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Abstract
Adjuvant glucocorticoid treatment is routinely used in the treatment of ovarian cancer to mitigate the undesirable side effects of
chemotherapy, thereby enhancing tolerability to higher cytotoxic drug doses and frequency of treatment cycles. However, in vitro
and preclinical in vivo and ex vivo studies indicate that glucocorticoids may spare tumor cells from undergoing cell death through
enhanced cell adhesion, promotion of anti-inflammatory signaling, and/or inhibition of apoptotic pathways. The implications of
laboratory studies showing potential negative impact on the efficacy of chemotherapy have been long overlooked since clinical
investigations have found no apparent survival detriment attributable to adjuvant glucocorticoid use. Importantly, these clinical
studies were not randomized and most did not consider glucocorticoid receptor status, a vital determinant of tumor response to
glucocorticoid administration. Additionally, the clinically beneficial elements of increased chemotherapy treatment adherence
and dosing afforded by adjuvant glucocorticoids may offset and therefore mask their anti-chemotherapy activities. This review
summarizes the current evidence on the impact of glucocorticoids in ovarian cancer and discusses the need for further research
and development of alternative strategies to ameliorate untoward side effects of chemotherapy.

Ovarian cancer, which accounts for approximately 240,000
new cases and 152,000 deaths annually, is the second deadli-
est gynecologic malignancy worldwide [1]. Current screening
and detection methods generally fail to reveal early disease
due to non-descript initial symptoms that can include gastric
disturbance, abdominal pain, urinary frequency or urgency,
changes in bowel habits, and bloating [2]. As a result, only
one third of cases are detected at International Federation of
Gynecology and Obstetrics (FIGO) stage I or II, where the
tumor is confined to the pelvic cavity [3]. When detected at
early stages, 5-year survival can approach 90% (for stage IA)
due to the efficacy of initial staging surgery and subsequent
intravenous chemotherapy, most commonly with platinum-

based (i.e., carboplatin) and taxane-based (i.e., paclitaxel)
combination therapy.

Most ovarian cancers are detected after the disease has
spread beyond the pelvic cavity, which may make surgical
cytoreduction challenging. In those cases where surgical out-
come is suboptimal, currently defined as tumor remnants >
1 cm in diameter, surgery offers little overall survival benefit
[4, 5]. Moreover, while cytoreductive surgery followed by
adjuvant chemotherapy often induces remission, the vast ma-
jority (> 70%) of patients recur and eventually become resis-
tant to existing chemotherapies [6–8]. A key therapeutic goal
is thus to optimize chemotherapy efficacy to eliminate residual
tumor cells. Toward this goal, glucocorticoids are typically
administered to ameliorate the side effects of high-dose che-
motherapy that can limit dosing or number of treatment cy-
cles. However, multiple in vitro and preclinical studies indi-
cate glucocorticoid treatment may negatively impact chemo-
therapeutic efficacy and promote disease progression [9–14].

Glucocorticoid Receptor (GR), its Isoforms,
and their Differential Impact
on Glucocorticoid Response

Glucocorticoids are multifunctional steroid hormones secreted
by cells within the zona fasciculata of the adrenal cortex that
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act to promote tissue and organism homeostasis. Cortisol, the
principal active endogenous glucocorticoid in humans, regu-
lates metabolism, antagonizes pro-inflammatory signaling and
cell-related immunity, and features prominently in the stress
response. Natural glucocorticoids and their synthetic deriva-
tives are commonly used as powerful immunosuppressants for
organ transplant recipients and to treat severe autoimmune
conditions [15, 16]. Due to their lympholytic activity, they
are also used to treat various lymphoid cancers [17].

Glucocorticoids act primarily by binding and activating an in-
tracellular receptor that then translocates to the cell nucleuswhere
itbindsasahomo-orheterodimertospecificnucleotidesequences
in regulatory regions of target genes to affect their transcription.
The activatedGRcan either enhance or repress gene transcription
through multiple mechanisms (reviewed in [18]). Although
encoded by a single gene (NR3C1), several functional GR iso-
forms are produced throughalternativeRNAsplicing and transla-
tionalstart siteusage.Thedifferential expressionof these isoforms
in a cell can determine its sensitivity and response to glucocorti-
coids, as recently reviewed byOakley and Cidlowski [19].

The classical effects of glucocorticoids are mediated
through the activation and dimerization of the GRα isoform,
a 777 amino acid modular protein consisting of a centrally
located DNA-binding domain (DBD), an N-terminal
transactivation domain that is independent of ligand

activation, and a C-terminal ligand-binding domain (LBD)
possessing transactivation function requiring conformational
changes induced by hormone binding (Fig. 1).

