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Yield of Familial Hypercholesterolemia 
Genetic and Phenotypic Diagnoses After 
Electronic Health Record and Genomic 
Data Screening
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BACKGROUND: Data mining of electronic health records to identify patients suspected of familial hypercholesterolemia (FH) has 
been limited by absence of both phenotypic and genomic data in the same cohort.

METHODS AND RESULTS: Using the Geisinger MyCode Community Health Initiative cohort (n=130 257), we ran 2 screening algo-
rithms (Mayo Clinic [Mayo] and flag, identify, network, deliver [FIND] FH) to determine FH genetic and phenotypic diagnostic 
yields. With 29 243 excluded by Mayo (for secondary causes of hypercholesterolemia, no lipid value in electronic health re-
cords), 52 034 excluded by FIND FH (insufficient data to run the model), and 187 excluded for prior FH diagnosis, a final cohort 
of 59 729 participants was created. Genetic diagnosis was based on presence of a pathogenic or likely pathogenic variant in 
FH genes. Charts from 180 variant-negative participants (60 controls, 120 identified by FIND FH and Mayo) were reviewed to 
calculate Dutch Lipid Clinic Network scores; a score ≥5 defined probable phenotypic FH. Mayo flagged 10 415 subjects; 194 
(1.9%) had a pathogenic or likely pathogenic FH variant. FIND FH flagged 573; 34 (5.9%) had a pathogenic or likely pathogenic 
variant, giving a net yield from both of 197 out of 280 (70%). Confirmation of a phenotypic diagnosis was constrained by lack 
of electronic health record data on physical findings or family history. Phenotypic FH by chart review was present by Mayo 
and/or FIND FH in 13 out of 120 versus 2 out of 60 not flagged by either (P<0.09).

CONCLUSIONS: Applying 2 recognized FH screening algorithms to the Geisinger MyCode Community Health Initiative identified 
70% of those with a pathogenic or likely pathogenic FH variant. Phenotypic diagnosis was rarely achievable due to missing data.
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Familial hypercholesterolemia (FH) is underdiagnosed 
worldwide, despite high known risk for premature ath-
erosclerotic cardiovascular disease and the known 

ability to prevent adverse outcomes with lipid- lowering 
treatment.1 To improve identification of those likely to 
have an FH diagnosis, many studies have used strate-
gies, based on clinical characteristics (eg, low- density 
lipoprotein cholesterol [LDL- C] levels, premature heart 

attacks) or more complex machine learning algorithms 
(eg, flag, identify, network, deliver [FIND] FH) to search 
electronic health records (EHRs) to find at- risk individu-
als.2– 7 However, other than studies in the UK Biobank, 
these efforts have generally not been performed in co-
horts with both phenotypic EHR data and genomic in-
formation on the entire cohort, including those with and 
without FH.
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The purpose of this study was to apply 2 recognized 
EHR screening algorithms (Mayo Clinic and FIND FH) 
to the Geisinger MyCode Community Health Initiative 
(MyCode) data set, to determine the yields for (1) a ge-
netic diagnosis of FH based on the presence of a patho-
genic or likely pathogenic variant identified via genomic 
screening, or (2) by phenotypic criteria, using the Dutch 
Lipid Clinic Network (DLCN) score.2,3,8 Additional analy-
ses looked at clinical characteristics of those identified by 
each algorithm, the relationship of variants of unknown 
significance on study covariates, and the relationship of 
the gene involved (eg, LDLR or APOB) to results.

METHODS
The data that support the findings of this study are 
available from the corresponding author upon reason-
able request.

Geisinger MyCode Community Health 
Initiative
In 2007, Geisinger launched the MyCode Community 
Health Initiative, creating a biobank of serum, blood, 
and DNA samples for health discovery research.8– 12 

Research related to MyCode, and the analyses re-
ported in this article were approved by the Geisinger 
institutional review board. All Geisinger patients are 
eligible to participate, irrespective of health status, 
and provide written informed consented in person 
when they present for routine care or via the patient 
portal in the EHR. Through the MyCode Genomic 
Screening and Counseling program, clinically action-
able genomic risk results are identified, confirmed, and 
disclosed to patient participants and their clinicians.13 
When a pathogenic or likely pathogenic (P/LP) variant 
is identified in the MyCode exome sequencing data in 
a gene returned through the Genomic Screening and 
Counseling program, the variant is clinically confirmed 
in a clinical laboratory improvement amendments- 
certified genetics laboratory before disclosure.14 For 
this study, an adult (>18 years old) cohort comprising 
all those with completed exome sequencing data by 
October 2019 were included. After exclusion based on 
current consent status and age to exclude pediatric 
participants, a cohort of 130 257 eligible adult partici-
pants was created. FIND FH and the Mayo algorithms 
were run on this cohort.

Variants in the 3 main FH genes (LDLR, APOB, 
PCSK9) were annotated with variant effect predictor 
version 100,15 SpliceAI version 106,16,17 gnomAD ver-
sion 2.1.1,18 Rare Exome Variant Ensemble Learner 
(REVEL,19 and ClinVar18,20 (April 16, 2022) and filtered14 
based on minor allele frequency <0.01 and high impact 
by Clinical Laboratory Improvement Amendmentsor 2* 
P/LP in ClinVar. Filtered variants were manually reviewed 
based on elements from the current LDLR variant inter-
pretation guideline.20 Participants were considered as 
variant positive if the P/LP variant was clinical laboratory 
improvement amendments- confirmed orthogonally or 
quality metrics met conservative thresholds (allele bal-
ance ≥0.35, genotype quality ≥90, and depth ≥20). For 
the expanded analysis into burden of LDLR variants, 
all LDLR variants, including ±15 bp into intronic regions 
and untranslated regions, were identified from the co-
hort of eligible participants and required to meet the 
same quality metrics above. Those not considered P/
LP were considered variants of uncertain significance 
(VUS), unless the minor allele frequency based on gno-
mAD version 2.1.1 PopMax was ≥0.002, which were 
considered as likely to be benign. VUS with a REVEL 
score of ≥0.75, missense variants in exon 4 or that re-
move a conserved cysteine residue were considered 
suspicious VUS. Participants were then categorized 
for analysis as having a P/LP variant (excluded from 
further analysis), suspicious VUS, other VUS, or those 
with comparatively more common variants (minor al-
lele frequency >0.002, rest of MyCode). Participants 
with multiple variants were categorized according to 
the variant with the highest- ranking category. Copy 

CLINICAL PERSPECTIVE

What Is New?
• Using information technology tools applied to 

an electronic health record database, about 1 
out of 6 of patients are eligible for medical evalu-
ation for familial hypercholesterolemia (FH).

• Screening just these individuals, about 70% of 
those in the entire cohort with a genetic variant 
causing FH will be found.

• Phenotypic FH cannot be reliably diagnosed 
from the electronic health records.

What Are the Clinical Implications?
• Electronic health record screening identifies a 

sufficiently high percentage of those with an FH 
genetic variant to suggest that health care sys-
tems that combine such strategies with patient 
evaluation, genetic testing of at- risk patients, 
and cascade screening can identify a majority 
of patients with FH in their catchment area.
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number variants were called from the whole exome se-
quence data using the copy number estimation using 
the Lattice- Aligned Mixture Models algorithm.21 Copy 
number variants in the LDLR gene considered to be 
P/LP included (1) duplications overlapping with a pre-
viously reported tandem duplication (exon 13 to exon 
17) known to be P/LP or (2) deletions spanning at least 
2 exons located upstream of the penultimate exon and 
LDLR was the only gene within the breakpoints.

