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Coupled topological flat and wide bands: Quasiparticle
formation and destruction
Haoyu Hu and Qimiao Si*

Flat bands amplify correlation effects and are of extensive current interest. They provide a platform to explore
both topology in correlated settings and correlation physics enriched by topology. Recent experiments in cor-
related kagome metals have found evidence for strange-metal behavior. A major theoretical challenge is to
study the effect of local Coulomb repulsion when the band topology obstructs a real-space description. In a
variant to the kagome lattice, we identify an orbital-selective Mott transition in any system of coupled topolog-
ical flat and wide bands. This was made possible by the construction of exponentially localized and Kramers-
doublet Wannier functions, which, in turn, leads to an effective Kondo-lattice description. Our findings show
how quasiparticles are formed in such coupled topological flat-wide band systems and, equally important,
how they are destroyed. Our work provides a conceptual framework for the understanding of the existing
and emerging strange-metal properties in kagome metals and beyond.
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INTRODUCTION
In flat electronic bands, Coulomb interactions are proportionally
enhanced because of their reduced kinetic energy. As such, flat-
band systems serve as a platform for strong correlation physics
(1). Heavy fermion metals represent a canonical case of flat bands
formed from highly localized atomic orbitals, and, indeed, they
display rich correlation physics such as quantum criticality,
strange metallicity, and unconventional superconductivity (2, 3).
Studies here have led to the notion that quasiparticles are lost in
strange metals (4–8). Another case, emerging in a growing list of
materials, corresponds to flat bands formed by geometrical interfer-
ence (9–13); such bands are often topological. These materials rep-
resent a playground to study both the strong correlations and
topology (14–18) and have been found to show unusual properties
such as exotic forms of charge density wave order (15, 19–23). Re-
cently, experimental evidence for strange-metal behavior has
emerged from correlated kagome metals (24, 25), which contains
both flat and wide bands that intersect with each other. The ob-
served behavior takes the form of a T-linear resistivity or a single-
particle damping rate that is linear in frequency. This raises the
question of how quasiparticles can be destroyed in such systems.
The question is important not only for correlated kagome metals
but also for related flat band settings such as moiré systems (26, 27).

Thus motivated, here we study the topological flat bands coupled
to wide bands. Our work provides the first theoretical demonstra-
tion of an orbital-selective Mott transition in any system that in-
volves coupled topological flat-wide bands. The orbital-selective
Mott transition provides a framework to understand the quasipar-
ticles’ formation and, equally important, their destruction. The
latter allows for the understanding of the existing and emerging
strange-metal properties of flat-band systems. Our work also con-
nects the topological flat band systems to the orbital-selective
physics of bulk correlated materials (28–30), in which the atomic
orbitals exhibit different dispersions and yet [in contrast to

models with fully decoupled orbitals (31)] are kinetically coupled
with each other.

More specifically, the topological nature of the flat bands makes
it difficult to describe them in terms of any localized orbitals. The
band topology obstructs the formulation of exponentially localized
and Kramers-doublet Wannier orbitals (32). This poses a challenge
for treating the effect of sizable spatially local Coulomb repulsion
and for connecting the behavior of the coupled topological flat-
wide bands to the orbital-selective Mott physics.

Here, we make progress by considering a lattice with a lower
symmetry, which retains the central issue of topological obstruction
while allowing—in a particularly transparent way—for the con-
struction of exponentially localized and Kramers-doublet
Wannier orbitals. The lattice, as illustrated in Fig. 1A, is a variant
of the kagome lattice. We are able to construct the Wannier
centers, which turn out to form a triangular lattice (Fig. 1B).
When the effective local Coulomb repulsion is larger than the
width of the flat band (Dflat) but smaller than that of the wide
band (Dwide), we identify a continuous orbital-selective Mott tran-
sition [a quantum critical point (QCP)] (Fig. 1C). The two involved
ground states respectively feature a “large” and a “small” Fermi
surface (expanded form of FS); in an effective Kondo-lattice formu-
lation that we construct, the large Fermi surface is Kondo driven; the

Fig. 1. Lattice geometry and qualitative phase diagram. (A) Lattice geometry.
A, B, C, D, and E mark the five sites of a unit cell. (B) The Wannier orbitals we con-
struct, which form a triangular lattice (the orange dots). (C) Illustration of the zero-
temperature phase diagram that we determine, for the Hubbard interaction (U )
that is larger than the width of the flat band (Dflat) and smaller than the width
of the wide bands (Dwide), with the Fermi surface (FS) changing from large to
small as the interaction U is increased across the orbital-selective Mott QCP.
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small Fermi surface, then, develops from a Kondo destruction (6–8).
By analogy with the phase diagram of heavy fermion metals (1–3),
the existence of the phases with large and small Fermi surfaces (33–
35) opens up a regime of amplified quantum fluctuations (6) for
beyond-Landau quantum criticality and the accompanying
strange-metal behavior (36). Thus, our work provides a conceptual
framework to address the aforementioned strange-metal behavior
in the flat band–based metals. The connection with a Kondo-
lattice description is also being pursued in moiré systems (37–40).
The approach taken here is expected to shed light on the quantum
phases and their transitions in those systems.