Among the other identified isoforms, the function of GRβ
and GRγ are best known and both can act to result in de-
creased or altered glucocorticoid activity. GRβ is encoded
by an alternatively spliced NR3C1 transcript resulting in sub-
stitution of 15 non-homologous amino acids for the 50 C-
terminal amino acids of GRα, a region of the protein involved
in ligand binding [20]. As a consequence, GRβ is unable to
bind GR agonists but constitutively localizes to the cell nucle-
us and blocks GRα activity by acting as a dominant negative
inhibitor. Moreover, GRβ affects the expression levels of a
subset of genes independent of GRα [21]. Interestingly, this
latter activity is blocked by the GR antagonist mifepristone
(RU486), which binds both GRα and GRβ [21].

GRγ is also encoded by an alternatively spliced NR3C1
transcript, resulting in insertion of a single arginine addition
after amino acid 470, located within the DNA binding domain
(Fig. 1). While this addition does not impact the ability of the
receptor to bind ligands, it alters the interaction of the receptor
with regulatory factors at the site of DNA binding in a context-
dependent manner [22]. As a result, GRγ activation results in
an overlapping and distinct program of gene transcription
activation/repression compared to GRα, thereby altering the
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Fig. 1 Schematic indicating
variations present among the
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cellular response to glucocorticoids. Moreover, since GRγ is
less transcriptionally active than GRα, high expression levels
of GRγ can result in glucocorticoid insensitivity.

In addition to GRβ and GRγ, which are ubiquitously
expressed, two GR isoforms missing portions of their C-
terminal ligand-binding domain have been identified in cancer
cells that may alter sensitivity to glucocorticoids [23–27]. An
additional sevenN-terminal truncatedGRprotein isoforms have
been identified that are thought to arise from leaky ribosomal
scanning, enabling the use of alternative downstream initiation
codons [19, 28, 29]. Altogether, the collective expression of al-
ternative GR isoforms relative to GRα determines cellular sen-
sitivity and the specific cellular response to glucocorticoids.
While the vast majority of ovarian tumors express GR, potential
differential expression of GR isoforms, which could alter sensi-
tivity and tumor response, has not been determined.

In addition to isoform expression, GR activity is influenced
by multiple factors including, but not limited to, co-regulator
availability (both co-repressors and co-activators), receptor di-
merization with other transcription factors, and post-
translational modifications including phosphorylation,
sumoylation, ubiquitination, and acetylation (reviewed in
[30]). Glucocorticoid activity is also affected by the specific
glucocorticoid used, intracellular levels achieved, and their af-
finity forother steroidhormone receptors.Forexample,cortisol
has high affinity for both GR and mineralocorticoid receptors
(MR)and ispreventedfromactivatingMRinsometissues,such
as distal kidney ductules, through its local conversion to inac-
tive cortisone by 11β-hydroxysteroid dehydrogenase type II
(11βHSDII) [31].Downregulationof11βHSDII or an increase
in 11βHSD type I activity results in increased intracellular cor-
tisol, which can lead to increased GR and MR activation.
Dexamethasone (DEX), a clinically valuable potent synthetic
glucocorticoid, binds much more avidly to GR than MR,
exhibiting a relative binding affinity for MR of 17% as com-
pared toaldosterone[32].Thus,measurementofGRexpression
alone, including that of the various GR isoforms, may not fully
correlate with glucocorticoid response.

Glucocorticoids Ameliorate Side Effects
of Chemotherapy

Frontline chemotherapy regimens for advanced ovarian can-
cer typically consist of a combination of taxane and platin-
based therapy. A common and serious side effect of this reg-
imen is nausea and emesis, which is particularly problematic
with cisplatin and to a somewhat lesser extent with carboplatin
[33]. Antiemetic agents including serotonin 3 (5-HT3) or
neurokinin 1 (NK1) receptor antagonists and glucocorticoids
are typically administered to mitigate chemotherapy-induced
nausea and vomiting (CINV) [33–35]. Glucocorticoids also
promote electrolyte balance and stimulate appetite, in part by
suppressing edema, pain, and inflammation, in addition to

nausea and emesis associated with chemotherapy [34–36].
Additionally, they reduce the risk of hypersensitivity reactions
to taxanes [37], which can limit patient treatment options.