Find FH
FIND FH is a proprietary machine learning algorithm de-
veloped by the Family Heart Foundation.2,7 Two years of 
health care encounter history, including a patient’s diag-
noses, procedures, medications, and laboratory results, 
are used to score the patient’s relative likelihood of hav-
ing yet- to- be- diagnosed FH. The algorithm scores only 
individuals with sufficient data and at least 1 cardiac 
comorbidity or primary prevention condition recorded in 
their history.2 There were 17 426 unique individuals ex-
cluded with insufficient data, and 49 389 were excluded 
for not having any history relevant to cardiac conditions. 
An additional 187 were excluded for a previous FH di-
agnosis. Some patients had >1 exclusion, resulting in a 
total of 52 034 unique patients excluded. Patients with 
FIND FH scores ≥0.23 were identified and subjected to 
further postprocessing filter rules, including removing 
those individuals with diagnosed nephrotic syndrome, 
triglycerides laboratory values >400 mg/dL, and age 
>85 years. The threshold of 0.23 was chosen, based on 
precision and recall calculated when the algorithm was 
applied to the holdout data set after training.2

Mayo Clinic Algorithm
The algorithm currently in use at the Mayo Clinic for 
identifying patients with LDL- C ≥190 mg/dL was 
adapted for use in the Geisinger EHR.3 To use this al-
gorithm, LDL- C must be present in the EHR. Patients 
with laboratory values consistent with proteinuria (urine 
protein >3000 mg/24 h), severe liver disease (alkaline 
phosphatase >200 IU/L), triglycerides >400 mg/dL, or 
uncontrolled hypothyroidism (thyroid stimulating hor-
mone >10 mIU/L) are excluded. The highest LDL- C in 
the record is used for assignment in the presence of 
multiple values. If statin use is present, the highest on- 
treatment value is divided by 0.7 to estimate pretreat-
ment LDL- C. These criteria led to 29 243 exclusions.

Based on the entry criteria for each algorithm, a final 
cohort for analysis of 59 729 subjects was created for 
whom both algorithms could be run, on whom exome 
sequencing data were available, and on whom a prior 
diagnosis of FH based on International Classification of 
Diseases, Tenth Revision (ICD- 10) codes had not been 
established. The Consolidated Standards of Reporting 

Trials (CONSORT) diagram describes the assembly of 
the final cohort (Figure 1).

Chart Reviews
Chart reviews from the EHR were conducted manually 
on a total of 420 subjects; 240 out of 280 with a positive 
FH variant, 60 without an FH variant and not identified 
by either algorithm (controls), and 120 identified by ei-
ther algorithm (40 Mayo only, 40 FIND FH only, and 40 
identified by both). Subjects were chosen randomly from 
the specific subgroups. Study data were collected and 
managed using REDCap electronic data capture tools 
hosted at Geisinger.22,23 Information needed to calculate 
the DLCN score was extracted from both structured 
and unstructured EHR data by following predetermined 
instructions that included defined search terms related 
to cholesterol, FH, family history, atherosclerotic cardio-
vascular disease (ASCVD), and physical findings.24 For 
LDL- C values, the highest untreated value was used 
whenever possible; if untreated LDL- C was unavailable, 
an untreated value was calculated from the subject’s 
first treated LDL- C and associated medication regimen 
using a web- based tool.25 LDL- C percentiles were cal-
culated using a web- based lipid reference value tool.25,26 
To satisfy components of each respective criteria, rel-
evant responses of yes, no, or unknown were indicated. 
A response of unknown was designated for elements 
that could not be ascertained from the EHR. When dis-
crepancies occurred, charts were reviewed by a second 
reviewer, and discordant findings adjudicated. Mayo al-
gorithm performance was evaluated for accuracy using 
manual chart review.

Statistical Analysis
Data were summarized using median and interquartile 
ranges for continuous variables, and frequency and per-
centage for categorial variables. Comparisons between 
groups of interest was accomplished using the Wilcoxon 
rank sum, Kruskal- Wallis, and the Pearson χ2 tests. 
Post hoc pairwise comparisons used the Sidak multi-
ple comparison criteria for determining significance.27 A 
Venn diagram was used to graphically show the overlap 
of positive FH variant and identification by the FIND FH 
and Mayo algorithms. Test characteristics (sensitivity, 
specificity, positive predictive value, negative predictive 
value) for prediction of the presence of a genetic variant 
were calculated. SAS version 9.4 (SAS Institute, Cary, 
NC) and R version 4.2.2 (The R Foundation for Statistical 
Computing) were used for all analyses.

RESULTS
Results of the primary analysis, yield of the presence 
of a genetic variant for FH in those identified by either 



J Am Heart Assoc. 2023;12:e8572. DOI: 10.1161/JAHA.123.030073 4

Gidding et al FH Genetic and Phenotypic Diagnosis Yields

FIND FH or the Mayo algorithm, are shown in the Venn 
diagram (Figure 2). Overall, 280 out of 59 729 (0.45%) 
had a P/LP FH variant; the same percentage of variants 
was identified in the excluded cohort. Of these, 144 
were in LDLR and 96 were in APOB. Those with a P/
LP variant are included in the gray circle, those positive 
for FIND FH are in the orange circle, and those iden-
tified by Mayo are in the blue circle. FIND FH flagged 
573 subjects; 34 (5.9%) had a P/LP FH variant. Mayo 
flagged 10 415 subjects; 195 (1.9%) had a P/LP FH vari-
ant. Of the 280 with a P/LP variant, 197 (70%) were 
identified by at least 1 algorithm; 103 were in LDLR and 
64 were in APOB. No P/LP variants were identified in 
PCSK9. Test characteristics are presented for identify-
ing an FH genetic variant in Table 1.

For the expanded analysis based on variants within 
LDLR, the distribution of LDL- C values by variant cat-
egory are shown in Table  2. Those with a P/LP FH 
variant had the highest mean LDL- C values, followed 

by those with suspicious VUS. Average LDL- C for 
those with an LDLR variant versus an APOB variant 
was 256.34 (SD, 99.18) versus 217.71 (SD, 62.75), re-
spectively (P=0.0028). Those with a P/LP FH variant 
also had the highest prevalence of ASCVD, family 
history of ASCVD, and use of lipid- lowering therapy. 
Conversely, they also had the lowest triglycerides, 
body mass index, and blood pressure. Those with sus-
picious VUS had intermediate values for LDL- C, use 
of lipid- lowering medications, atherosclerotic vascular 
disease, family history of atherosclerotic vascular dis-
ease, and identification by 1 of the algorithms as com-
pared with those with P/LP FH variants and the rest of 
MyCode (those without an LDLR VUS). Important for 
screening, the prevalence of hypothyroidism, diabetes, 
and chronic kidney disease did not differ across vari-
ant groups. Black subjects were less likely to have a P/
LP FH variant but more likely to have a VUS or benign/
likely benign variant (Table 3).

Figure 1. CONSORT diagram showing creation of the cohort.
The diagram depicts the construction of the final cohort for this study. *Patients may fall into >1 exclusion category. ALP indicates 
alkaline phosphatase; CONSORT, Consolidated Standards of Reporting Trials; FIND, Flag, Identify, Network, Deliver; FH, familial 
hypercholesterolemia; TG, triglycerides; and TSH, thyroid stimulating hormone.
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Comparison of those with P/LP FH variants iden-
tified by either algorithm with those not identified are 
presented in Table 4. Those not identified by Mayo or 
FIND FH were more likely to have elevated LDL- C and 
total cholesterol and be on lipid- lowering therapy. They 
were slightly more likely to be women.

Subjects with a P/LP FH variant were then com-
pared with those identified by either algorithm, those 
identified by FIND FH alone, those identified by Mayo 
alone, and the remainder of the cohort (Table 5). Those 
not identified by either algorithm had slightly higher 
body mass index, were much less likely to be on lipid- 
lowering therapy, had lower LDL- C (by definition), and 
the lowest prevalence of family history of ASCVD. The 
highest LDL- C was in those identified by the Mayo al-
gorithm. Those identified by FIND FH alone had the 
lowest LDL- C levels, and intermediate risk factor levels 

between those not identified by either algorithm and 
either those identified by the Mayo algorithm, both al-
gorithms, or those with P/LP FH variants. The lower 
LDL- C levels in those with a P/LP FH variant were ex-
plained by the presence of lower LDL- C in those with 
APOB variants.

