma samples by a
homemade ELISA as previously described [62]. Briefly,
high-binding 96-well plates (Greiner Bio-One) were
coated with 3mg/ml of recombinant wild-type SARS-
CoV-2 receptor binding domain (RBD) (ACROBiosys-
tems) diluted in 0.5mmol/l of carbonate-bicarbonate
buffer pH 9.6 (Sigma-Aldrich) and incubated overnight
at 48C. Plates were washed with PBS–0.05% Tween-20
and blocked for 1 h with PBS–2% BSA at 378C. Plasma
samples were serially diluted in PBS–1% BSA in
triplicates (1:40, 1:240 and 1:1440), added to plates,
and incubated for 2 h at 378C. A mix of biotinylated goat
antihuman k and l light chain were used at 1:2500
(Bethyl Laboratories, Inc., A80–115B and A80–116B)
for detection, followed by avidin-HRP diluted at 1:2000
(ThermoFischer Scientific), for 30 min at room
temperature in the dark and mild agitation. The detection
was carried out with 3,3’,5,5’-tetramethylbenzidine
(TMB) (Invitrogen) and quenched with 1mol/l H2SO4.
Two plasma samples collected before the SARS-CoV-2
pandemic were included as negative controls, whereas an
RBD-specific monoclonal antibody (Human Anti-
SARS-CoV-2 Spike RBD Monoclonal Antibody, clone
BIB116, Creative Diagnostics) was included as positive
control. The optical density (OD) was measured by using
EnSight (Multimode Plate Reader, PerkinElmer) at 450
and 620nm, and the area under the curve (AUC) was
determined with GraphPad Prism 9.2.

Receptor-binding inhibition assay
A receptor-binding inhibition assay, based on antibody-
mediated blockage of ACE2-Spike RBD interaction, was
employed to measure plasma spike-ACE2 binding
inhibition (spike-blocking) activity, which is a surrogate
of neutralization activity, as previously described [63,64].
Briefly, high-binding 96-well plates (Corning) were
coated with 2mg/ml of recombinant human ACE2-Fc
(InvivoGen) diluted in 100mmol/l carbonate–bicarbon-
ate buffer pH 9.6 (Sigma-Aldrich) and incubated
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overnight at 48C. Plates were washed with PBS–0.05%
Tween-20 and blocked with PBS–2% BSA for 1 h at
room temperature. Plasma samples were diluted 1:80 in
triplicates in PBS–1% BSA and incubated with 12 ng of
recombinant wild-type SARS-CoV-2 RBD-HRP
(ACROBiosystems) for 1 h at 378C. Plates were washed
and incubated with the preincubated plasma and RBD-
HRP for 1 h at room temperature, then detected with
TMB and 1mol/l H2SO4. RBD-HRP alone and plasma
with no RBD-HRP were used as controls. The OD was
measured by using EnSight (Multimode Plate Reader,
PerkinElmer) at 450 and 570 nm. The results were
expressed as percentage (%) of inhibition, calculated as [(1
– sample OD)/average negative control OD)]� 100.

Statistical analyses
Wilcoxon signed-rank test was used for longitudinal
analyses to assess immune responses to vaccine at T1 and
T2 vs. T0. Mann–Whitney U test was used for cross-
sectional analyses to compare study groups. Spearman’s
correlation test was used to correlate immune status and
immune responses to vaccine in LP-PWH. Data were
analyzed and graphed with GraphPad Prism 9.2.0.
Permutation test in SPICE 6.0 was employed to compare
polyfunctionality patterns of SARS-CoV-2-specific
cytokine-producing Th1 cells in the two groups.
P values <0.05 were considered statistically significant.
Results

Study population
Twenty LP-PWH and 20 HCWs were enrolled. In each
study group, 10 (50%) participants had a history of
previous SARS-CoV-2 infection (SARS-CoV-2-experi-
enced/recovered) and 10 (50%) did not (SARS-CoV-2–
naive) (Figure S1, Supplemental Digital Content, http://
links.lww.com/QAD/C879).

Demographic and clinical characteristics of the study
population as well as HIV-related features of LP-PWH are
summarized in Table 1.

No significant differences in age, sex, ethnicity, comor-
bidities, body mass index (BMI), and smoking habit were
registered between the two groups.

Eight (40%) LP-PWH had a history of AIDS-defining
conditions. All LP-PWHwere on long-term [median: 12
(IQR: 6–17) years] virologically effective (HIV-RNA <
20 copies/ml) cART, with various grades of immune
recovery [median CD4þ T-cell count: 404 (192–615)
cells/ml; CD4þ T-cell percentage: 25 (12–30)%; CD4þ/
CD8þ ratio: 0.57 (0.20–0.87)]. As per definition, median
CD4þT-cell nadir in LP-PWHwas 67 (32–215) cells/ml.