RESULTS
The lattice contains five sublattices marked as A, B, C, D, E
(Fig. 1A). The model is written asH ¼H0 þH1, which contains
the on-site Hubbard interactions

H1 ¼ U
X

r;i
nηr;i;"n

η
r0;i;# ð1Þ

as well as the noninteracting Hamiltonian H0. Included in H0 are
the nearest-neighbor tight binding hopping parameter t between
two sites that are connected by a solid line in Fig. 1A, from an η
electron (dz2 orbital) located at site r, sublattice i ∈ (A, B, C, D,
and E) with spin σ, to its counterpart at r, j ∈ (A, B, C, D, and E)
and spin σ; a chemical potential μ; a potential differencem between
the sublattices C, D, and E and the sublattices A and B; and an ad-
ditional potential difference γ between the sublattices D and E and
the sublattice C (see Materials and Methods). To illustrate our case,
we consider t = 1 = m without loss of generality.

To analyze a more tractable model with a lower symmetry, we
focus on the case of a nonzero γ. Here, a C3z of the γ = 0 model
(see Materials and Methods) is broken, and the middle band is
not entirely flat, as seen in Fig. 2 (A and B). However, for small γ
(which we illustrate with the case of γ = −0.1 t), the middle band
remains relatively flat (the bandwidth is about 0.06 t) and, thus, will
still be referred to as a flat band. Near Γ, there is a linear crossing
between the flat and dispersive bands along the Γ − K line. The
node is located near the Γ point and is protected by theMx symme-
try. When a spin-orbit coupling is further included (see the

Supplementary Materials, fig. S1E), such a node would be gapped
out, and the flat band acquires ±1 spin Chern number.

In this original lattice basis, the flat band comes from a linear
superposition of the atomic states located in the five different sub-
lattices. A single atomic–like representation of the flat band is
needed to make progress, which we now turn to.

We will consider the Hubbard interaction U that is large com-
pared to the width of the flat band but small compared to the width
of the wide bands (Fig. 1C). Such a range is of interest to the exper-
imentally studied systems mentioned earlier. Since there is an
energy gap between the top three bands and the bottom two, we
focus on the top three bands that include the flat band.

To express a band in terms of exponentially localized and
Kramers-doublet Wannier orbitals, the Bloch states must have the
sameMx-symmetry eigenvalue at all high-symmetry points (41, 42).
In our case, the topological obstruction can be recognized by notic-
ing that the different high-symmetry points of the flat band have
different eigenvalues of theMx symmetry. As shown in the Supple-
mentary Materials (band 3 in table S1) and illustrated in Fig. 2B, the
eigenvalue changes from +1 at K andM0 to −1 at γ. Similar changes
of Mx-symmetry eigenvalues are also observed for the two wide
bands (bands 1 and 2 in table S1). We therefore consider a combi-
nation of Bloch states so that the +1 eigenvalue portion of the flat
band combines with the +1 eigenvalue portion of the wide band
(band 2 in table S1 and illustrated in Fig. 2).

Through explicit construction, we indeed show the validity of the
procedure. We find the exponentially localized Wannier functions,
which are located on a triangular lattice (Fig. 1B), with theMx-sym-
metry eigenvalue being +1. We call such a Wannier function a d
orbital. The hopping integral of the two neighboring d orbitals is
indeed weak in our construction: It turns out to be on the order
of 0.03 t.

The remaining degrees of freedom can be represented by two
Wannier orbitals withMx-symmetry eigenvalue +1 and −1, respec-
tively. These two orbitals mainly come from the top two dispersive
bands, and we label them as c orbitals.

We have thus succeeded in constructing a single atomic–like
state per unit cell to represent the flat band. The model takes the
form of an effective multiorbital Hubbard model on a triangular
lattice, which can also be viewed as an effective Anderson-lattice

Fig. 2. Noninteracting band structure. The full band structure (A) and zoomed-in band structure (B) at γ/t = −0.1 and μ/t = 1.02. In (B), we label the Mx-symmetry
eigenvalues of the bands at the Mx-invariant momenta: Γ = (0,0) and K = (0,4π/3).
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model. It is expressed in terms of the d and c orbitals, containing the
kinetic term H0 and the interaction term HI.