Phenotypic diagnosis was severely constrained 
by absence of data in the EHR on physical findings 
associated with FH and family history data for either 
premature ASCVD (as opposed to any family history), 
presence of an FH genetic variant, or high cholesterol 
as specified by DLCN criteria, as presented in Table 6, 
after data searches performed by trained observers. 
Chart reviews of those who were variant negative 
showed phenotypic FH, as defined by a DLCN score 
of >5, was present in 13 out of 120 identified by ei-
ther algorithm versus 2 out of 60 identified by neither 
(P<0.09). Note that 13 out of 240 of those who were 
variant positive had probable versus definite FH by 
DLCN criteria, because a genetic variant contributes 
8 points to the score, and 9 points are needed for a 
definite diagnosis.

DISCUSSION
We were able to find about 70% of adult patients with 
a P/LP FH variant not previously diagnosed with FH 
using 2 information technology tools, the first based 
on identifying those with high LDL- C (Mayo) and the 
second based on machine learning technology (FIND 
FH).2,3 Those with a P/LP LDLR variant were more 
likely to be identified than those with a P/LP APOB 
variant, because the latter have lower rates of ASCVD 
and lower LDL- C. Collectively, the algorithms identified 
about 17% of the entire cohort at risk for having FH. It 
has been estimated that to identify virtually all people 
in a given population with FH using a combination of 
index cases and cascade testing, about 50% to 70% 
of index cases must be known.28 Therefore, the com-
bination of using information technology in combina-
tion with cascade screening to achieve FH recognition 
is possible, but limited by the relatively large number of 
people identified at risk who do not actually have FH. A 
second limitation is lack of EHR information necessary 
to help make an FH diagnosis. A substantial percent-
age of the full MyCode cohort was excluded from the 
Mayo analysis because of the absence of a lipid profile 
(the FIND FH model can be run even without a lipid 
panel in the structured EHR data).

As in other studies of genetically defined FH, includ-
ing those from this cohort, participants with a P/LP FH 
variant had the highest likelihood of ASCVD, high LDL- 
C, higher likelihood of family history of ASCVD, and 
younger age.1,8 The lower percentage of men likely is 
secondary to early death in some of those with FH, 

Figure 2. Venn diagram showing yield for an FH genetic 
variant of the FIND FH and Mayo algorithms.
The Venn diagram shows the overlap among those who were 
identified by Flag, Identify, Network, Deliver (FIND) FH (orange) 
and the Mayo algorithm (blue), and those who had a pathogenic 
or likely pathogenic familial hypercholesterolemia (FH) variant 
(gray).

Table 1. Test Characteristics for Prediction of an FH 
Genetic Variant for Each Algorithm and the Algorithms 
Combined

Mayo 
algorithm

FIND FH 
algorithm

Mayo or 
FIND FH

Sensitivity 69.3% 12.1% 70.4%

Specificity 82.8% 99.1% 82.4%

Positive predictive value 1.9% 5.9% 1.8%

Negative predictive value 99.8% 98.6% 99.8%

FIND indicates Flag, Identify, Network, Deliver; and FH, familial 
hypercholesterolemia.
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Table 2. Summary Statistics by FH Variant Groups

P/LP (N=280)
Suspicious VUS 
(N=142) VUS (N=1555) LB/B (N=2875)

No variants 
(N=54 877) P value

Age, y

Mean (SD) 58.2 (13.97) 61.5 (13.16) 60.0 (13.99) 59.9 (13.85) 60.6 (13.70) 0.0011*

Median (IQR) 60.0 (48.0– 68.0) 62.0 (52.0– 71.0) 62.0 (51.0– 71.0) 61.0 (51.0– 71.0) 62.0 (52.0– 71.0)

Female sex, n (%) 160 (57.1%) 72 (50.7%) 967 (62.2%) 1745 (60.7%) 32 483 (59.2%) 0.0121

Body mass index

N (missing) 277 (3) 142 (0) 1548 (7) 2870 (5) 54 730 (147) 0.0141*

Mean (SD) 31.1 (7.66) 33.1 (7.64) 32.2 (8.25) 32.5 (7.94) 33.6 (75.76)

Median (IQR) 31 (26– 35) 32 (27– 38) 31 (27– 36) 31 (27– 37) 31 (27– 37)

Lipid- lowering therapy, n (%) 90 (32.1%) 35 (24.6%) 302 (19.4%) 520 (18.1%) 9847 (17.9%) <0.0001*,¶

Highest LDL- C

Mean (SD) 240.8 (87.44) 182.4 (74.09) 153.7 (51.03) 147.9 (50.92) 151.7 (57.60) <0.0001*,†,§,||,¶,#

Median (IQR) 226 (176– 286) 164 (133– 217) 150 (119– 179) 141 (115– 171) 146 (119– 175)

HDL- C

N (missing) 260 (20) 128 (14) 1398 (157) 2578 (297) 49 089 (5788) 0.0238†,#

Mean (SD) 51.7 (14.82) 47.3 (12.47) 52.2 (14.71) 52.1 (14.83) 52.0 (15.24)

Median (IQR) 49 (41– 62) 47 (39– 55) 50 (42– 60) 50 (42– 60) 49 (41– 60)

Total cholesterol

N (missing) 261 (19) 128 (14) 1411 (144) 2595 (280) 49 266 (5611) <0.0001*,†,§,||,¶,#

Mean (SD) 292.3 (72.65) 243.1 (58.13) 222.4 (55.18) 215.3 (45.01) 219.6 (44.50)

Median (IQR) 281 (243– 332) 241 (202– 269) 220 (190– 252) 213 (185– 245) 219 (189– 248)

Triglycerides

N (missing) 258 (22) 124 (18) 1374 (181) 2516 (359) 48 047 (6830) 0.0164

Mean (SD) 133.6 (67.52) 151.9 (69.85) 140.8 (64.12) 139.0 (63.56) 141.3 (64.39)

Median (IQR) 116 (84– 169) 140 (97– 193) 127 (95– 175) 128 (92– 175) 129 (94– 176)

Systolic blood pressure

N (missing) 278 (2) 142 (0) 1551 (4) 2874 (1) 54 797 (80) 0.0227*

Mean (SD) 124.3 (15.15) 127.9 (17.13) 126.9 (16.14) 127.1 (15.13) 127.2 (15.81)

Median (IQR) 122 (112– 132) 126 (118– 138) 126 (116– 136) 126 (118– 137) 126 (118– 136)

Diastolic blood pressure

N (missing) 278 (2) 142 (0) 1551 (4) 2874 (1) 54 797 (80) 0.0354

Mean (SD) 72.8 (9.95) 73.9 (10.01) 74.2 (10.14) 74.7 (10.11) 74.3 (9.94)

Median (IQR) 72 (66– 80) 74 (68– 80) 74 (68– 80) 74 (68– 80) 74 (68– 80)

Family history of heart disease, n (%) 26 (9.3%) 11 (7.7%) 96 (6.2%) 148 (5.1%) 3330 (6.1%) 0.0392

ASCVD, n (%) 101 (36.1%) 38 (26.8%) 346 (22.3%) 600 (20.9%) 11 950 (21.8%) <0.0001*,¶

Diabetes, n (%) 72 (25.7%) 46 (32.4%) 419 (26.9%) 810 (28.2%) 15 008 (27.3%) 0.5133

CKD, n (%) 38 (13.6%) 25 (17.6%) 265 (17.0%) 480 (16.7%) 9918 (18.1%) 0.0859

Smoking status, n (%)

Current 46 (16.4%) 26 (18.3%) 258 (16.6%) 477 (16.6%) 8250 (15.0%) 0.4067

Former 94 (33.6%) 47 (33.1%) 543 (34.9%) 1039 (36.1%) 20 248 (36.9%)