As expected, LP-PWH showed lower CD4þ T cells
(P< 0.0001), yet higher CD8þ T cells (P< 0.0001) as
compared to HCWs at baseline (T0) (Figure S3,
Supplemental Digital Content, http://links.lww.com/
QAD/C879). Regarding immune phenotypes, N CD4þ

(P¼ 0.0025) and CD8þ T cells (P¼ 0.0003) were lower,
while EM CD4þ (P¼ 0.0003) and CD8þ T cells
(P< 0.0001) were higher in LP-PWH. Furthermore, a
greater percentage of cTfc CD8þ T cell was observed in
LP-PWH (P¼ 0.0056) (Figure S3, Supplemental Digital
Content, http://links.lww.com/QAD/C879).

Vaccine-induced SARS-CoV-2-specific T-cell
responses
LP-PWH showed expansion of SARS-CoV-2–specific
total (PT0–T1¼ 0.0003, PT0–T2¼ 0.0002), CM (PT0–
T1¼ 0.0017, PT0–T2¼ 0.0017), EM (PT0–T1 < 0.0001,
PT0–T2¼ 0.0001), EMRA (PT0–T1¼ 0.0012, PT0–
T2¼ 0.0049), and cTfh (PT0–T1¼ 0.0012, PT0–
T2¼ 0.0002)CD4þTcells at both time points as compared
to baseline (Fig. 1a). Likewise, HCWs displayed rise of
SARS-CoV-2-specific total (PT0–T1¼ 0.0009, PT0–
T2¼ 0.0045), CM (PT0–T1¼ 0.0015, PT0–T2¼ 0.0067),
EM (PT0–T1¼ 0.0018, PT0–T2¼ 0.0040), and cTfh (PT0–
T1¼ 0.0039, PT0–T2¼ 0.0063) at T1 and T2, but not
EMRA CD4þ T cells (Fig. 1a). When comparing the
two study groups at T1 and T2, vaccine-induced SARS-
CoV-2–specific memory and cTfh CD4þ T cells in
LP-PWH were not inferior to HCWs, with the latter
showing lower S-specific total (P¼ 0.0239) and EMRA
CD4þ T cells (P¼ 0.0142) at T1 (Fig. 1a).

Overall, CD8þ T-cell responses were lower than CD4þ

T-cell responses (Figure S4A, Supplemental Digital
Content, http://links.lww.com/QAD/C879), with a
significant expansion of SARS-CoV-2–specific total
(PT0–T1¼ 0.0195) and EMRA (PT0–T1¼ 0.0449)
CD8þ T cells at T1 and EM CD8þ T cells (PT0–
T2¼ 0.0122) at T2 in LP-PWH, as well as an increase of
EMRACD8þT cells (PT0–T1¼ 0.0488) at T1 in HCWs,
with no differences in frequencies of S-specific CD8þ T
cells between the two groups (Fig. 2a).

When assessing cytokine-producing SARS-CoV-2–
specific T cells, LP-PWH displayed a significant
increase in frequency of TNF-aþ and IL-4þ CD4þ T
cells at both time points (TNF-aþ: PT0-T1¼ 0.0026,
PT0-T2¼ 0.0178; IL-4þ: PT0-T1¼ 0.0244, PT0–
T2¼ 0.0078), and IL-2þ CD4þ T cells at T2 (PT0–
T2¼ 0.0012) (Fig. 1b). HCWs only showed an expansion
of IL-2þ CD4þ T-cells at T2 (PT0–T2¼ 0.0267)
(Fig. 1b).Overall, LP-PWHexhibited higher frequencies
of S-specific IFN-gþCD4þT cells at T1 (P¼ 0.049) and
TNF-aþCD4þT cells at both time points (PT1¼ 0.016,
PT2¼ 0.0254) (Fig. 1b). By iMFI, LP-PWH presented
a rise of SARS-CoV-2-specific TNF-aþ (PT0–
T2¼ 0.0266) and IL-2þ (PT0–T2¼ 0.0049) CD4þ

T cells at T2 (Fig. 1c), with no overall differences in
S-specific cytokine-producing CD4þ T cells between
the two study groups at both time points (Fig. 1c).
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Table 1. Demographic and clinical features of the study population and HIV-related characteristics of LP-PWH.