The kinetic term,H0, is given in detail in the SupplementaryMa-
terials. It involves two types of electrons, with dyR;σ creating a d elec-
tron (electron in the orbital d ), which represents the flat band’s
degrees of freedom, at site R with spin σ. Similarly, cyR;a;σ creates a
conduction c electron (electron in orbital c), which represents the
itinerant degrees of freedom, at site R with spin σ and orbital a =
1,2. H0 contains the part Hd, describing the energy level (Ed) and
their negligibly small hopping parameters; the part Hc, describing
the inter-c-electron hopping parameters, tcR� R0;aa0;σ and the energy
levels Ea (a = 1,2); and the part Hdc, the d-c hybridization term with
matrix elementVR−R0 ,a,σ. These parameters are specified in the Sup-
plementary Materials. As is seen there, the dominant hybridization
is with one of the two conduction electron bands, a = 1. The corre-
sponding hybridization is off-site because cR,1,σ is mirror odd.

The most important interactions here include the Hubbard in-
teractions of the d electrons (Hu), and the Hund’s coupling between
the d and c electrons (HHund). The interactions are labeled u and J1,2,
respectively. The specific forms of the interactions are given in the
Supplementary Materials.

In the limit of u�jtdR� R0j, the Hubbard interactions suppress the
charge fluctuations of the d electrons and turn them into quantum
spins. Correspondingly, the effective model acquires a representa-
tion in terms of a Kondo-lattice Hamiltonian on the same triangular
lattice (see Materials and Methods). It contains two Kondo cou-
plings JK,a (a = 1,2) to two conduction c electron bands and an
inter-moment exchange coupling JH between the d spins. Both cou-
plings are controlled by the parameter

~u ¼ 4uϕ0=3 ð2Þ

with ϕ0 being of order unity (see Materials and Methods and
section SD).

For convenience in notation, we now treat ~u of Eq. 2 as our
tuning parameter (we note, however, that tuning ~u is equivalent
to varying the original Hubbard interaction U ). At smaller ~u, the
Kondo effect dominates. Increasing ~u enhances the relative effect
of the antiferromagnetic exchange interactions between the local
moments, which favors the correlations between the local
moments and is detrimental to the development of the
Kondo effect.

We have analyzed this competition through a set of saddle-point
equations that are realized in a large-N limit (see Materials and
Methods). We use a pseudo-fermion representation of the spin
and solve the saddle-point equations in terms of the field ζR,R0a,
which represents the hybridization of the Kondo-driven composite
fermions and conduction-c fermions, and χR,R0, which characterizes
the inter-moment spin singlets (43).

Figure 3 shows the resulting phase diagram. At small ~u, we
realize a topological heavy Fermi-liquid phase via the condensation
of the hybridization field ζ. The latter converts the local moments
into composite fermions that are represented by the f fields, which
hybridize with the conduction electrons. Furthermore, the nonzero
hybridization ζR1a2 attaches a +1 Mx-symmetry eigenvalue to the
composite fermion f field, which is the opposite to the eigenvalue
of the dominantly hybridizing conducting c1 band (see section
SG). The correlated heavy bands are topological containing a
Dirac node, as shown in Fig. 4A. The node is protected by Mx

and the SU(2) symmetry: Because of the formation of the hybrid-
ized bands, the Fermi surface encloses the electrons residing on
both the conduction and flat bands (44, 45). This is the large
Fermi surface, which is shown in Fig. 4B.

Increasing ~u leads to a Kondo destruction (6–8): The local
moments couple to each other, and they no longer form a Kondo
singlet with the spins of the conduction electrons. Consequently,
the Fermi surface is derived from the dispersion of the conduction
electrons, plotted in Fig. 4C. It is shown in Fig. 4D and is small in
the sense that the Fermi surface encloses only the conduction elec-
trons. The frustrated nature of the effective lattice (Fig. 1B) has led
to the Kondo-destroyed phase via the bond variables χR,R0.
However, the physical mechanism leading to the Kondo destruction
is more universal, as characterized by a global phase diagram for the
competition between the Kondo and RKKY/Heisenberg interac-
tions (1).

DISCUSSION
We have demonstrated the first realization of orbital-selective Mott
transition in models of topological flat bands in the presence of cou-
pling with wide bands. The large-Fermi surface state provides a
proper description for the development of the strongly correlated
d-electron quasiparticles. In turn, this sets the stage for the transi-
tion into the small-Fermi surface phase, which represents the de-
struction of the correlated quasiparticles. This orbital-selective
Mott transition is in the same universality class as the Kondo-de-
struction quantum criticality of heavy fermion metals (4, 6–8, 46),
associated with which strange metallicity develops. Our theoretical
description, thus, provides the conceptual framework to understand
the recently emerged experimental evidence for strange metal be-
havior in correlated kagome metals (24, 25).