Never 140 (50.0%) 69 (48.6%) 753 (48.5%) 1359 (47.3%) 26 342 (48.0%)

Unknown 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 9 (0.0%)

Missing 0 0 1 0 28

Hypothyroidism, n (%) 44 (15.7%) 30 (21.1%) 318 (20.5%) 600 (20.9%) 11 445 (20.9%) 0.3296

Mayo algorithm screen positive 194 (62.3%) 48 (33.8%) 299 (19.2%) 450 (15.6%) 9424 (17.2%) <0.0001*,†,||,¶,#

 (Continued)
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creating a selection bias toward a higher percent-
age of women in the genetic variant positive cohort. 
Black subjects were less likely to have a P/LP variant 
but more likely to have a VUS, consistent with the fact 
that FH has been studied predominantly in White and 
Asian populations. By definition, those identified by the 
Mayo algorithm had the highest LDL- C; those with FH 
were less likely to get statins than those identified by 
the Mayo algorithm. However, given the generally high- 
risk profiles of individuals identified by both algorithms, 
even in the absence of them having FH, flagging these 
individuals will likely result in identification of many peo-
ple who need intensification of lipid- lowering and other 
preventive treatments.

The yield of P/LP FH variants from the FIND FH 
machine learning model was almost 6%, slightly 
higher than the yield of variants from screening those 
with premature ASCVD as assessed in recent meta- 
analyses.29,30 This was true despite the fact that many 
participants in the cohort with a confirmed genetic di-
agnosis were excluded because of a prior FH diagno-
sis. The model was trained to identify individuals with 
phenotypic and/or genotypic FH. An interesting find-
ing was that about 45% of those identified by FIND 
FH appeared to have relatively low overall risk profiles 
(Table 4); this allowed the identification of 3 subjects 
with LDL- C <190 mg/dL, and confirms the algorithm 

relies on characteristics beyond LDL- C alone to iden-
tify subjects at risk. Recent studies of FH screening 
done in population- based cohorts show that the over-
lap of phenotypic and genotypic FH is not as great as 
previously assumed.31,32 In a cohort of 79 058 adults 
from Iceland, only 5.2% of those with FH according 
to the modified DLCN score  also tested positive for 
monogenic FH.32 Similarly, in a cohort of 1682 indi-
viduals from Minnesota with LDL- C >155 mg/dL, only 
7% with phenotypic FH also had monogenic FH.31 In 
these studies, many individuals had a polygenic cause 
for hypercholesterolemia rather than monogenic FH. 
The characterization of yield using FIND FH in the 
current study focuses primarily on the assessment of 
monogenic FH but does not assess polygenic hyper-
cholesterolemia and underestimates the presence of 
phenotypic FH, due to missing family history data in 
the EHR.

The Mayo algorithm had a high yield of those 
needing screening for FH, about one- sixth of the 
total cohort, but also a 1.9% yield for those with P/
LP FH variants, thus improving the sensitivity. The al-
gorithm likely overestimated the number of people at 
risk for several reasons. Our yield for at risk individu-
als was higher than a similarly designed study at the 
Mayo Clinic.33 The median age of those identified with 
LDL- C >190 mg/dL was about 60 years; because of 
age- related rise in cholesterol, the FH yield will be pro-
portionately lower than at younger ages.34,35 A second 
reason is the inclusion of an adjustment of LDL- C up-
ward in those prescribed statins. This may contribute 
to overestimation of the number of people at risk either 
because of nonadherence with statin use or a lower 
response to treatment.

There have been several studies published on the 
usefulness of information technology strategies to 
identify patients at risk for FH. These have generally 
relied on making a phenotypic diagnosis of FH, often 
with molecular confirmation. In the United Kingdom, 
an algorithm based on the Simon- Broome criteria was 
successful in identifying primary care patients at risk 
for FH.5 At Kaiser Permanente, an algorithm based 

P/LP (N=280)
Suspicious VUS 
(N=142) VUS (N=1555) LB/B (N=2875)

No variants 
(N=54 877) P value

FIND FH algorithm screen positive 34 (12.1%) 10 (7.0%) 12 (0.8%) 19 (0.7%) 498 (0.9%) <0.0001*,†,¶,#

ASCVD indicates atherosclerotic cardiovascular disease; CKD, chronic kidney disease; FIND, Flag, Identify, Network, Deliver; FH, familial hypercholesterolemia; 
HDL- C, high- density lipoprotein cholesterol; IQR, interquartile range; LB/B, likely benign or benign; LDL- C, low- density lipoprotein cholesterol; P/LP, pathogenic 
or likely pathogenic; and VUS, variants of uncertain significance.

*P/LP vs no variants.
†Suspicious VUS vs no variants.
‡VUS vs no variants.
§LB/B vs no variants.
||P/LP vs suspicious VUS.
¶P/LP vs VUS.
#Suspicious VUS vs VUS.

Table 2. Continued

Table 3. Variant Group by Race Categories

FH variant 
group

White 
(n=58 121)

Black 
(n=1133)

Other 
(n=475)* P value

P/LP 279 (0.5%) 1 (0.1%) 0 (0%) 0.1384

Suspicious VUS 134 (0.2%) 7 (0.6%) 1 (0.2%) 0.0063

VUS 1492 (2.6%) 47 (4.2%) 16 (3.4%) <0.0001

LB/B 2603 (4.5%) 248 (21.9%) 24 (5.0%) <0.0001

No variants 56 613 (92.2%) 830 (73.3%) 434 (91.4%) …

The distribution of the variant groups was significantly different between 
Black and White biobank participants (P<0.0001).

FH indicates familial hypercholesterolemia; LB/B, likely benign or benign; 
P/LP, pathogenic or likely pathogenic; and VUS, variants of uncertain 
significance. *Other includes 38% Asian, 24% Unknown, 20% American 
Indian or Alaska Native, and 18% Native Hawaiian or Other Pacific Islander.
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on make early diagnosis to prevent early deaths cri-
teria, followed up by chart review identified patients 
with high- risk FH.4 At Stanford, a study that combined 
FIND FH with natural language processing of EHR was 
successful in identifying patients with FH.7 An exercise 
that used the UK Biobank to identify patients at high 
likelihood of FH has been applied to estimate the prev-
alence of phenotypic and molecularly confirmed FH in 
the United States.6

Results from chart reviews for identification of phe-
notypic FH were disappointing. Key elements of the 
DLCN algorithm, particularly family history and physi-
cal findings, were missing in most cases. The most fre-
quent finding related to family history was inconclusive, 
defined as the absence of any information on this in the 
chart. Another problem was lack of specificity, includ-
ing the inability to classify premature ASCVD events or 
family members having LDL- C in the FH range.

It is likely that a small percentage of the suspicious 
VUS identified in participants are causative of FH 
based on the distribution of LDL- C values in this group. 
However, this was too small a number to suggest that, 
in clinical practice, suspicious VUS meeting the se-
lected variant characteristics in this study should be 
considered pathogenic. Studies combining phenotypic 
and broader genomic data are needed to better char-
acterize VUS with the highest likelihood to cause dis-
ease. Studies of LDL receptor function may also help 
to further elucidate which VUS are likely pathogenic.36

Strengths of the study include the combination of 
both FH genetic variant information and long standing 
EHR for the cohort. A second strength was the ability 
to combine 2 different algorithms to identify an at- risk 
cohort.