LP-PWH (n¼20) HCWs (n¼20)
P value

LP-PWH vs. HCWsM

Age, years, median (IQR) 57 (47–62) 55 (45–61) 0.3500
Sex, n (%) 0.1908
Male 15 (75) 10 (50)
Female 5 (25) 10 (50)

Ethnicity, n (%) 0.1264
Caucasian 15 (75) 20 (100)
Latin-American 3 (15) 0 (0)
Afro-American 1 (5) 0 (0)
African 1 (5) 0 (0)

Comorbidities, n (%)
Hypertension 5 (25) 2 (10) 0.4075
Chronic heart disease 2 (10) 0 (0) 0.4872
Myocardial infarction 1 (5) 0 (0) >0.9999
Peripheral vascular disease 1 (5) 0 (0) >0.9999
Chronic pulmonary disease 2 (10) 2 (10) >0.9999
Chronic kidney disease 2 (10) 1 (5) >0.9999
Liver disease 3 (15) 0 (0) 0.2308
Diabetes 3 (15) 0 (0) 0.2308

Charlson comorbidity index8, median (IQR) 2 (0–4) 1 (0–2) 0.1153
BMI, n (%) 0.2196
<25 kg/m2 7 (35) 8 (40)
25–30 kg/m2 8 (40) 7 (35)
>30 kg/m2 3 (15) 0 (0)
Unknown 2 (10) 5 (25)

Smoking, n (%) 0.1353
Yes 5 (25) 3 (15)
No 9 (45) 15 (75)
Unknown 6 (30) 2 (10)

HIV-related characteristics
Epidemiology, n (%)
MSM 8 (40) NA NA
IDU 2 (10) NA NA
Other 10 (50) NA NA

Viro-immunologic parameters, median (IQR)
CD4þ nadir, cells/ml 67 (32–215) NA NA
HIV-RNA zenith, copies/ml 60 816 (22 402–242 511) NA NA
Current %CD4þ 25 (12–30) NA NA
Current CD4þ, cells/ml 404 (192–615) NA NA
Current %CD8þ 46 (35–60) NA NA
Current CD8þ, cells/ml 809 (590–1008) NA NA
Current CD4þ/CD8þ ratio 0.57 (0.20–0.87) NA NA
Current HIV-RNA, copies/ml <20 NA NA

Current CD4þ, n (%)
<350 cells/ml 8 (40) NA NA
350–500 cells/ml 5 (25) NA NA
>500 cells/ml 7 (35) NA NA

Previous AIDS diagnosis, n (%) 8 (40) NA NA
Time from HIV diagnosis, years, median (IQR) 14.5 (6–25) NA NA
Current cART regimen, n (%)
INSTI-based triple 11 (55) NA NA
INSTI-based dual 6 (30) NA NA
NNRTI-based triple 3 (15) NA NA

Time from HIV diagnosis to cART initiation, days, median (IQR) 50 (18–2166) NA NA
Duration of cART, years, median (IQR) 12 (6–17) NA NA

LP-PWH, late presenter people with HIV; BMI, body mass index; cART, combination antiretroviral therapy; HCWs, healthcare workers; IDU,
injective drugs use; INSTI, integrase strand transfer inhibitor; IQR, interquartile range; MSM, men who have sex with men; NA, not applicable;
NNRTI, nonnucleoside reverse transcriptase inhibitor; 8age-adjusted.
MStatistical analyses, Mann–Whitney U test, Fisher exact test, chi-square test, as appropriate.
Next, we assessed polyfunctionality of vaccine-induced
SARS-CoV-2-specific CD4þ T cells, as multifunctional
Th1 cells (IFN-gþTNF-aþIL-2þ) have been described
to provide a better correlate of immune protection
against infection after vaccination [65]. LP-PWH and
HCWs displayed comparable median distribution of
polyfunctionality profiles within SARS-CoV-2-specific
cytokine-producing Th1 cells at both time points, with a
nonsignificant trend towards higher relative frequencies
of tri-functional S-specific Th1 cells in HCWs (Fig. 1d).
Frequencies of mono-functional, bi-functional and tri-
functional S-specific Th1 cells within total CD4 T cells
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Fig. 1. Vaccine-induced SARS-CoV-2-specific CD4R T-cell responses. (a) Frequency (percentage, %) of SARS-CoV-2-specific T
cells within total, CM, EM, EMRA, and cTfh CD4þ T cells, as determined by AIM assay (CD69þCD137þ), in LP-PWH and HCWs
at T0, T1, and T2. (b) Frequency of cytokine (IFN-g, TNF-a, IL-2, IL-4, IL-17A)-producing SARS-CoV-2-specific T cells within total
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were comparable between LP-PWH and HCWs, except
for higher percentages of mono-functional TNF-aþ
IFN-g–IL-2– CD4þ T cells in LP-PWH at T1
(P¼ 0.0023) (Fig. 1e).