We close with several remarks on the generality and implications
of our results. First, our Wannier construction procedure works
equally well for the case with a spin-orbit coupling. Accordingly,
our Kondo-lattice construction and the results for the quasiparticle
formation and destruction readily apply in this case. Second, by em-
phasizing the interplay and coupling between the flat and wide
bands, our work brings out an analogy between the correlated
quantum materials that host topological flat bands (10–12, 15, 22,
23) and moiré systems (37–40), in which the strange-metal behavior
has also been indicated (26). Compared to the topology of the gra-
phene-based moiré flat bands (38, 47), the bands in our case share
the traits of being topological but have the distinction of beingmuch
simpler. This simplification represents a crucial advantage in allow-
ing us to provide a proof-of-principle demonstration of both the
emergence and destruction of the proper quasiparticles in systems
with coupled topological flat-wide bands through the Kondo route.
Our explicit construction of the Kondo lattice also sets the stage for
the study of a global quantum-phase diagram (1) in such topological
flat band–anchored systems. Third, the topological nature of the flat
band makes our Kondo lattice topological. This topological feature
distinguishes our current model from the conventional Kondo-
lattice models where the bands are usually topologically trivial.
This topological feature naturally makes the heavy Fermi-liquid
phase topologically nontrivial, featuring a Dirac node. Beyond
this, at the QCP and in the non–Fermi-liquid region, the incoherent
electronic excitations could also show nontrivial topology.
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However, any such topological feature goes beyond the quasiparticle
description and is left for future studies.

We now discuss the stability of the QCP and the corresponding
non–Fermi-liquid behavior. First, at finiteN, the Kondo destruction
part of the phase diagram could contain a magnetically ordered
phase. The stability of the Kondo destruction QCP and the corre-
sponding non–Fermi-liquid behavior remain robust, as has been
shown in the Kondo-lattice model (4, 46). Second, with a nonzero
spin-orbit coupling, the SU(2) spin symmetry will be broken.
However, the existence of the Kondo destruction critical behavior
relies on the competition of local moment fluctuations and
Kondo effect instead of the specific symmetry of the local
moment (4, 46, 48). Therefore, the Kondo destruction QCP and
the non–Fermi-liquid behavior that we found here are robust.

In conclusion, we have advanced a realistic model to study the
effect of local Coulomb repulsion for a system of coupled topolog-
ical flat and wide bands. By constructing exponentially localized
and Kramers-doublet Wannier functions for these bands, we are
able to formulate a Kondo-lattice description. This has allowed us
to provide the first demonstration of an orbital-selective Mott tran-
sition in any system of coupled topological flat and wide bands. The
orbital-selectiveMott transition provides a characterization for both
the development and destruction of quasiparticles, leading to
quantum phases with large and small Fermi surfaces. Our work pro-
vides a conceptual framework to describe the amplified quantum
fluctuations of multiband systems with topological flat bands, sets
the stage to understand the strange-metal properties that are emerg-
ing in kagome metals and other flat-band systems, and uncovers a

linkage between these systems and both the f and d electron–based
correlated bulk materials.

MATERIALS AND METHODS
The Hubbardmodel,H ¼H0 þH1, is defined on a variant of the
kagome lattice defined in Fig. 1A, with the onsite interaction term,
H1, given in Eq. 1. The noninteracting Hamiltonian is written as
follows

H0 ¼
P
hr;r0i;i;j;σ tη

y
r;i;σηr;j;σ � μ

P
r;i;σ η

y
r;i;σηr;i;σ

þ
P

r;σ;i[fC;D;Egmηyr;i;σηr;i;σ þ
P

r;σ;i[fD;Eg γη
y
r;i;σηr;i;σ

ð3Þ

Here, ηyr;i;σ creates an electron at site r, sublattice i ∈ (A, B, C, D,
E) with spin σ.

At γ = 0, the system has a C3z rotational symmetry, anMxmirror
symmetry, and also an SU(2) spin rotational symmetry. This leads to
a purely flat band as shown in the Supplementary Materials (fig.
S1B). There is a quadratic band touching between the flat and a dis-
persive band at the center of the Brillouin zone, Γ = (0,0). The cross-
ing is protected by both the Mx and C3z symmetries. To analyze a
more tractable model with a lower symmetry, we focus on the case
of a nonzero γ, as described in the Results section.

In the limit of u�jtdR� R0j, the charge fluctuations of the d elec-
trons are suppressed, and these electrons are turned into quantum
spins. By integrating out the high-energy degrees of freedom [in the
presence of the Hund’s coupling, (49, 50)], we reach a Kondo-Hei-
senberg model with the Hund’s coupling. The effective Kondo-
lattice Hamiltonian on the triangular lattice is

HKH ¼ Hc þ HH þHK þ HHund

HH ¼
X

R;R0
JHR;R0 S
!

R � S
!