The major limitations of this study were the older 
age of the cohort and either missing or inconclusive 
data in the EHR related to the FH phenotype. Lack of 
data on younger individuals, missing lipid values, and 
the fact that the FIND FH algorithm requires presence 
of at least 1 cardiac comorbidity or primary prevention 
condition recorded in their history led to exclusion of 
about half the MyCode cohort eligible for the study. 
There may be a bias toward identifying those currently 

Table 4. Participants With a P/LP FH Variant: Comparison 
of Those Identified by Algorithm Versus Those Not 
Identified

Variable

Participants with P/LP FH 
variants identified by either 
FIND FH or Mayo

P valueNo (N=83) Yes (N=197)

FH gene

APOB 32 (43.8%) 64 (38.3%) 0.4226

LDLR 41 (56.2%) 103 (61.7%)

Age, y

Mean (SD) 59.4 (13.97) 57.7 (13.97) 0.2165

Median (IQR) 63.0 
(50.0– 70.0)

59.0 (47.0– 67.0)

Female sex, n (%) 40 (48.2%) 120 (60.9%) 0.0495

Race, n (%)

Black 0 (0.0%) 1 (0.5%) 0.5155

White 83 (100.0%) 196 (99.5%)

Body mass index

Mean (SD) 30.1 (8.34) 31.5 (7.35) 0.0919

Median (IQR) 29 (24– 34) 31 (26– 35)

Lipid- lowering 
therapy, n (%)

9 (10.8%) 81 (41.1%) <0.0001

LDL- C

Mean (SD) 153.7 (26.59) 277.6 (77.56) <0.0001

Median (IQR) 160 (134– 174) 259 (221– 313)

HDL- C

Mean (SD) 49.8 (13.40) 52.4 (15.33) 0.2472

Median (IQR) 47 (40– 62) 50 (42– 62)

Total cholesterol

Mean (SD) 222.6 (32.10) 319.9 (65.41) <0.0001

Median (IQR) 230 (200– 249) 305 (274– 350)

Triglycerides

N (missing) 75 (8) 183 (14) 0.858

Mean (SD) 120.9 (57.69) 138.8 (70.65)

Median (IQR) 103 (77– 155) 119 (86– 178)

Systolic blood pressure

Mean (SD) 125.1 (17.37) 123.9 (14.17) 0.9633

Median (IQR) 122 (112– 134) 122 (113– 132)

Diastolic blood pressure

Mean (SD) 72.9 (9.45) 72.8 (10.17) 0.8473

Median (IQR) 74 (64– 80) 72 (66– 80)

Family history of 
heart disease

9 (10.8%) 17 (8.6%) 0.5599

ASCVD, n (%) 32 (38.6%) 69 (35.0%) 0.5744

Diabetes, n (%) 24 (28.9%) 48 (24.4%) 0.4263

CKD, n (%) 11 (13.3%) 27 (13.7%) 0.9196

Smoking status

Current 16 (19.3%) 30 (15.2%) 0.0919

Former 20 (24.1%) 74 (37.6%)

Never 47 (56.6%) 93 (47.2%)

 (Continued)

Variable

Participants with P/LP FH 
variants identified by either 
FIND FH or Mayo

P valueNo (N=83) Yes (N=197)

Hypothyroidism, 
n (%)

11 (13.3%) 33 (16.8%) 0.4626

ASCVD indicates atherosclerotic cardiovascular disease; CKD, 
chronic kidney disease; FIND, Flag, Identify, Network, Deliver; FH, familial 
hypercholesterolemia; HDL- C, high- density lipoprotein cholesterol; IQR, 
interquartile range; LDL- C, low- density lipoprotein cholesterol; and P/LP, 
pathogenic or likely pathogenic.

Table 4. Continued
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Table 5. Comparison of Those With a P/LP FH Variant With Those Identified by Algorithms and the Remainder of the 
Cohort

Variable P/LP (N=280)
Mayo+FIND FH 
(N=285)

FIND FH only 
(N=254)

Mayo only 
(N=9936)

Remainder of  
cohort* (N=48 974) P value

Age, y

Mean (SD) 58.2 (13.97) 60.8 (12.87) 63.5 (12.42) 63.8 (11.44) 59.9 (14.05) <0.0001†,‡,§,¶,#

Median (IQR) 60.0 
(48.0– 68.0)

62.0 (53.0– 71.0) 65.0 (58.0– 71.0) 65.0 (56.0– 72.0) 62.0 (51.0– 71.0)

Female sex, n (%) 160 (57.1%) 199 (69.8%) 148 (58.3%) 6246 (62.9%) 28 674 (58.5%) <0.0001§,**,††

Race, n (%)

Black 1 (0.4%) 7 (2.5%) 5 (2.0%) 157 (1.6%) 963 (2.0%) 0.0441

Other§§ 0 (0.0%) 1 (0.4%) 2 (0.8%) 68 (0.7%) 404 (0.8%)

White 279 (99.6%) 277 (97.2%) 247 (97.2%) 9711 (97.7%) 47 607 (97.2%)

Body mass index

N (missing) 277 (3) 285 (0) 254 (0) 9926 (10) 48 825 (149) <0.0001†,§,††,‡‡

Mean (SD) 31.1 (7.66) 30.4 (6.94) 31.4 (7.47) 32.5 (52.11) 33.8 (76.72)

Median (IQR) 31 (26– 35) 29 (26– 33) 30 (26– 35) 31 (27– 36) 31 (27– 37)

Lipid- lowering therapy, n (%) 90 (32.1%) 160 (56.1%) 57 (22.4%) 5624 (56.6%) 4863 (9.9%) <0.0001

Highest LDL- C

Mean (SD) 240.8 (87.44) 288.0 (410.04) 149.1 (29.67) 231.8 (40.75) 134.6 (30.88) <0.0001*,†,§,||,¶,#,**,††,‡‡

Median (IQR) 226 (176– 286) 254 (215– 301) 155 (131– 172) 219 (201– 251) 137 (113– 159)

HDL- C

N (missing) 260 (20) 256 (29) 236 (18) 8740 (1196) 43 961 (5013) 0.0070

Mean (SD) 51.7 (14.82) 54.3 (15.57) 54.5 (15.44) 51.6 (13.91) 52.0 (15.44)

Median (IQR) 49 (41– 62) 52 (43– 63) 53 (43– 64) 50 (42– 59) 49 (41– 60)

Total cholesterol

N (missing) 261 (19) 257 (28) 237 (17) 8768 (1168) 44 138 (4836) <0.0001*,†,‡,§,||,¶,#,††,‡‡

Mean (SD) 292.3 (72.65) 299.8 (54.39) 218.6 (38.14) 271.1 (39.54) 208.8 (37.72)

Median (IQR) 281 (243– 332) 296 (267– 332) 223 (189– 246) 274 (246– 295) 210 (183– 236)

Triglycerides

N (missing) 258 (22) 255 (30) 236 (18) 8517 (1419) 43 053 (5921) <0.0001*,‡,§,||,**,††

Mean (SD) 133.6 (67.52) 163.1 (72.20) 130.7 (56.89) 166.4 (66.05) 136.1 (62.79)

Median (IQR) 116 (84– 169) 145 (111– 203) 121 (89– 159) 156 (117– 205) 124 (90– 170)

Systolic blood pressure

N (missing) 278 (2) 285 (0) 254 (0) 9932 (4) 48 893 (81) <0.0001‡,§,‡‡

Mean (SD) 124.3 (15.15) 127.5 (16.99) 126.1 (13.67) 128.0 (16.11) 127.0 (15.72)

Median (IQR) 122 (112– 132) 126 (116– 138) 126 (118– 134) 126 (118– 138) 126 (118– 136)

Diastolic blood pressure

N (missing) 278 (2) 285 (0) 254 (0) 9932 (4) 48 893 (81) 0.0025

Mean (SD) 72.8 (9.95) 74.4 (9.88) 73.1 (9.40) 74.1 (9.90) 74.4 (9.97)

Median (IQR) 72 (66– 80) 76 (70– 80) 72 (68– 80) 74 (68– 80) 74 (68– 80)

Family history of heart disease, 
n (%)