CD8þ T-cell responses confirmed inferior to CD4þ T-
cell responses also by evaluating intracellular cytokines
production (Figure S4B, Supplemental Digital Content,
http://links.lww.com/QAD/C879). Only a significant
expansion in frequencies of SARS-CoV-2-specific IL-4þ
CD8þ T cells at T2 in LP-PWH (P¼ 0.0078) was
detected, with no differences in S-specific cytokine-
producing CD8þ T cells between the two groups
(Fig. 2b).

Interestingly, total AIMþ SARS-CoV-2–specific CD8þ

T cells were found to correlate positively with CD4þ/
CD8þ ratio at T1 (r¼ 0.67, P¼ 0.005) and with CD4þ

T-cell count at T2 (r¼ 0.57, P¼ 0.02) in LP-PWH
(Fig. 2c).

Vaccine-induced SARS-CoV-2-specific humoral
responses
Total anti-RBD antibodies increased at T1 and T2 as
compared to baseline in both LP-PWH (PT0–T1 <
0.0001, PT0–T2< 0.0001) and HCWs (PT0–T1< 0.0001,
PT0–T2 < 0.0001) (Fig. 3a). When comparing LP-PWH
and HCWs, no differences were observed at T1, but
higher levels of anti-RBD antibodies were detected in
LP-PWH at T2 (P¼ 0.0054) (Fig. 3a).

Furthermore, a rise of spike-ACE2 binding inhibition
activity at both time points was detected in LP-PWH
(PT0–T1< 0.0001, PT0–T2< 0.0001) andHCWs (PT0–T1
< 0.0001, PT0–T2¼ 0.0021) (Fig. 3b). As for anti-RBD
antibodies, no significant differences between groups
were registered at T1, yet LP-PWH showed higher spike-
blocking activity at T2 than HCWs (P¼ 0.0017)
(Fig. 3b). Interestingly, in LP-PWH, spike-ACE2 binding
inhibition activity was found to positively correlate with
CD4þ T-cell nadir [T1: r¼ 0.31, P¼ 0.19; T2: r¼ 0.56,
P¼ 0.02] (Fig. 3c), as well as current immune status, i.e.
naı̈ve CD4þ T cells [T1: r¼ 0.67, P¼ 0.002; T2:
r¼ 0.67, P¼ 0.005], CD4þ T-cell count [T1: r¼ 0.47,
(d) Donut charts showing the median distribution of polyfunctiona
cells of LP-PWH and HCWs at T1 and T2. The donut slices represe
functional T cells. The arches around the circumference indicate th
portion of T cells that lie under the arc; parts of the donut surro
Frequency of tri-, bi-, and mono-functional SARS-CoV-2-specific Th
and T2. Red/blue dots: individual values; black bars: medians; red/b
below plots: number of individuals out of the total analyzed wh
longitudinal analyses (T1 and T2 compared to T0): Wilcoxon sig
(at each time point): Mann–WhitneyU test (P values in black); analy
2-specific T cells were measured subtracting unspecific backgrou
unstimulated control samples from stimulated samples.

Fig. 1 Continued.
P¼ 0.04; T2: r¼ 0.69, P¼ 0.003], CD4þ T-cell per-
centage [T1: r¼ 0.47, P¼ 0.04; T2: r¼ 0.61, P¼ 0.01],
and CD4þ/CD8þ ratio [T1: r¼ 0.52, P¼ 0.02; T2:
r¼ 0.63, P¼ 0.008] (Fig. 3d).

No correlations were found between T-cell and humoral
responses to vaccine in both study groups (data not
shown).

SARS-CoV-2-specific T-cell and humoral
responses in SARS-CoV-2-naive vs. -experienced
vaccinees
When assessing vaccine-elicited immune responses
according to previous COVID-19, we found that
SARS-CoV-2-experienced HCWs showed higher
anti-RBD antibodies as compared to naı̈ve individuals
only prior to vaccine administration (P¼ 0.0355); after
vaccination, they displayed greater Spike-blocking
activity at T1 (P¼ 0.0041), but not at T2 (Fig. 4a).
SARS-CoV-2-recovered LP-PWH showed higher anti-
RBD antibodies compared to naive at baseline
(P¼ 0.022), but this effect was not retained at
postvaccination timepoints; no differences were detected
in Spike-ACE2 inhibition activity between experienced
and naive in LP-PWH (Fig. 4a).