For moderate to highly emetic agents such as cisplatin or
carboplatin,DEX12mg isusually givenprior to chemotherapy
and daily 8 mg DEX is prescribed for 3 days after completing
chemotherapy toprevent acute and delayedCINV [14].To pre-
vent hypersensitivity reactions, 20 mg of DEX is given before
paclitaxel treatment [38]. Since a combination of platinum and
paclitaxel is the standard regimen of chemotherapy in ovarian
cancer,8 to20mgofDEXisusuallygivendaily for3daysof the
chemotherapy cycle. The incorporation of glucocorticoids into
chemotherapy regimens thus increases patient comfort and im-
proves adherence to treatment protocols [39].

Glucocorticoids Promote Tumor Cell Survival

Glucocorticoids induce apoptosis in hematological cell line-
ages and therefore have proven to be an effective direct anti-
neoplastic therapy for cancers derived from these lineages [36].
However, glucocorticoids support the survival of numerous
non-hematological cell types, an effect that extends following
their malignant transformation. Robust in vitro and ex vivo
studies for numerous non-hematological malignancies have
identified potential detriments to chemotherapeutic efficacy in
patients concurrently treated with glucocorticoids [40–47].

Glucocorticoids inhibit chemotherapy-induced apoptosis
in surgically derived tumors from ovary, breast, brain, pros-
tate, liver, pancreas, colon, cervix, bone, skin, and nervous
tissue [42]. These effects were observed for diverse chemo-
therapeutic agents including paclitaxel, cisplatin, 5-fluoroura-
cil, adriamycin, actinomycin D, doxorubicin, and
gemcitabine. Since these agents target different cellular func-
tions, the mechanisms underlying this impact of glucocorti-
coids likely involves a general pro-survival effect such as
enhancing cell adhesion, decreasing the likelihood of pro-
grammed cell death, or through inducing immunosuppression.

Several studies suggest that glucocorticoid-induced anti-ap-
optotic gene expression protects ovarian cancer cells from un-
dergoing programmed cell death in the presence of cytotoxic
agents [43, 46, 47]. Analogous in vitro, in vivo, and ex vivo
findings have been obtained for triple-negative breast cancer
(TNBC) [48–55]. Consistent with the breast cancer literature,
geneexpression studies implicate the anti-inflammatory effects
of serum glucocorticoid kinase-1 (SGK1) and dual-specificity
phosphatase-1/mitogen-activated protein kinase phosphatase-
1 (DUSP1/MKP1) as playing a central role in pro-survival ef-
fects onovarian cancer cells [43, 46]. The evidence for the stark
survival benefit experienced by tumor cells acrossmultiple ex-
perimental environments is discussed below.

Zhang et al. [47] identified consistent survival effects of
DEX in established ovarian cancer cell lines, mouse xeno-
grafts, and freshly isolated clinical tumor tissues. Irrespective

HORM CANC (2018) 9:95–107 97



of experimental modality, treatment with clinically relevant
doses of DEX 48 h prior to cisplatin or gemcitabine abrogated
the growth inhibitory or apoptotic response of ovarian tumor
cells to the chemotherapeutic agent. Remarkably, xenograft
tumors in mice treated with DEX and cisplatin grew as fast
in vivo as untreated controls, and a similar result was observed
for five established cell lines in vitro. Importantly, DEX pre-
treatment of clinically derived tumor specimens reduced the
effect of cisplatin, gemcitabine, and γ-radiation in inducing
cell death. The authors conducted preliminary molecular anal-
ysis, based on the TNBC literature, and speculated that their
findings may be due to the observed DEX-induced increased
SGK1 and DUSP1 expression, both of which promote cell
survival. However, the precise events underlying
glucocorticoid-induced cell resistance to chemotherapeutics
are not completely understood. Elucidating the mechanism
of this resistance is essential for understanding the impact of
glucocorticoid usage in clinical practice and for designing
more effective treatment strategies.

Melhem et al. [43] identified a 5- and 10-fold increase in
SGK1 and DUSP1 transcript levels, respectively, in GR-
positiveomental andovarian tumor samples fromovariancancer
patients as rapidly as 30 min following DEX administration.
Concordantly, SKOV3 and HEY8 ovarian cancer cell lines—
both GR positive—exhibited similar induction of SGK1 and
DUSP1 transcript and protein expression following DEX treat-
ment [43]. Administration of mifepristone reversed this effect,
which was taken as confirmation that GR activation was re-
quired. Furthermore, cytotoxic paclitaxel treatment efficacy, at
doses ranging from 10−8 to 10−6 M, decreased by 40% with 1 h
DEX pretreatment, as determined by examining the apoptotic
rate in SKOV3 and HEY8 cells [43]. This survival benefit in-
duced by DEX was present up to, and likely beyond, 30 h fol-
lowing the initial treatment with paclitaxel, holding significant
implications for the structuring of common chemotherapy regi-
mens. In addition to paclitaxel, DEX inhibited gemcitabine-, γ-
radiation-, and cisplatin-induced cell death. Importantly, these
effects were observed using clinically relevant doses of DEX
and with patient-derived heterogeneous tumor samples, provid-
ing the first clinically derived evidence for glucocorticoid-
induced survival on ovarian tumors.