26 (9.3%) 34 (11.9%) 11 (4.3%) 670 (6.7%) 2870 (5.9%) <0.0001*,§,||,††

ASCVD, n (%) 101 (36.1%) 98 (34.4%) 52 (20.5%) 2870 (28.9%) 9914 (20.2%) <0.0001*,§,||,¶,††,‡‡

Diabetes, n (%) 72 (25.7%) 79 (27.7%) 64 (25.2%) 3197 (32.2%) 12 943 (26.4%) <0.0001§

CKD, n (%) 38 (13.6%) 59 (20.7%) 41 (16.1%) 2336 (23.5%) 2336 (23.5%) <0.0001‡,§

Smoking status, n (%)

Current 46 (16.4%) 43 (15.1%) 31 (12.3%) 1647 (16.6%) 7290 (14.9%) 0.0040§

Former 94 (33.6%) 102 (35.8%) 100 (39.5%) 3692 (37.2%) 17 983 (36.7%)

Never 140 (50.0%) 140 (49.1%) 122 (48.2%) 4593 (46.2%) 23 668 (48.4%)

Unknown 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 9 (0.0%)

 (Continued)
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prescribed statins, because the correction factor may 
overadjust for the effect of statins, and those on statins 
are more likely to have multiple lipid profiles in the re-
cord. The cohort was not racially diverse, so general-
izability beyond White individuals is not possible. An 
unusual limitation was the relatively high rate of FH di-
agnosis in this cohort, due to the presence of returned 
results to many of those eligible for the study via the 

existing MyCode Genomic Screening and Counseling 
program,9 making these individuals ineligible for our 
cohort. Despite this limitation, we were able to identify 
a high percentage of those remaining with FH variants.

Our data suggest information technology– based strat-
egies to identify people at risk for having FH can be suc-
cessful, within certain limits. That 70% of those with a P/LP 
FH variant in an undiagnosed cohort could be identified 

Variable P/LP (N=280)
Mayo+FIND FH 
(N=285)

FIND FH only 
(N=254)

Mayo only 
(N=9936)

Remainder of  
cohort* (N=48 974) P value

Missing 0 0 1 4 24

Hypothyroidism, n (%) 44 (15.7%) 70 (24.6%) 57 (22.4%) 2450 (24.7%) 9816 (20.0%) <0.0001‡,§

ASCVD indicates atherosclerotic cardiovascular disease; CKD, chronic kidney disease; FIND, Flag, Identify, Network, Deliver; FH, familial hypercholesterolemia; 
HDL- C, high- density lipoprotein cholesterol; IQR, interquartile range; LDL- C, low- density lipoprotein cholesterol; and P/LP, pathogenic or likely pathogenic.

*No variants identified through genomic screening and not flagged by either FIND FH or Mayo algorithms. Mayo only vs FIND FH only.
†Mayo only vs Mayo + FIND FH.
‡Mayo only vs P/LP.
§Mayo only vs none.
||FIND FH only vs Mayo + FIND FH.
¶FIND FH only vs P/LP.
#FIND FH only vs none.
**Mayo + FIND FH vs P/LP.
††Mayo + FIND FH vs none.
‡‡P/LP vs none.
§§Other includes 38% Asian, 24% Unknown, 20% American Indian or Alaska Native, and 18% Native Hawaiian or Other Pacific Islander.

Table 5. Continued

Table 6. Chart Review DLCN of Diagnosis and Unknown Subcategory

Diagnosis*
All variant 
positive (n=240)

All variant negative (n=180)

Mayo only 
(n=40)

FIND FH only 
(n=40)

Mayo + FIND FH 
only (n=40)

Unflagged 
(n=60)

DLCN

Definite (n=230) 227 1 0 2 0

Probable (n=25) 13 2 1 7 2

Possible (n=62) 0 26 5 24 7

Unlikely (n=103) 0 11 34 7 51

Prevalence of missing data by DLCN category

DLCN subcategory unknowns†,‡

First- degree relative with known premature CHD or first- 
degree relative with known LDL- C level >95th percentile 
(n=305)

157 32 35 29 52

First- degree relative with tendon xanthoma and/or corneal 
arcus or child(ren) <18 years with LDL- C level >95th 
percentile (n=417)

237 40 40 40 60

Subject has premature CHD (n=74) 54 1 7 4 8

Subject has premature cerebral or peripheral vascular 
disease (n=92)

63 4 6 7 12

Tendon xanthoma (n=378) 207 39 39 35 58

Corneal arcus in person <45 years (n=388) 213 40 38 37 60

Causative mutation shown in an FH gene (n=178) 0 39 40 39 60

CHD indicates coronary heart disease; DLCN, Dutch Lipid Clinics Network; FIND, Flag, Identify, Network, Deliver; FH, familial hypercholesterolemia; and 
LDL- C, low- density lipoprotein cholesterol.

*DLCN diagnoses: definite >8; probable = 6– 8; possible = 3– 5; unlikely <3.
†Numbers represent charts where the subcategory was marked as unknown.
‡In cases of true missingness of data in the electronic health records (ie, complete absence or no explicit documentation of a positive or negative finding 

in the patient’s chart), the corresponding subcategory has been marked as unknown. An unknown in any category would result ultimately in an inconclusive 
status for DLCN, regardless of DLCN diagnosis.
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by combining 2 strategies based on information technol-
ogies is an important accomplishment and suggests with 
further refinement of these strategies, improved precision 
could be achieved. Research has shown that the abil-
ity to perform chart reviews, or to use natural language 
processing on those identified, may be able to increase 
the yield from those brought in for clinical evaluation after 
identification.4,7 An important negative finding was that 
an absence of a meaningful difference in prevalence of 
hypothyroidism, diabetes, and chronic kidney disease in 
those with a genetic variant compared with those with-
out suggests these conditions should not be excluded 
during information technology efforts to find those with 
FH. Enhanced data collection of the elements necessary 
to establish a phenotypic diagnosis of FH might also re-
duce the number of people identified, thus increasing 
precision of the models; elements that would be helpful 
include recording pretreatment LDL- C, more precise fam-
ily history information related to elevation of LDL- C, age 
at ASCVD, relationship to the patient, and information on 
physical findings related to cholesterol deposition. A fur-
ther limitation is the inability to identify those with an FH 
variant with lower LDL- C levels, a group still at elevated 
risk of ASCVD. Thus, even in the presence of excellent 
strategies, identification of everyone with FH in a specific 
population will continue to require both screening of lipid 
profiles in younger individuals and robust procedures for 
cascade testing of relatives of those affected, because in 
many countries, yields from cascade screening are lower 
than in the most successful settings.37

ARTICLE INFORMATION
Received March 25, 2023; accepted May 24, 2023.

Affiliations
Department of Genomic Health (S.S.G., A.B., M.A.K., K.M.M., N.T.S., N.L.W., 
K.D.Y., M.S.W., A.C.S., L.K.J.), and Department of Population Health Sciences 
(H.L.K.), Geisinger, Danville, PA Atomo, Inc., Austin, TX (W.H., K.D.M., D.S.); 
Family Heart Foundation, Pasadena, CA (K.D.M., K.A.W.); Autism and 
Developmental Institute, Geisinger, Danville, PA (M.T.O.); Department of 
Internal Medicine, Geisinger, Danville, PA (T.C.S.); 23andMe, Sunnyvale, CA 
(A.C.S.); and Heart and Vascular Institute, Geisinger, Danville, PA (L.K.J.).

Sources of Funding
Research reported in this article was supported by the National Heart, Lung, 
and Blood Institute of the National Institutes of Health under award number 
R01HL148246. This research is 100% supported by federal money in the amount 
of $2 837 141. The content is solely the responsibility of the authors and does not 
necessarily represent the official views of the National Institutes of Health.