As for T-cell responses, SARS-CoV-2–experienced
HCWs displayed higher S-specific IFN-gþ CD4þ T
cells at both T0 (P¼ 0.0251) and T1 (P¼ 0.0325), but
not at T2. On the contrary, LP-PWH with prior SARS-
CoV-2 infection did not show greater frequencies of S-
specific T cells neither before nor after vaccination as
compared to naive (Fig. 4b). No differences were found
in other SARS-CoV-2–specific T-cell populations
between naive and experienced vaccinees (data not
shown).
Discussion

In this prospective, longitudinal study, we sought to
comparatively assess the magnitude and the quality of T-
cell and humoral responses to COVID-19 mRNA
lity profiles in SARS-CoV-2-specific cytokine-producing Th1
nt median percentages of tri- (3þ), bi- (2þ), and mono- (1þ)
e particular cytokine (IFN-g, TNF-a, or IL-2) produced by the
unded by multiple arches represent polyfunctional cells. (e)
1 cells within total CD4þ T cells in LP-PWH and HCWs at T1
lue lines connectingmedian values at T0, T1, and T2; fractions
ich are above their individual baseline at each time point;
ned-rank test (P values in red/blue); cross-sectional analyses
ses between donut charts: SPICE permutation test. SARS-CoV-
nd activation (AIM) or cytokine-production (ICS) in paired

http://links.lww.com/QAD/C879


1510 AIDS 2023, Vol 37 No 10

T1: ns
T2: ns

0.00

0.05

0.10

0.15

0.20

0.25

%
 S

AR
S-

C
oV

-2
 s

pe
ci

fic
 T

 c
el

ls

ns

T0

ns

T1 T2

ns
0.0078

T1: ns
T2: ns

0.0

0.5

1.0

1.5

2.0

%
 S

AR
S-

C
oV

-2
 s

pe
ci

fic
 T

 c
el

ls ns

T0 T1 T2

ns

ns
ns

T1: ns
T2: ns

0.0

0.5

1.0

1.5

%
 S

AR
S-

C
oV

-2
 s

pe
ci

fic
 T

 c
el

ls

0.0449

T0 T1 T2

0.0488

ns
ns

T1: ns
T2: ns

0.0

0.1

0.2

0.3

0.4

0.5
1.5
2.0

%
 S

AR
S-

C
oV

-2
 s

pe
ci

fic
 T

 c
el

ls

ns

T0 T1 T2

ns

ns
0.0122

T1: ns
T2: ns

0.0

0.2

0.4

0.6

0.8

1.0

%
 S

AR
S-

C
oV

-2
 s

pe
ci

fic
 T

 c
el

ls ns

T0 T1 T2

ns

ns
ns

7/20
10/18

4/19
4/16

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.5

1.0

1.5

2.0

SARS-CoV-2 specific AIM+ CD8+ T cells

C
D

4+
/C

D
8+

  r
at

io

r = 0.67
P = 0.005

T1

0.0 0.2 0.4 0.6
0

500

1000

1500

SARS-CoV-2 specific AIM+ CD8+ T cells

C
D

4+
 T

-c
el

l c
ou

nt
 (c

el
ls

/µL
) r = 0.57

P = 0.02

AI
M

+ 
(C

D
69

+C
D

13
7+

)
IC

S+

CM CD8+ T cellT s EM CD8+ T cellT s EMRARR  CD8A + T cellT s cTfc CD8+ T cellT sTotal CD8TT + T cellT s

T1: ns
T2: ns

0.0

0.2

0.4

0.6

0.8

1.0

%
 S

AR
S-

C
oV

-2
 s

pe
ci

fic
 T

 c
el

ls 0.0195

T0 T1 T2

ns

ns
ns

T1: ns
T2: ns

0.0

0.2

0.4

0.6

0.8

%
 S

AR
S-

C
oV

-2
 s

pe
ci

fic
 T

 c
el

ls ns

T0

ns

T1 T2

ns
ns

T1: ns
T2: ns

0.0

0.5

1.0

1.5

2.0

%
 S

AR
S-

C
oV

-2
 s

pe
ci

fic
 T

 c
el

ls ns

T0

ns

T1 T2

ns
ns

1/20
4/18

0/19
1/16

3/20
3/18

9/20
10/18

8/20
10/18

3/20
7/18

10/19
8/16

6/19
10/16

5/19
6/16

7/19
5/16

IFN- + CD8+ T cellT s TNF- + CD8+ T cellT s IL-2+ CD8+ T cellT s IL-4+ CD8+ T cellT s IL-17A+ CD8+ T cellT s