R0

HK ¼
X

R;R1;a1;R2;a2

JKR;R1;a1;R2;a2 S
!

R � c
y
R1;a1 σ
!cR2;a2

ð4Þ

Here, S!R is the emergent spin-1/2 local moment formed by the
localized d electrons. In the large u limit, the hoppings of d electrons
induce a Heisenberg interaction of strength JHR;R0 ¼ 2jtdR;R0j

2
=~u,

where ~u is specified by Eq. 2. The nonlocal hybridization terms
between the d and c electrons lead to nonlocal Kondo couplings
of strength JKR;R1;R2;a1;a2 ¼ 4V�R� R2;a2VR� R1;a1=~u. Here, the local
moment of the d electron is Kondo coupled to a spin operator
cyR1a1 σ
!cR2a2 that are formed by two electron operators from the

sites R1, R2 and the orbitals a1, a2 respectively. Last, the
Hamiltonians for the c electrons and for the Hund’s coupling
remain unchanged from those given in the effective multiorbital
Hubbard (i.e., the effective Anderson lattice) model. In particular,
the Hund’s coupling acts between the d and c electrons of the
same site (see section SC). To analyze the competition between the
inter-moment and Kondo exchange couplings, we introduce the
pseudo-fermion representation of the spin operators Sx;y;zR ¼
1
2
P

σ;σ0 f
y
R;σσ

x;y;z
σ;σ0 f R;σ and solve the model in the large-N limit [with

a generalization of SU(2) to SU(N) and a suitable rescaling of the
coupling constants in terms of 1/N; see section SF].

Fig. 3. The zero-temperature phase diagram calculated in the large-N limit. As
the interaction ~u is increased, η gradually decreases and goes to zero at ~u ¼ 0:35
(marked by the brown dot), which signals a continuous orbital-selective Mott tran-
sition between a Kondo-driven and Kondo-destroyed phases, with a large and a
small Fermi surface, respectively.
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The ground state is characterized by the bond fields χR,R0 (43)
and the hybridization fields ζR,R0a

χR;R0 ¼ 1
N

X

σ
hf yR;σf R0;σi

ζR;R0a ¼ 1
N

X

σ
hf yR;σcR0;a;σi

ð5Þ

and their maximum amplitudes ζ = maxR,R0,a{∣ζR,R0a∣} and χ =
maxR,R0{∣χR,R0∣}. The results from solving the saddle-point equations
have been given in the Results section. The Kondo destruction is
captured by the suppression of the hybridization fields ζ, which
appears not only in the SU(2)-symmetric setting but also in the
cases with spin anisotropy (4, 46, 48).

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 and S2
Tables S1 and S2

REFERENCES AND NOTES
1. S. Paschen, Q. Si, Quantum phases driven by strong correlations. Nat. Rev. Phys. 3,

9–26 (2021).
2. P. Coleman, A. J. Schofield, Quantum criticality. Nature 433, 226–229 (2005).
3. S. Kirchner, S. Paschen, Q. Chen, S. Wirth, D. Feng, J. D. Thompson, Q. Si, Colloquium:

Heavy-electron quantum criticality and single-particle spectroscopy. Rev. Mod. Phys. 92,
011002 (2020).

4. H. Hu, L. Chen, Q. Si, Quantum critical metals: Dynamical planckian scaling and loss of
quasiparticles. arXiv:2210.14183 [cond-mat.str-el] (2022).

5. P. W. Phillips, N. E. Hussey, P. Abbamonte, Stranger than metals. Science 377,
eabh4273 (2022).

6. Q. Si, S. Rabello, K. Ingersent, J. L. Smith, Locally critical quantum phase transitions in
strongly correlated metals. Nature 413, 804–808 (2001).

7. P. Coleman, C. Pépin, Q. Si, R. Ramazashvili, How do Fermi liquids get heavy and die?
J. Phys. Condens. Matter 13, R723–R738 (2001).

8. T. Senthil, M. Vojta, S. Sachdev, Weak magnetism and non-fermi liquids near heavy-
fermion critical points. Phys. Rev. B 69, 035111 (2004).

9. A. Mielke, Ferromagnetic ground states for the hubbard model on line graphs. J. Phys. A:
Math. Gen. 24, L73–L77 (1991).

10. L. Ye, M. Kang, J. Liu, F. von Cube, C. R. Wicker, T. Suzuki, C. Jozwiak, A. Bostwick,
E. Rotenberg, D. C. Bell, L. Fu, R. Comin, J. G. Checkelsky, Massive dirac fermions in a fer-
romagnetic kagome metal. Nature 555, 638–642 (2018).

11. M. Yao, H. Lee, N. Xu, Y. Wang, J. Ma, O. V. Yazyev, Y. Xiong, M. Shi, G. Aeppli, Y. Soh,
Switchable Weyl nodes in topological kagome ferromagnet Fe3Sn2. arXiv:1810.01514
[cond-mat.str-el] (2018).