More recently, Stringer-Reasor et al. [46] investigated the
effect of GR status and glucocorticoid administration in vitro,
in vivo, and ex vivo using ovarian cancer cell lines, mouse
xenografts, and patient-derived tumors. GR expression was
identified as essential for the protective glucocorticoid effect,
as cell lines without GR expression did not exhibit a survival
benefit due to DEX in the presence of chemotherapy. In GR-
positive cell lines, combination carboplatin/gemcitabine thera-
pywas 48% less effective at inducing apoptosis in the presence
of DEX as compared to in the absence of DEX. This survival
benefit of DEXwas abolished by the inclusion of mifepristone
or CORT125134, further indicating the effect wasmediated by

GR activation. CORT125134, also known as relacorilant, is a
competitive GR antagonist that, unlike mifepristone, has no
affinity for the progesterone receptor or other steroid hormone
receptors. In agreement with previous studies, SGK1 and
DUSP1 expression was enhanced due to DEX treatment and
was proposed as explaining the survival increase [46].
However,glucocorticoidsaffectawidearrayofgene transcripts
[56]andmayimpactbothgeneralizedandspecificcellularpath-
ways that contribute to altered tumor survival.

Regarding DEX concentrations used for in vitro studies
(0.01 or 1.0 μmol/L), commensurate levels are achieved in
patients (one dose of 12 mg results in plasma concentrations
of between 0.25 and 0.5 μmol/L) [9]; thus, potential detrimen-
tal effects of glucocorticoid treatment identified by in vitro
studies may have relevance in vivo.

Glucocorticoids Impact Inflammatory Mediators
and Immune Function

Tumor necrosis factor alpha (TNFα) is a vital inflammatory
cytokine whose expression is significantly enhanced by radi-
ation and by chemotherapy [57–59] and is a predictor and
effector of tumor cell death [58]. TNFα activates NFκB, a
key mediator in inflammatory cell signaling that also acts to
increase expression of various cytokines, including TNFα
[60, 61]. Glucocorticoids are well-known antagonists of
NFκB signaling and, therefore, of TNFα expression and func-
tion [57–59]. Other cytokines such as interleukin 1 beta (IL-
1β), TNF-related apoptosis-inducing ligand (TRAIL), and
cluster of differentiation 95-ligand (CD95-L) are similarly
inhibited by glucocorticoids following chemotherapy, with
authors of numerous studies consequently expressing concern
over potential glucocorticoid attenuation of treatment efficacy
in several cancers [11, 59, 62].

When pursuing cancer cure, robust host immune surveil-
lance and response is essential for eliminating remnant cancer
cells following surgery, radiation, and/or chemotherapy [63].
Initial concerns over glucocorticoid-induced immune suppres-
sion were raised over 50 years ago [12, 64]. The effects of
prolonged glucocorticoid use in humans may be analogous to
results obtained in murine models that show glucocorticoid
administration prevents effective elimination of surviving can-
cer cells by rendering them resistant to cytotoxic treatment and
by reducing B- and T-lymphocyte activity and recruitment
[65]. Although analogous studies have not been conducted
in humans, rapid immune suppression following glucocorti-
coid treatment is observed [16, 66].

Glucocorticoids Exert Effects on Cell Adhesion, ECM
Remodeling, and Metastasis

Part of the resistance to chemotherapy conferred by glucocorti-
coids may result from their ability to increase cellular adherence
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to extracellular matrix (ECM) components. While cancer cells
are typically able to evade anoikis and proliferate in the absence
of attachment, cell–matrix attachment enhances survival of can-
cer cells in the presence of cytotoxic treatment [67–70]. Several
preclinical studies identifying a glucocorticoid-induced increase
in cell survival following radio- and chemotherapy suggest glu-
cocorticoidsestablishapermissivemicroenvironmentfor tumors
to attach, migrate, and/or spread by altering expression of adhe-
sion components [67–73].

DEX was shown to enhance cell binding to fibronectin-
coated tissue dishes by up to 200% in a dose-dependent man-
ner across multiple ovarian cancer cell lines [67]. In contrast,
cytotoxic cisplatin and/or paclitaxel treatment decreased cel-
lular attachment by 51% and resulted in significant cell death
as compared to controls. When simultaneously administered
with cisplatin and/or paclitaxel treatment, DEX increased cell
survival and adhesion in parallel and in a dose-dependent
manner. DEX completely blocked apoptosis induction by cy-
totoxic treatment [67]. These studies thus contribute to the
concerns regarding glucocorticoid usage during radio- and
chemotherapy as they support the idea that glucocorticoids
may promote treatment failure and disease recurrence.