T1: ns
T2: ns

0.0

0.2

0.4

0.6

0.8

1.0

%
 S

AR
S-

C
oV

-2
 s

pe
ci

fic
 T

 c
el

ls
ns

T0

ns

T1 T2

ns
ns

T1: ns
T2: ns

0.00

0.02

0.04

0.06

0.08

0.10

%
 S

AR
S-

C
oV

-2
 s

pe
ci

fic
 T

 c
el

ls ns

T0

ns

T1 T2

ns
ns

2/20
4/18

1/19
1/16

2/20
5/18

4/19
5/16

5/20
6/18

5/19
9/16

3/20
3/18

1/19
6/16

Correlations between current immune status and

(a)

(c)

T2

HCWsLP-PLWLL H

(b)

Fig. 2. Vaccine-induced SARS-CoV-2–specific CD8R T-cell responses. (a) Frequency (percentage, %) of SARS-CoV-2-specific T
cells within total, CM, EM, EMRA, and cTfc CD8þ T cells, as determined by AIM assay (CD69þCD137þ), in LP-PWH and HCWs
at T0, T1, and T2. (b) Frequency of cytokine (IFN-g, TNF-a, IL-2, IL-4, IL-17A)-producing SARS-CoV-2–specific T cells within total
CD8þ T-cells, as determined by ICS assay, in LP-PWH and HCWs at T0, T1, and T2. Red/blue dots: individual values; red/blue
lines connecting median values at T0, T1, and T2; fractions below plots: number of individuals out of the total analyzed which are
above their individual baseline at each time point; longitudinal analyses (T1 and T2 compared to T0): Wilcoxon signed-rank test (P
values in red/blue); cross-sectional analyses (at T1 and T2): Mann–Whitney U test (P values in black). SARS-CoV-2–specific T cells
were measured subtracting unspecific background activation (AIM) or cytokine-production (ICS) in paired unstimulated control
samples from stimulated samples. (c) Correlations between current immune status (CD4þ/CD8þ ratio and CD4þ T-cell count) and
SARS-CoV-2-specific CD8þ T cells in LP-PWH at T1 and T2, respectively. Red dots: individual values; black line: simple linear
regression line; analysis: Spearman’s correlation test.
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Fig. 3. Vaccine-induced SARS-CoV-2-specific humoral responses. (a) Anti-RBD total antibodies expressed as AUC in LP-PWH
and HCWs at T0, T1, and T2. (b) Spike-ACE2 binding inhibition activity expressed as percentage (%) of inhibition of ACE2-spike
RBD interaction in LP-PWH and HCWs at T0, T1, and T2. Red/blue dots: individual values; red/blue lines connecting median
values at T0, T1, and T2; fractions below plots: number of individuals out of the total analyzed which are above their individual
baseline at each time point; longitudinal analyses (T1 and T2 compared to T0): Wilcoxon signed-rank test (P values in red/blue);
cross-sectional analyses (at T1 and T2): Mann–WhitneyU test (P values in black). (c) Correlations between CD4þ T-cell nadir and
Spike-ACE2 binding inhibition activity in LP-PWH at T1 and T2. (d) Correlations between current immune status (naı̈ve CD4þ T
cells, CD4þ T-cell count, CD4þ T-cell percentage, CD4/CD8 ratio) and spike-ACE2 binding inhibition activity in LP-PWH at T1
and T2. Red dots: individual values; black line: simple linear regression line; analysis: Spearman’s correlation test.
vaccination up to 6months apart from the primary cycle
in cART-treated late presenter PWH as compared to
HIV-negative people. We also evaluated whether previ-
ous SARS-CoV-2 infection modulates vaccine-elicited
immune responses in these populations.

Although several recent studies have addressed the
question examined in this work, most of them showing
that PWH with optimal immunologic response to cART
mount immune responses to SARS-CoV-2 vaccines
comparable to those of the HIV-negative counterparts
[25–31], our study specifically focused on PWH
identified late in infection, a condition which has been
reported to associate with enduring immune disfunction
despite cART [43–46], thus raising the concern of
suboptimal vaccine-elicited responses. Moreover, given
that late presenters are at increased risk of poor
immunological recovery [49,51,52,56,61,66], a state
which has been described to be potentially linked with
worse COVID-19 outcomes [8,14], it is of paramount
importance to define the efficiency of immune responses
to SARS-CoV-2 vaccines in such vulnerable population.