Fig. 4. Quantum phases with large and small Fermi surfaces. The band structure (A) and Fermi surface (B) in the phase with a large Fermi surface. Shown here are the
results at ~u ¼ 0:27. For a larger value of ~u ¼ 0:35, the corresponding band structure (C) and Fermi surface (D) are shown for the phasewith a small Fermi surface. In (A) and
(B), the brown dots mark the Dirac nodes. The dashed line in (A) and its counterpart in (C) mark the Fermi energy. The orange lines in (B) and (D) denote the Fermi surface.

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Hu and Si, Sci. Adv. 9, eadg0028 (2023) 19 July 2023 5 of 6

https://arxiv.org/abs/2210.14183
https://arxiv.org/abs/1810.01514


12. M. Kang, S. Fang, L. Ye, H. C. Po, J. Denlinger, C. Jozwiak, A. Bostwick, E. Rotenberg,
E. Kaxiras, J. G. Checkelsky, R. Comin, Topological flat bands in frustrated kagome lattice
CoSn. Nat. Commun. 11, 4004 (2020).

13. C. Barreteau, F. Ducastelle, T. Mallah, A bird’s eye view on the flat and conic band world of
the honeycomb and kagome lattices: Towards an understanding of 2D metal-organic
frameworks electronic structure. J. Phys. Condens. Matter 29, 465302 (2017).

14. C. Setty, H. Hu, L. Chen, Q. Si, Electron correlations and T-breaking density wave order in a
ℤ2 kagome metal. arXiv:2105.15204 [cond-mat.str-el] (2021).

15. C. Setty, C. A. Lane, L. Chen, H. Hu, J.-X. Zhu, Q. Si, Electron correlations and charge density
wave in the topological kagome metal FeGe. arXiv:2203.01930 [cond-mat.str-el] (2022).

16. S. D. Huber, E. Altman, Bose condensation in flat bands. Phys. Rev. B 82, 184502 (2010).
17. T. Mizoguchi, Y. Kuno, Y. Hatsugai, Construction of interacting flat-band models by mo-

lecular-orbital representation: Correlation functions, energy gap, and entanglement. Prog.
Theor. Exp. Phys. 2022, 023I02 (2022).

18. Z. Gulácsi, A. Kampf, D. Vollhardt, Exact many-electron ground states on diamond and
triangle hubbard chains. Prog. Theor. Phys. Suppl. 176, 1–21 (2008).

19. Y.-X. Jiang, J.-X. Yin, M. M. Denner, N. Shumiya, B. R. Ortiz, G. Xu, Z. Guguchia, J. He,
M. S. Hossain, X. Liu, J. Ruff, L. Kautzsch, S. S. Zhang, G. Chang, I. Belopolski, Q. Zhang,
T. A. Cochran, D. Multer, M. Litskevich, Z.-J. Cheng, X. P. Yang, Z. Wang, R. Thomale,
T. Neupert, S. D. Wilson, M. Z. Hasan, Unconventional chiral charge order in kagome
superconductor KV3Sb5. Nat. Mater. 20, 1353–1357 (2021).

20. C. Mielke III, D. Das, J.-X. Yin, H. Liu, R. Gupta, Y.-X. Jiang, M. Medarde, X. Wu, H. C. Lei,
J. Chang, P. Dai, Q. Si, H. Miao, R. Thomale, T. Neupert, Y. Shi, R. Khasanov, M. Z. Hasan,
H. Luetkens, Z. Guguchia, Time-reversal symmetry-breaking charge order in a kagome
superconductor. Nature 602, 245–250 (2022).

21. S. Zhou, Z. Wang, Doped orbital Chern insulator, Chern Fermi pockets, and chiral topo-
logical pair density wave in kagome superconductors. arXiv:2110.06266 [cond-mat.supr-
con] (2021).

22. X. Teng, L. Chen, F. Ye, E. Rosenberg, Z. Liu, J. X. Yin, Y. X. Jiang, J. S. Oh, M. Z. Hasan,
K. J. Neubauer, B. Gao, Y. Xie, M. Hashimoto, D. Lu, C. Jozwiak, A. Bostwick, E. Rotenberg,
R. J. Birgeneau, J. H. Chu, M. Yi, P. Dai, Discovery of charge density wave in a kagome lattice
antiferromagnet. Nature 609, 490–495 (2022).

23. J.-X. Yin, Y. X. Jiang, X. Teng, M. S. Hossain, S. Mardanya, T. R. Chang, Z. Ye, G. Xu,
M. M. Denner, T. Neupert, B. Lienhard, H. B. Deng, C. Setty, Q. Si, G. Chang, Z. Guguchia,
B. Gao, N. Shumiya, Q. Zhang, T. A. Cochran, D. Multer, M. Yi, P. Dai, M. Z. Hasan, Discovery
of charge order and corresponding edge state in kagome magnet FeGe. Phys. Rev. Lett.
129, 166401 (2022).