Mechanistic studies of how glucocorticoids affect cell ad-
hesion have focused largely on integrins, a class of vital cell–
cell and cell–ECM binding proteins known to function in
cancer progression and initiation (extensively reviewed in
[74, 75]). In fact, select integrins have been implicated as
therapeutic targets in phase II and III clinical trials. The
integrin β1 subfamily, the primary receptor for fibronectin
that in turn anchors to fibrillar collagen, consists of heterodi-
mers with variableα subunits. Fibronectin is a putative cancer
biomarker with an established role in cell migration; increased
fibronectin expression has been implicated in the progression
and spread of numerous cancers [76–78].

In SKOV-3 and HO-8910 ovarian cancer cells, DEX treat-
ment enhanced β1, α4, and α5 integrin expression by 150–
300%andpromotedsecretionof fibronectin, suggestinga com-
binatorial increase of both receptor and extracellular ligand for
protective ECM–cell bridging [67]. Reducing the binding ca-
pacity of β1 integrin to fibronectin using inhibitory antibodies
eliminated up to 70% of the survival benefit of DEX during
paclitaxel and/or cisplatin therapy [67]. In addition, DEX treat-
ment increasedMucin 1 (Muc1), a large transmembrane glyco-
protein that along with similar glycoproteins forms the cancer
cell glycocalyx. The glycocalyx can reduce overall integrin
binding by decreasing the spatial proximity of the cell mem-
brane toECMsubstrates.However, studies have shown that the
glycocalyx, and Muc1 in particular, promotes integrin cluster-
ing on the cell surface to result in enhanced focal adhesion
assembly and increased cell proliferation and survival [79].

The overall impact of glucocorticoid treatment on metasta-
sis is less clear. Tumor metastasis involves acquisition of in-
vasive cell properties characterized by epithelial to

mesenchymal cell transition (EMT) and expression of matrix
metalloproteinases. In addition, metastasis is enhanced by
changes to the tumor microenvironment, largely orchestrated
by cancer-associated fibroblasts. Both EMTand stromal fibro-
blast activation are induced by transforming growth factor
(TGF)-β1 signaling [80–83]. Glucocorticoids both enhance
and inhibit TGF-β signaling [80–84], and these signaling
pathways synergisticallymodulate the cell cycle in several cell
types [80]. Moreover, TGF-β1 produced pro-survival and ad-
hesion effects both independent of, and synergistic with, DEX
in ovarian cancer cells [67]. DEX treatment also enhanced
TGF-β type 2 receptor expression in prostate cancer cells
[84], a receptor essential for initial binding of TGF-β and
activation of type I receptor activity. TGF-β activation of kid-
ney epithelial cell EMT in obstructive neuropathy is mediated
by an increase in SGK1, which is associated with increased
ECM production and fibrosis [85]. While activation of SGK1
expression could be a point of synergy between GR and
TGF-β signaling pathways, DEX has been shown to suppress
TGF-β1-induced EMT in mink lung epithelial cells [86] and
in A549 lung carcinoma cells [87]. Moreover, DEX alone can
promote an epithelial cell phenotype [86, 88]. Thus, an im-
proved understanding of the contextual impact of glucocorti-
coids on TGFβ signaling in cancer cells and cancer-associated
fibroblasts is required.

A recent series of studies provide a mechanism by which
glucocorticoids may act beneficially to suppress ovarian can-
cer metastasis. Lin et al. [89] demonstrated that glucocorti-
coids increase expression of miRNA-708 in ovarian cancer
cell lines, which suppresses migration in vitro and metastasis
in vivo. They further showed that miRNA-708 suppresses
translation of Rap1B, a member of the Ras-like superfamily
involved in regulation of integrin signaling and cell–cell ad-
hesion [90]. In a subsequent study, Lin et al. [91] reported that
in an orthotopic mouse model using syngeneic ID8 ovarian
cancer cells, DEX treatment inhibited growth of the primary
tumor and reduced peritoneal seeding in association with in-
creased miRNA-708 and decreased Rap1B expression. While
these studies suggest a potential beneficial impact of adjuvant
glucocorticoid therapy, further investigation of the impact of
glucocorticoid treatment on ovarian cancer seeding and me-
tastasis using patient-derived xenograft models with known
GR isoform expression is required.