In our research, mRNA vaccine was able to expand
SARS-CoV-2–specific T cells in a similar fashion in LP-
PWH and HIV-uninfected people, with some minor
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Fig. 4. SARS-CoV-2-specific immune responses according to previous infection. (a) Anti-RDB antibodies (AUC) and Spike-ACE2
binding inhibition activity (% Inhibition) in SARS-CoV-2–naive (N) and -experienced (EXP) LP-PWH (nN¼10, nEXP¼ 10) and
HCWs (nN¼10, nEXP¼ 10) at T0, T1, and T2. (b) SARS-CoV-2–specific IFN-gþ CD4 T cells in SARS-CoV-2-naive (N) and
-experienced (EXP) LP-PWH (nN¼10, nEXP¼10) and HCWs (nN¼10, nEXP¼10) at T0, T1, and T2. Red/blue dots: individual
values; black bars: medians; analyses: Mann–Whitney U test (P values in black).
phenotypic differences. CM, EM, and cTfh CD4þT cells
increased in both LP-PWH and HCWs, whereas S-
specific EMRA CD4þ T cells only expanded in LP-
PWH. Antigen-specific CD4 EMRA T cells have been
reported to produce more IFN-g compared to other
memory subsets and to be endowedwith potent cytotoxic
effector functions, therefore being implicated in protec-
tive immunity against viral pathogens such as dengue
virus (DENV) [67–69]. The observation that DENV–
specific CD4 EMRA T cells expand with repeated
infections [69] suggests that a high-dose/repeated antigen
exposure may be critical for the development of such
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cells. Therefore, the induction of potentially protective
SARS-CoV-2–specific CD4þ EMRA T cells in LP-
PWH but not in HCWs may be explained with the
different mRNAvaccine administered to the two groups,
as mRNA-1273 has been proven to elicit stronger
immune responses and to confer higher clinical protec-
tion compared to BNT162b2, possibly as a reflection of
the 3.3-fold higher dose of mRNA [25,28,70–76].

Furthermore, – in accordance with prior data in HIV-
negative vaccinees [59,77–80] – HCWs only spread
SARS-CoV-2–specific Th1 cells, while LP-PWH
developed vaccine-induced Th1 but also Th2-like (IL-
4þ) cells. A predominance of Th2 immune responses has
long been known as main feature of HIV infection [81–
84]. Furthermore, skewed T-cell responses to vaccines –
including those against SARS-CoV-2 – with a predomi-
nant Th2 polarization have been described to associate
with the aging-related immunosenescence [85–89]. This
evidence may explain why in our study PWH, whose
immune system is notoriously senescent [90], developed
also Th2-like responses to vaccine.

Unexpectedly, frequencies of S-specific Th1 cells
appeared to be higher in LP-PWH. However, iMFI
for such cytokine-producing T cells were comparable
between the two study groups, suggesting no significant
differences in the total functional T-cell response to
vaccine. Indeed, while the frequency of antigen-specific
T cells only evaluates the magnitude of T-cell responses,
iMFI is a metric which incorporates both the magnitude
and quality of the immune response, thus reflecting the
total functional response of a population of cytokine-
producing T cells, so that it can be used to better estimate
vaccine-induced protection [65,91,92]. Furthermore,
polyfunctionality patterns of S-specific Th1 cells were
similar in LP-PWH andHCWs, reaffirming that vaccine-
induced T-cell responses are qualitatively comparable in
the two study groups. In accordance with published data
on SARS-CoV-2-specific T cells in both convalescent
and vaccinated individuals [15,33,58,70,71,77–80], vac-
cine-induced CD4þ T-cell responses in our cohort
outnumbered CD8þ T-cell responses.

We also found that mRNA vaccines induced spike-
blocking anti-RBD antibodies in all vaccinees, irrespec-
tive of HIV status. Surprisingly, anti-RBD antibodies and
spike-ACE2 binding inhibition activity, while compara-
ble in the two groups at T1, were lower in HCWs at T2,
possibly reflecting a faster decline of humoral responses to
vaccine. As for the higher frequencies of vaccine-elicited
CD4þ EMRAT cells in LP-PWH, the different mRNA
vaccine administered to the two groups may explain
such finding.

In agreement with previous studies which described
antibody levels to wane more rapidly than T cells after
both natural infection [93] and vaccination [59,70,94], we
observed different dynamics in T-cell and humoral
responses to mRNA vaccines, with a tendency to be
stable or increase at 6months in SARS-CoV-2-specific T
cells and a tendency to decline in Spike-blocking anti-
RBD antibodies in both LP-PWH and HCWs.