24. L. Ye, S. Fang, M. G. Kang, J. Kaufmann, Y. Lee, J. Denlinger, C. Jozwiak, A. Bostwick,
E. Rotenberg, E. Kaxiras, D. C. Bell, O. Janson, R. Comin, J. G. Checkelsky, A flat band-induced
correlated kagome metal. arXiv:2106.10824 [cond-mat.mtrl-sci] (2021).

25. S. A. Ekahana, Y. Soh, A. Tamai, D. Gosálbez-Martínez, M. Yao, A. Hunter, W. Fan, Y. Wang,
J. Li, A. Kleibert, C. A. F. Vaz, J. Ma, Y. Xiong, O. V. Yazyev, F. Baumberger, M. Shi, G. Aeppli,
Anomalous quasiparticles in the zone center electron pocket of the kagomé ferromagnet
Fe3Sn2. arXiv:2206.13750 (2022).

26. A. Jaoui, I. das, G. di Battista, J. Díez-Mérida, X. Lu, K. Watanabe, T. Taniguchi, H. Ishizuka,
L. Levitov, D. K. Efetov, Quantum critical behaviour in magic-angle twisted bilayer gra-
phene. Nat. Phys. 18, 633–638 (2022).

27. W. Zhao, B. Shen, Z. Tao, Z. Han, K. Kang, K. Watanabe, T. Taniguchi, K. F. Mak, J. Shan, Gate-
tunable heavy fermions in amoiré Kondo lattice. arXiv:2211.00263 [cond-mat.str-el] (2022).

28. J. Huang, R. Yu, Z. Xu, J. X. Zhu, J. S. Oh, Q. Jiang, M. Wang, H. Wu, T. Chen, J. D. Denlinger,
S. K. Mo, M. Hashimoto, M. Michiardi, T. M. Pedersen, S. Gorovikov, S. Zhdanovich,
A. Damascelli, G. Gu, P. Dai, J. H. Chu, D. Lu, Q. Si, R. J. Birgeneau, M. Yi, Correlation-driven
electronic reconstruction in FeTe1-xSex. Commun. Phys. 5, 29 (2022).

29. R. Yu, H. Hu, E. M. Nica, J.-X. Zhu, Q. Si, Orbital selectivity in electron correlations and su-
perconducting pairing of iron-based superconductors. Front. Phys. 9, 578347 (2021).

30. H. Hu, L. Chen, J.-X. Zhu, R. Yu, Q. Si, Orbital-selectivemott phase as a dehybridization fixed
point. arXiv:2203.06140 [cond-mat.str-el] (2022).

31. V. Anisimov, I. Nekrasov, D. Kondakov, T. Rice, M. Sigrist, Orbital-selective Mott-insulator
transition in Ca2-xSrxRuO4. Eur. Phys. J. B. 25, 191–201 (2002).

32. N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, D. Vanderbilt, Maximally localized wannier
functions: Theory and applications. Rev. Mod. Phys. 84, 1419–1475 (2012).

33. S. Paschen, T. Lühmann, S. Wirth, P. Gegenwart, O. Trovarelli, C. Geibel, F. Steglich,
P. Coleman, Q. Si, Hall-effect evolution across a heavy-fermion quantum critical point.
Nature 432, 881–885 (2004).

34. H. Shishido, R. Settai, H. Harima, Y. Ōnuki, A drastic change of the Fermi surface at a critical
pressure in CeRhIn5: dHvA study under pressure. J. Phys. Soc. Jpn. 74, 1103–1106 (2005).

35. T. Park, F. Ronning, H. Q. Yuan, M. B. Salamon, R. Movshovich, J. L. Sarrao, J. D. Thompson,
Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5.
Nature 440, 65–68 (2006).

36. L. Prochaska, X. Li, D. C. MacFarland, A. M. Andrews, M. Bonta, E. F. Bianco, S. Yazdi,
W. Schrenk, H. Detz, A. Limbeck, Q. Si, E. Ringe, G. Strasser, J. Kono, S. Paschen, Singular
charge fluctuations at a magnetic quantum critical point. Science 367, 285–288 (2020).

37. A. Ramires, J. L. Lado, Emulating heavy fermions in twisted trilayer graphene. Phys. Rev.
Lett. 127, 026401 (2021).

38. Z.-D. Song, B. A. Bernevig, Magic-angle twisted bilayer graphene as a topological heavy
fermion problem. Phys. Rev. Lett. 129, 047601 (2022).