Mutations in Breast Cancer, 1 (BRCA1) Affect
Glucocorticoid Receptor Activity

A family history of breast or ovarian cancer is the greatest
identified risk factor for epithelial ovarian cancer, with most
of this heritable risk attributable to germline mutations in the
BRCA1 or BRCA2 genes. These mutations confer a lifetime
risk of up to 60% for BRCA1mutation carriers and up to 40%
for BRCA2 mutation carriers, compared to 1.4–1.7% for the
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general population [92–95].BRCA1 and BRCA2mutation car-
riers are predisposed selectively to the high-grade serous ovar-
ian cancer (HGSOC) histotype, which is the most commonly
diagnosed and lethal histotype. The various ovarian cancer
histotypes are associated with distinct clinical course, com-
monly mutated genes, and proposed cell of origin.
Numerous studies support the view that the epithelium within
the distal fallopian tube is the principal site for the origin of
HGSOC [96–98]. A current theory is that repetitive exposure
of distal fallopian tube epithelial cells to pro-inflammatory
signaling molecules present in follicular fluid at the time of
ovulation promotes oxidative stress-induced DNA modifica-
tions that promote malignant transformation. The well-
established anti-inflammatory action of GR signaling has led
to investigation of whether cancer-predisposing mutations in
BRCA1 associate with impaired GR signaling [99, 100].

Treatment of fallopian tube epithelial cells with DEX
blocks TNFα or IL1-β-induced inflammatory signaling [56].
In addition, increased inflammatory signaling is evident in
gene expression profiles of fallopian tube epithelia from
BRCA1 mutation carriers compared with that from non-
mutation carriers who underwent salpingectomy during the
post-ovulatory luteal phase [99]. These profiles were consis-
tent with decreased GR activity in tissues from BRCA1 muta-
tion carriers. Moreover, knock-down of BRCA1 protein levels
with targeting siRNA in cancer cell lines resulted in decreased
GR transactivation whereas expression of exogenous wild-
type BRCA1 cDNA increased GR transactivation [99].

GRmRNA and protein levels are positively correlated with
BRCA1 expression in patient-derived ovarian cancer speci-
mens [100]. Specifically, BRCA1 repression—either through
mutation or promoter hypermethylation—correlates with de-
creased GR expression. However, adjacent non-cancerous tis-
sue did not exhibit BRCA1mutation-associated GR inhibition,
suggesting that oncogenic signaling pathways combined with
reduced functional BRCA1 levels results in decreased GR
levels. This is consistent with studies indicating that BRCA1
enhances GR activity and levels in TNBC [101]. Vilasco et al.
[101] further showed that in breast cancer cells, BRCA1 po-
tentiates the activation of p38 Mitogen-Activated Protein
Kinase (MAPK), which phosphorylates GR at serine-211,
which is essential for robust GR signaling. Parallel studies in
ovarian cancer cells have not yet been reported.

GR may also regulate BRCA1 expression to impact DNA
double-strand break repair. An interesting study by Ritter et al.
[102] showed that in the absence of glucocorticoid, GR ex-
pression increased functional BRCA1 levels whereas treat-
ment with glucocorticoid decreased BRCA1 protein levels.
In the absence of ligand, GR binds to the transactivation sub-
unit, GABPβ, of the ets transcription factor in the promoter
region of the BRCA1 gene to stimulate BRCA1 expression.
This interaction is disrupted upon glucocorticoid binding to
GR, leading to decreased BRCA1 levels. The authors

speculate that this mechanism could contribute to an increased
risk of breast cancer associated with chronic stress [102, 103].
In this context, glucocorticoid treatment might enhance the
efficacy of PARP inhibitors in the treatment of ovarian can-
cers. DNA homologous repair could be impaired because of
glucocorticoid-induced decreased BRCA1 levels. While a de-
crease in BRCA1 could, in turn, decrease GR expression and
glucocorticoid response, this would not be expected to lead to
increased BRCA1 since it is the unliganded GR that acts to
increase BRCA1 promoter activity. Thus, BRCA1 levels could
be decreased by reducing the level of GR binding at the
BRCA1 gene promoter by either ligand binding or reducing
the level of unliganded GR.

BRCA1mutation carriers initially exhibit enhanced respon-
siveness to platinum-based chemotherapy [104] but develop
refractory disease at increased rates and ultimately succumb to
their illness [105]. The effect of a BRCA1 mutation may ini-
tially inhibit the glucocorticoid-induced ovarian cancer cell
survival benefit due to diminished GR signaling, thereby
allowing greater initial cytogenicity, but disease recurs due
to acquired treatment resistance. Therefore, ovarian cancer
cell lines with and without GR isoform expression, and with
differential BRCA1 levels may be of use in xenograft or
in vitro studies of the interaction between GR isoforms, che-
motherapy, and glucocorticoid administration.