Disclosures
S.S. Gidding is a consultant for Esperion. W. Howard is an employee of 
Atomo, Inc., which has pharmaceutical companies, medical communica-
tions agencies, and the Family Heart Foundation as clients. K. D. Myers is 
the CEO and founder of Atomo, Inc., which has pharmaceutical compa-
nies, medical communications agencies, and the Family Heart Foundation 
as clients. D. Staszak is an employee of Atomo, Inc., which has pharma-
ceutical companies, medical communications agencies, and the Family 
Heart Foundation as clients. A. C. Sturm is an employee and shareholder 
of 23andMe. L. K. Jones is a consultant for Novartis. The remaining authors 
have no disclosures to report.

REFERENCES
 1. Watts GF, Gidding SS, Mata P, Pang J, Sullivan DR, Yamashita S, 

Raal FJ, Santos RD, Ray KK. Familial hypercholesterolaemia: evolving 
knowledge for designing adaptive models of care. Nat Rev Cardiol. 
2020;17:360– 377. doi: 10.1038/s41569-019-0325-8

 2. Myers KD, Knowles JW, Staszak D, Shapiro MD, Howard W, Yadava 
M, Zuzick D, Williamson L, Shah NH, Banda JM, et al. Precision 
screening for familial hypercholesterolaemia: a machine learning 
study applied to electronic health encounter data. Lancet Digit Health. 
2019;1:e393– e402. doi: 10.1016/S2589-7500(19)30150-5

 3. Safarova MS, Liu H, Kullo IJ. Rapid identification of familial hypercho-
lesterolemia from electronic health records: the SEARCH study. J Clin 
Lipidol. 2016;10:1230– 1239. doi: 10.1016/j.jacl.2016.08.001

 4. Birnbaum RA, Horton BH, Gidding SS, Brenman LM, Macapinlac BA, 
Avins AL. Closing the gap: identification and management of familial 
hypercholesterolemia in an integrated healthcare delivery system. J Clin 
Lipidol. 2021;15:347– 357. doi: 10.1016/j.jacl.2021.01.008

 5. Qureshi N, Akyea RK, Dutton B, Leonardi- Bee J, Humphries SE, 
Weng S, Kai J. Comparing the performance of the novel FAMCAT al-
gorithms and established case- finding criteria for familial hypercho-
lesterolaemia in primary care. Open Heart. 2021;8:8. doi: 10.1136/
openhrt-2021-001752

 6. Bellows BK, Khera AV, Zhang Y, Ruiz- Negron N, Stoddard HM, Wong 
JB, Kazi DS, de Ferranti SD, Moran AE. Estimated yield of screening 
for heterozygous familial hypercholesterolemia with and without genetic 
testing in US adults. J Am Heart Assoc. 2022;11:e025192. doi: 10.1161/
JAHA.121.025192

 7. Banda JM, Sarraju A, Abbasi F, Parizo J, Pariani M, Ison H, Briskin E, 
Wand H, Dubois S, Jung K, et al. Finding missed cases of familial hy-
percholesterolemia in health systems using machine learning. NPJ Digit 
Med. 2019;2:23. doi: 10.1038/s41746-019-0101-5

 8. Abul- Husn NS, Manickam K, Jones LK, Wright EA, Hartzel DN, 
Gonzaga- Jauregui C, O’Dushlaine C, Leader JB, Lester Kirchner 
H, Lindbuchler DM, et al. Genetic identification of familial hyper-
cholesterolemia within a single U.S. health care system. Science. 
2016;354:aaf7000. doi: 10.1126/science.aaf7000

 9. Buchanan AH, Lester Kirchner H, Schwartz MLB, Kelly MA, 
Schmidlen T, Jones LK, Hallquist MLG, Rocha H, Betts M, Schwiter 
R, et al. Clinical outcomes of a genomic screening program for action-
able genetic conditions. Genet Med. 2020;22:1874– 1882. doi: 10.1038/
s41436-020-0876-4

 10. Carey DJ, Fetterolf SN, Davis FD, Faucett WA, Kirchner HL, Mirshahi 
U, Murray MF, Smelser DT, Gerhard GS, Ledbetter DH. The Geisinger 
MyCode community health initiative: an electronic health record- linked 
biobank for precision medicine research. Genet Med. 2016;18:906– 
913. doi: 10.1038/gim.2015.187

 11. Williams MS. Early lessons from the implementation of genomic medi-
cine programs. Annu Rev Genomics Hum Genet. 2019;20:389– 411. doi: 
10.1146/annurev-genom-083118-014924

 12. Williams MS, Buchanan AH, Davis FD, Faucett WA, Hallquist MLG, 
Leader JB, Martin CL, McCormick CZ, Meyer MN, Murray MF, 
et al. Patient- centered precision health in a learning health care sys-
tem: Geisinger’s genomic medicine experience. Health Aff (Millwood). 
2018;37:757– 764. doi: 10.1377/hlthaff.2017.1557

 13. Schwartz MLB, McCormick CZ, Lazzeri AL, Lindbuchler DM, Hallquist 
MLG, Manickam K, Buchanan AH, Rahm AK, Giovanni MA, Frisbie 
L, et al. A model for genome- first care: returning secondary genomic 
findings to participants and their healthcare providers in a large re-
search cohort. Am J Hum Genet. 2018;103:328– 337. doi: 10.1016/j.
ajhg.2018.07.009

 14. Kelly MA, Leader JB, Wain KE, Bodian D, Oetjens MT, Ledbetter DH, 
Martin CL, Strande NT. Leveraging population- based exome screen-
ing to impact clinical care: the evolution of variant assessment in the 
Geisinger MyCode research project. Am J Med Genet C Semin Med 
Genet. 2021;187:83– 94. doi: 10.1002/ajmg.c.31887

 15. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, Flicek 
P, Cunningham F. The Ensembl variant effect predictor. Genome Biol. 
2016;17:122. doi: 10.1186/s13059-016-0974-4

 16. Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi 
SF, Knowles D, Li YI, Kosmicki JA, Arbelaez J, Cui W, Schwartz GB, 
et al. Predicting splicing from primary sequence with deep learning. 
Cell. 2019;176:535– 548.e24. doi: 10.1016/j.cell.2018.12.015

https://doi.org//10.1038/s41569-019-0325-8
https://doi.org//10.1016/S2589-7500(19)30150-5
https://doi.org//10.1016/j.jacl.2016.08.001
https://doi.org//10.1016/j.jacl.2021.01.008
https://doi.org//10.1136/openhrt-2021-001752
https://doi.org//10.1136/openhrt-2021-001752
https://doi.org//10.1161/JAHA.121.025192
https://doi.org//10.1161/JAHA.121.025192
https://doi.org//10.1038/s41746-019-0101-5
https://doi.org//10.1126/science.aaf7000
https://doi.org//10.1038/s41436-020-0876-4
https://doi.org//10.1038/s41436-020-0876-4
https://doi.org//10.1038/gim.2015.187
https://doi.org//10.1146/annurev-genom-083118-014924
https://doi.org//10.1377/hlthaff.2017.1557
https://doi.org//10.1016/j.ajhg.2018.07.009
https://doi.org//10.1016/j.ajhg.2018.07.009
https://doi.org//10.1002/ajmg.c.31887
https://doi.org//10.1186/s13059-016-0974-4
https://doi.org//10.1016/j.cell.2018.12.015


J Am Heart Assoc. 2023;12:e8572. DOI: 10.1161/JAHA.123.030073 12

Gidding et al FH Genetic and Phenotypic Diagnosis Yields

 17. SpliceAi Lookup. Broad Institute Translational Genomics Group; 
Published May 22, 2023. Accessed June 1, 2022. https://spliceai-
lookup.broadinstitute.org

 18. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang 
Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, et al. The muta-
tional constraint spectrum quantified from variation in 141,456 humans. 
Nature. 2020;581:434– 443. doi: 10.1038/s41586-020-2308-7

 19. Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti 
S, Musolf A, Li Q, Holzinger E, Karyadi D, et al. REVEL: an ensemble 
method for predicting the pathogenicity of rare missense variants. Am J 
Hum Genet. 2016;99:877– 885. doi: 10.1016/j.ajhg.2016.08.016