39. A. Kumar, N. C. Hu, A. H. MacDonald, A. C. Potter, Gate-tunable heavy fermion quantum
criticality in a moiré Kondo lattice. Phys. Rev. B 106, L041116 (2022).

40. D. Guerci, J. Wang, J. Zang, J. Cano, J. H. Pixley, A. Millis, Chiral Kondo lattice in doped
MoTe2/WSe2 bilayers. arXiv:2207.06476 [cond-mat.str-el] (2022).

41. J. Cano, B. Bradlyn, Band representations and topological quantum chemistry. Annu. Rev.
Condens. Matter Phys. 12, 225–246 (2021).

42. J. Kruthoff, J. de Boer, J. van Wezel, C. L. Kane, R.-J. Slager, Topological classification of
crystalline insulators through band structure combinatorics. Phys. Rev. X 7, 041069 (2017).

43. I. Affleck, J. B. Marston, Large-n limit of the Heisenberg-Hubbard model: Implications for
high-Tc superconductors. Phys. Rev. B 37, 3774–3777 (1988).

44. E. Pivovarov, Q. Si, Transitions from small to large Fermi momenta in a one-dimensional
Kondo lattice model. Phys. Rev. B 69, 115104 (2004).

45. M. Oshikawa, Topological approach to Luttinger’s theorem and the Fermi surface of a
Kondo lattice. Phys. Rev. Lett. 84, 3370–3373 (2000).

46. H. Hu, L. Chen, Q. Si, Extended dynamical mean field theory for correlated electron models.
arXiv:2210.14197 [cond-mat.str-el] (2022).

47. H. C. Po, L. Zou, T. Senthil, A. Vishwanath, Faithful tight-binding models and fragile to-
pology of magic-angle bilayer graphene. Phys. Rev. B 99, 195455 (2019).

48. J.-X. Zhu, D. R. Grempel, Q. Si, Continuous quantum phase transition in a Kondo lattice
model. Phys. Rev. Lett. 91, 156404 (2003).

49. W. Ding, R. Yu, Q. Si, E. Abrahams, Effective exchange interactions for bad metals and
implications for iron-based superconductors. Phys. Rev. B 100, 235113 (2019).

50. O. N. Meetei, O. Erten, M. Randeria, N. Trivedi, P. Woodward, Theory of high Tc ferrimag-
netism in a multiorbital mott insulator. Phys. Rev. Lett. 110, 087203 (2013).

Acknowledgments: We thank L. Chen, S. Paschen, C. Setty, M. Yi, and especially G. Aeppli for
useful discussions. Funding: The work was primarily supported by the U.S. DOE, BES, under
award no. DE-SC0018197 (conceptualization for and construction of Wannier orbitals), by the
Air Force Office of Scientific Research under grant no. FA9550-21-1-0356 (conceptualization for
and determination of phase diagram), and additionally supported by the Robert A. Welch
Foundation grant no. C-1411. Most of the computational calculations have been performed on
the Shared University Grid at Rice funded by NSF under grant EIA-0216467, a partnership
between Rice University, Sun Microsystems, and Sigma Solutions Inc., the Big-Data Private-
Cloud Research Cyberinfrastructure MRI-award funded by NSF under grant no. CNS-1338099,
and by Rice University and the Extreme Science and Engineering Discovery Environment
(XSEDE) by NSF under grant no. DMR160057. The work of Q.S. was performed in part at the
Aspen Center for Physics, which is supported by the NSF grant no. PHY-1607611. Author
contributions: Conceptualization: H.H. and Q.S. Methodology: H.H. and Q.S. Investigation: H.H.
and Q.S. Supervision: Q.S. Writing—original draft: H.H. and Q.S. Writing—review and editing:
H.H. and Q.S. Competing interests: The authors declare that they have no competing interests.
Data and materials availability: All data needed to evaluate the conclusions in the paper are
present in the paper and/or the Supplementary Materials. Additional data that have been used
can be found at https://doi.org/10.5281/zenodo.8036791.

Submitted 25 November 2022
Accepted 16 June 2023
Published 19 July 2023
10.1126/sciadv.adg0028

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Hu and Si, Sci. Adv. 9, eadg0028 (2023) 19 July 2023 6 of 6

https://arxiv.org/abs/2105.15204
https://arxiv.org/abs/2203.01930
https://arxiv.org/abs/2110.06266
https://arxiv.org/abs/2106.10824
https://arxiv.org/abs/2211.00263
https://arxiv.org/abs/2203.06140
https://arxiv.org/abs/2207.06476
https://arxiv.org/abs/2210.14197
https://doi.org/10.5281/zenodo.8036791

	INTRODUCTION
	RESULTS
	DISCUSSION
	MATERIALS AND METHODS
	Supplementary Materials
	This PDF file includes:

	REFERENCES AND NOTES
	Acknowledgments