Impact of Glucocorticoids on Clinical Outcomes: Need
for Further Study

Despite possible detrimental effects of glucocorticoids on the
efficacy of chemotherapy at the cellular level, glucocorticoids
remain incorporated into standard treatment as an adjunctive
medication along with chemotherapy [34, 106]. There is little
clinical evidence regarding the impact of glucocorticoid ad-
ministration and oncological outcomes in ovarian cancer pa-
tients. A retrospective study of 245 ovarian cancer patients
published in 2004 concluded that there was no evidence glu-
cocorticoid treatment negatively impacted survival [39]. The
study included patients who were scheduled to receive at least
six courses of systemic chemotherapy, which could include
cisplatin, epirubicin, and cyclophosphamide, and compared
those who were given glucocorticoids to augment anti-
emetic agents (n = 62) to those who did not receive glucocor-
ticoids (n = 183). The primary outcomes assessed in the study
were hematologic toxicity and recurrence-free and overall sur-
vival. Patients who received glucocorticoid treatment had sig-
nificantly higher leukocyte counts after chemotherapy com-
pared with patients who did not receive glucocorticoid treat-
ment. Glucocorticoids may prevent chemotherapy-induced
leukocytopenia by inhibiting apoptosis of neutrophils [107,
108] making patients less likely to delay or incur dose reduc-
tion during an entire treatment course, which are known poor
prognostic factors in ovarian cancer [109, 110]. In the study,
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65% of patients who had received glucocorticoids completed
their chemotherapy as planned, as compared to only 45% of
patients who did not receive glucocorticoids. Moreover, 58%
of patients who received glucocorticoids had a complete re-
sponse to their treatment, whereas only 37% of patients who
did not receive glucocorticoids had a complete response.
Despite these clear beneficial effects of glucocorticoid use,
there was no improvement by inclusion of glucocorticoid
treatment on either recurrence-free or overall survival, as
would be expected. This raises the possibility that detrimental
effects of glucocorticoids countering the effects of chemother-
apy on tumor cells are offset or masked by beneficial effects
on patient well being and treatment compliance.

A recent retrospective study designed to examine the asso-
ciationofGRexpressionandclinicaloutcome inovariancancer
patients has implicated highGR expression as a negative prog-
nostic indicator [111].GRwas shown to be expressed in 65.9%
of 341 primary ovarian tumors from patients who received pri-
mary cytoreductive surgery and adjuvant chemotherapy. High
GR expression, based upon percentage of cells stained for GR
immunoreactivity and the intensity of staining,was found to be
an independent prognostic factor for decreased recurrence-free
survival but not overall survival, adjusting for patient age,
grade, stage, and histotype. In contrast, GR expression did not
show prognostic value in a study of 85 ovarian cancer patients,
with no evidence of poorer survival in a small subset of GR-
positive patients, who had received adjuvant glucocorticoid
treatment [112].Neitherof thesestudies includedanassessment
of adjuvantglucocorticoid treatment.Adefinitive answer to the
question of whether glucocorticoid treatment is without

detrimental impact in patients with ovarian carcinoma cannot
be provided by a retrospective analysis and would be better
addressed in a well-controlled prospective trial that includes
tumor GR isoform profiling.

A related question is whether GR activation, in general,
promotes ovarian cancer progression. The response of ovarian
cancer patients to mifepristone was assessed in a small phase
II study of 34 ovarian cancer patients with tumors resistant to
cisplatin and paclitaxel. Treatment with mifepristone showed
activity with a response rate of 26.5% [113]. While the ratio-
nale for the use of mifepristone was as a progesterone receptor
antagonist, mifepristone is an equally potent GR antagonist
and it is not clear which activity is responsible for the effects
observed. Voisin et al. [114] have recently shown that the
proliferative effects of 6-oxo-cholestan-3β,5α-diol (OCDO),
a tumorigenic metabolite of cholesterol, on breast cancer cells
are mediated by GRs. OCDO also activated expression of
known glucocorticoid-responsive genes, including SGK1
and DUSP1. Further, they demonstrated that 11βHSDII is
the enzyme responsible for OCDO formation whereas
11βHSDI expression inactivates OCDO. Thus, it is possible
that inhibiting GR activation in a subset of ovarian cancer
patients may impede tumor progression independent of
impacting the efficacy of chemotherapeutics.