In accordance with previous studies in PWH demon-
strating the association between immune response to
SARS-CoV-2 mRNAvaccines and current CD4þ T-cell
count [25–31,95–97], we hereby found a positive
correlation between markers of immune recovery on
cART and both SARS-CoV-2–specific CD8þ T-cells
and antibody spike-ACE2 binding inhibition activity.
Interestingly, a positive correlation between CD4þ T-cell
nadir and spike-blocking function was also observed.
These data suggest that PWHwith low CD4þT-cell nadir
and/or poor immune reconstitution may have subopti-
mal responses to a two-dose vaccine cycle, reinforcing the
importance of additional mRNA vaccine doses in these
subgroups of PWH.

It should also be noted that LP-PWH at baseline showed
lower percentages of naı̈ve and higher frequencies of
effector memory CD4þ and CD8þ T cells, as well as
higher circulating T follicular cytotoxic cells. Depletion
of naive T cells – which are critical for effective immune
responses to pathogens and vaccines – is a well known
feature of HIV infection [98]. Likewise, cTfc cells have
been previously reported to be enriched in PWH and
proposed as an indicator of disease progression because,
among PWH, those with lower frequencies of cTfc cells
also have lower CD4þ T-cell counts [99,100]. Nonethe-
less, in our cohort of LP-PWH, only naı̈ve CD4þ T-cell
pools out of the different subsets showed a positive
correlation with vaccine-elicited immune responses (i.e.,
spike-blocking activity).

Finally, when we assessed the immune response according
to previous COVID-19 diagnosis, we found a unique
pattern of S-specific T-lymphocyte response in LP-
PWH, that was not captured in HIV-uninfected people.
Indeed, SARS-CoV-2-experienced LP-PWH, while
showing higher anti-RBD antibodies at baseline similar
to HIV-negative individuals, did not feature raised S-
specific T cells, suggesting similar humoral yet diminished
T-cell responses to natural infection. Furthermore,
although previously exposed to SARS-CoV-2, LP-
PWH failed to raise T-cell response at the end of the
first vaccine cycle compared to SARS-CoV-2-naive ones,
as instead observed in HCWs, pointing to an inability of
prior SARS-CoV-2 infection to boost immune responses
to vaccine in LP-PWH. These observations may appear
in partial contrast with two previous studies, which
described comparable SARS-CoV-2-specific T-cell and
humoral responses between HIV-positive and negative
individuals after SARS-CoV-2 infection [15,16]; how-
ever, PWH of our cohort have a history of late HIV
presentation and feature lower median CD4þ and
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CD4þ/CD8þ ratio than those included in the above-
mentioned studies, which may be responsible for reduced
T-cell responses to SARS-CoV-2 natural infection.
However, in accordance with our data, other recent
studies showed that, compared to HIV-negative peers,
convalescent PWH while developing similar humoral
response, show lower andmore exhausted SARS-CoV-2-
specific T cells [17–19].

Some limitations need to be acknowledged in our study.
Firstly, the lack of a CD3 marker in the flow cytometry
antibody panels for both AIM and ICS assay, and the
definition of the cTfh subset by means of the solely
CXCR5 expression. Secondly, the small sample size,
whichmay hinder the generalizability of the observations.
Thirdly, the lack of data regarding SARS-CoV-2 variants
of concern (VOCs), especially Omicron, not yet emerged
at the time the study was conceptualized, and which is
now the most widespread all over the world [101].
Fourthly, the relatively short follow-up and the lack of
data on responses to a third/fourth dose of vaccine.
Furthermore, the time between previous COVID-19
diagnosis and study enrollment was unknown in both LP-
PWH and HCWs, so timing differences between the two
groups might have influenced the dissimilarity found in
infection-induced immune responses. Additionally, the
mRNA vaccines administered were different in the two
study groups, as per the initial indication of the Italian
Ministry of Health (1273-mRNA in LP-PWH and
BNT162b2 in HCWs), and this may account for a trend
towards higher immune responses in LP-PWH.

In conclusion, in our cohort of PWH with pre-cART
advanced immunodeficiency and current full virologic
control on long-term cART, we herein showed that a
two-dose mRNA-1273 vaccine cycle is able to induce
both polyfunctional SARS-CoV-2–specific memory T
cells and anti-RBD Spike-blocking antibodies, which are
still above prevaccine baseline levels at 6months. Of note,
immune responses to vaccine do not appear inferior to
those in HIV-negative peers overall, albeit a scarce
immune recovery may hinder both T-cell and humoral
vaccine-elicited responses. Furthermore, unlike HIV-
negative individuals, in LP-PWH natural SARS-CoV-2
infection seems inefficient in inducing specific T-cell
memory and in boosting T-cell and humoral responses to
vaccine, reflecting an enduring partial immune dysfunc-
tion. Altogether, these findings support the need for
additional vaccine doses in PWH with a history of
advanced immune depression and poor immune recovery
on effective cART.
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