 20. Chora JR, Iacocca MA, Tichy L, Wand H, Kurtz CL, Zimmermann 
H, Leon A, Williams M, Humphries SE, Hooper AJ, et al. The 
Clinical Genome Rresource (ClinGen) Familial Hypercholesterolemia 
Variant Curation Expert Panel consensus guidelines for LDLR vari-
ant classification. Genet Med. 2022;24:293– 306. doi: 10.1016/j.
gim.2021.09.012

 21. Packer JS, Maxwell EK, O’Dushlaine C, Lopez AE, Dewey FE, 
Chernomorsky R, Baras A, Overton JD, Habegger L, Reid JG. CLAMMS: 
a scalable algorithm for calling common and rare copy number variants 
from exome sequencing data. Bioinformatics. 2016;32:133– 135. doi: 
10.1093/bioinformatics/btv547

 22. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. 
Research electronic data capture (REDCap)– a metadata- driven meth-
odology and workflow process for providing translational research in-
formatics support. J Biomed Inform. 2009;42:377– 381. doi: 10.1016/j.
jbi.2008.08.010

 23. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O’Neal L, McLeod 
L, Delacqua G, Delacqua F, Kirby J, et al. The REDCap consortium: 
building an international community of software platform partners. J 
Biomed Inform. 2019;95:103208. doi: 10.1016/j.jbi.2019.103208

 24. Nordestgaard BG, Chapman MJ, Humphries SE, Ginsberg HN, 
Masana L, Descamps OS, Wiklund O, Hegele RA, Raal FJ, Defesche 
JC, et al. Familial hypercholesterolaemia is underdiagnosed and un-
dertreated in the general population: guidance for clinicians to pre-
vent coronary heart disease: consensus statement of the European 
Atherosclerosis Society. Eur Heart J. 2013;34:3478– 3490a. doi: 
10.1093/eurheartj/eht273

 25. Reeskamp R, Nurmohamed NS. LDL- C Calculator. Lipid Tools. Accessed: 
June 1, 2022. https://www.lipidtools.com/calculator-pages/ldlc/

 26. Nurmohamed NS, Collard D, Balder JW, Kuivenhoven JA, Stroes ESG, 
Reeskamp LF. From evidence to practice: development of web- based 
Dutch lipid reference values. Neth Heart J. 2021;29:441– 450. doi: 
10.1007/s12471-021-01562-x

 27. Sidak Z. Rectangular confidence regions for the means of multivari-
ate normal distributions. J Am Stat Assoc. 1967;62:626– 633. doi: 
10.2307/2283989

 28. Morris JK, Wald DS, Wald NJ. The evaluation of cascade testing for 
familial hypercholesterolemia. Am J Med Genet A. 2012;158a:78– 84. 
doi: 10.1002/ajmg.a.34368

 29. Hu P, Dharmayat KI, Stevens CAT, Sharabiani MTA, Jones RS, Watts GF, 
Genest J, Ray KK, Vallejo- Vaz AJ. Prevalence of familial hypercholesterol-
emia among the general population and patients with atherosclerotic car-
diovascular disease: a systematic review and meta- analysis. Circulation. 
2020;141:1742– 1759. doi: 10.1161/CIRCULATIONAHA.119.044795

 30. Beheshti SO, Madsen CM, Varbo A, Nordestgaard BG. Worldwide preva-
lence of familial hypercholesterolemia: meta- analyses of 11 million subjects. 
J Am Coll Cardiol. 2020;75:2553– 2566. doi: 10.1016/j.jacc.2020.03.057

 31. Saadatagah S, Jose M, Dikilitas O, Alhalabi L, Miller AA, Fan X, 
Olson JE, Kochan DC, Safarova M, Kullo IJ. Genetic basis of hyper-
cholesterolemia in adults. NPJ Genom Med. 2021;6:28. doi: 10.1038/
s41525-021-00190-z

 32. Bjornsson E, Thorgeirsson G, Helgadottir A, Thorleifsson G, Sveinbjornsson 
G, Kristmundsdottir S, Jonsson H, Jonasdottir A, Jonasdottir A, 
Sigurethsson A, et al. Large- scale screening for monogenic and clinically 
defined familial hypercholesterolemia in Iceland. Arterioscler Thromb Vasc 
Biol. 2021;41:2616– 2628. doi: 10.1161/ATVBAHA.120.315904

 33. Saadatagah S, Alhalabi L, Farwati M, Zordok M, Bhat A, Smith CY, 
Wood- Wentz CM, Bailey KR, Kullo IJ. The burden of severe hypercho-
lesterolemia and familial hypercholesterolemia in a population- based 
setting in the US. Am J Prev Cardiol. 2022;12:100393. doi: 10.1016/j.
ajpc.2022.100393

 34. Khera AV, Won HH, Peloso GM, Lawson KS, Bartz TM, Deng X, van 
Leeuwen EM, Natarajan P, Emdin CA, Bick AG, et al. Diagnostic yield 
and clinical utility of sequencing familial hypercholesterolemia genes 
in patients with severe hypercholesterolemia. J Am Coll Cardiol. 
2016;67:2578– 2589. doi: 10.1016/j.jacc.2016.03.520

 35. Wald DS, Bestwick JP, Wald NJ. Child- parent screening for familial 
hypercholesterolaemia: screening strategy based on a meta- analysis. 
BMJ. 2007;335:599. doi: 10.1136/bmj.39300.616076.55

 36. Graca R, Alves AC, Zimon M, Pepperkok R, Bourbon M. Functional 
profiling of LDLR variants: important evidence for variant classification: 
functional profiling of LDLR variants. J Clin Lipidol. 2022;16:516– 524. 
doi: 10.1016/j.jacl.2022.04.005

 37. Polanski A, Wolin E, Kocher M, Zierhut H. A scoping review of in-
terventions increasing screening and diagnosis of familial hyper-
cholesterolemia. Genet Med. 2022;24:1791– 1802. doi: 10.1016/j.
gim.2022.05.012

https://spliceailookup.broadinstitute.org
https://spliceailookup.broadinstitute.org
https://doi.org//10.1038/s41586-020-2308-7
https://doi.org//10.1016/j.ajhg.2016.08.016
https://doi.org//10.1016/j.gim.2021.09.012
https://doi.org//10.1016/j.gim.2021.09.012
https://doi.org//10.1093/bioinformatics/btv547
https://doi.org//10.1016/j.jbi.2008.08.010
https://doi.org//10.1016/j.jbi.2008.08.010
https://doi.org//10.1016/j.jbi.2019.103208
https://doi.org//10.1093/eurheartj/eht273
https://www.lipidtools.com/calculator-pages/ldlc/
https://doi.org//10.1007/s12471-021-01562-x
https://doi.org//10.2307/2283989
https://doi.org//10.1002/ajmg.a.34368
https://doi.org//10.1161/CIRCULATIONAHA.119.044795
https://doi.org//10.1016/j.jacc.2020.03.057
https://doi.org//10.1038/s41525-021-00190-z
https://doi.org//10.1038/s41525-021-00190-z
https://doi.org//10.1161/ATVBAHA.120.315904
https://doi.org//10.1016/j.ajpc.2022.100393
https://doi.org//10.1016/j.ajpc.2022.100393
https://doi.org//10.1016/j.jacc.2016.03.520
https://doi.org//10.1136/bmj.39300.616076.55
https://doi.org//10.1016/j.jacl.2022.04.005
https://doi.org//10.1016/j.gim.2022.05.012
https://doi.org//10.1016/j.gim.2022.05.012

	Yield of Familial Hypercholesterolemia Genetic and Phenotypic Diagnoses After Electronic Health Record and Genomic Data Screening
	Methods
	Geisinger MyCode Community Health Initiative
	Find FH
	Mayo Clinic Algorithm
	Chart Reviews
	Statistical Analysis

	Results
	Discussion
	Sources of Funding
	Disclosures
	REFERENCES