Given the range of GR responses, the use of specifically
designed glucocorticoid mimetic agents as adjuvant therapy
could be an attractive approach to yield better patient out-
comes [115, 116]. Pertaining to solid tumors, it is not presently
known how shifting GR target gene expression patterns might
affect patient outcomes; however, as we have indicated above,
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GR may act in both an inhibitory or stimulatory manner in
regards to tumor growth and metastasis (summarized in
Fig. 2). Selectively limiting the range of target genes affected
by GR may prove beneficial for cancer patients. Although
selective glucocorticoid receptor agonists and modulators
(SEGRAMs) have not been tested clinically, they may present
an appealing option for future research and clinical use as an
alternative to traditional glucocorticoids.

As already mentioned, DEX in combination with a 5-HT3
and/or NK1 inhibitor is typically recommended as a prophy-
laxis to prevent acute (defined as the first 24 h after chemo-
therapy administration) CINV in patients treated with moder-
ately or highly emetogenic chemotherapy. Palonosetron, a
second-generation 5-HT3 receptor antagonist with higher af-
finity and stability than first-generation antagonists, provides
protection for both acute and delayed CINV when adminis-
tered as a single dose. In breast cancer patients given 0.25 mg
palonosetron and 8 mg i.v. DEX on day 1 of moderate or
highly emetogenic chemotherapy treatment, additional treat-
ment with twice daily 4 mg oral DEX on days 2 and 3 offered
no further improvement in preventing CINV as compared to
patients receiving placebo on these days [117]. This study
indicates that incorporation of second generation 5-HT3 re-
ceptor antagonists in CINV prophylaxis regimens may enable
the total dose of DEX administered to be safely reduced.
Similarly, in patients treated with i.v. DEX + palonosetron +
125 mg oral aprepitant (NK1 receptor antagonist) on day 1 to
prevent acute CINV in breast cancer patients treated with a
combination of anthracycline and cyclophosphamide, Roila
et al. [118] demonstrated that 80 mg aprepitant administered
on days 2 and 3 was as effective as twice daily oral DEX for

preventing delayed CINV. Of those patients who experienced
delayed CINV despite treatment, patients receiving DEX rath-
er than aprepitant reported less severe nausea and fewer emet-
ic episodes; however, this difference was not statistically sig-
nificant. Although the authors concluded that DEX should be
chosen over aprepitant because of its lower cost, the potential
benefit of avoiding DEX-induced protection of tumor cells
should be considered.

Reduction of DEX treatment for the prevention of hyper-
sensitivity reactions in breast cancer patients receiving pacli-
taxel has also been investigated. These patients typically re-
ceive premedication consisting of DEX and histamine 1 and 2
receptor blockers. Patients susceptible to hypersensitivity re-
actions tend to exhibit these during their first or second expo-
sure to paclitaxel. Berger et al. [119] have shown that
discontinuing hypersensitivity premedications, including
DEX, in subsequent paclitaxel treatments in those patients
who did not experience a hypersensitivity reaction during their
first two exposures did not result in an increased incidence of
hypersensitivity reactions. It remains to be determined if re-
duction of DEX dosing impacts the efficacy of chemotherapy.

Conclusion

Inclusion of glucocorticoids at the time of chemotherapy has
clinical benefit associated with its ability to function as an
antiemetic and to decrease hypersensitivity responses to cyto-
toxic agents. Conversely, a preponderance of in vivo, ex vivo,
and preclinical animal models point to effects that can under-
mine the efficacy of cytotoxic chemotherapies (Fig. 2), which
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could promote residual tumor survival and resistance to che-
motherapy. It is also unlikely that all subtypes of ovarian can-
cer will respond identically to glucocorticoids since they are
derived from different cells of origin and not all ovarian cancer
tumors express GR. However, studies indicate that most ovar-
ian tumors are GR positive and hence detrimental effects of
the glucocorticoid therapy on chemotherapy efficacy could
offset the beneficial effects of enabling compliance with pre-
scribed dosing (Fig. 3).

The key question of whether glucocorticoid therapy has de-
monstrable negative impact on disease-free or overall survival
of ovarian cancer patients remains. Currently, only one retro-
spective study has addressed this question. While this study
indicates there is no impact of DEX on survival, this is surpris-
ing given the significant impact ofDEXonadherence to sched-
uled chemotherapy. A carefully designed prospective study
controlling for histotype, stage, and chemotherapy schedule
completion, andconsideringGRisoformexpression is required
to address this question. Such studies are difficult to conduct
given the recognized beneficial effects of glucocorticoids. As
further SEGRAMs are developed and tested preclinically, they
should be incorporated into clinical trials as substitutes for cur-
rently used GR agonists in chemotherapy regimens.
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