
Nature  |  Vol 619  |  20 July 2023  |  585

Article

An atlas of healthy and injured cell states and 
niches in the human kidney

Blue B. Lake1,40,41, Rajasree Menon2,41, Seth Winfree3,41, Qiwen Hu4,41, Ricardo Melo Ferreira5,41, 
Kian Kalhor1,41, Daria Barwinska5, Edgar A. Otto6, Michael Ferkowicz5, Dinh Diep1,40, 
Nongluk Plongthongkum1, Amanda Knoten7, Sarah Urata1, Laura H. Mariani6, Abhijit S. Naik6, 
Sean Eddy6, Bo Zhang7, Yan Wu1,40, Diane Salamon7, James C. Williams5, Xin Wang4, 
Karol S. Balderrama8, Paul J. Hoover8, Evan Murray8, Jamie L. Marshall8, Teia Noel8, 
Anitha Vijayan7, Austin Hartman9, Fei Chen8, Sushrut S. Waikar10, Sylvia E. Rosas11,12, 
Francis P. Wilson13, Paul M. Palevsky14, Krzysztof Kiryluk15, John R. Sedor16, Robert D. Toto17, 
Chirag R. Parikh18, Eric H. Kim19, Rahul Satija9, Anna Greka8, Evan Z. Macosko8, 
Peter V. Kharchenko4,40, Joseph P. Gaut20, Jeffrey B. Hodgin21, KPMP Consortium*, 
Michael T. Eadon5 ✉, Pierre C. Dagher5 ✉, Tarek M. El-Achkar5 ✉, Kun Zhang1,40 ✉, 
Matthias Kretzler6 ✉ & Sanjay Jain7,20 ✉

Understanding kidney disease relies on defining the complexity of cell types  
and states, their associated molecular profiles and interactions within tissue 
neighbourhoods1. Here we applied multiple single-cell and single-nucleus assays 
(>400,000 nuclei or cells) and spatial imaging technologies to a broad spectrum of 
healthy reference kidneys (45 donors) and diseased kidneys (48 patients). This has 
provided a high-resolution cellular atlas of 51 main cell types, which include rare  
and previously undescribed cell populations. The multi-omic approach provides 
detailed transcriptomic profiles, regulatory factors and spatial localizations spanning 
the entire kidney. We also define 28 cellular states across nephron segments and 
interstitium that were altered in kidney injury, encompassing cycling, adaptive 
(successful or maladaptive repair), transitioning and degenerative states. Molecular 
signatures permitted the localization of these states within injury neighbourhoods 
using spatial transcriptomics, while large-scale 3D imaging analysis (around 1.2 million 
neighbourhoods) provided corresponding linkages to active immune responses. 
These analyses defined biological pathways that are relevant to injury time-course 
and niches, including signatures underlying epithelial repair that predicted 
maladaptive states associated with a decline in kidney function. This integrated 
multimodal spatial cell atlas of healthy and diseased human kidneys represents a 
comprehensive benchmark of cellular states, neighbourhoods, outcome-associated 
signatures and publicly available interactive visualizations.

The human kidneys have vital systemic roles in the preservation of 
body fluid homeostasis, metabolic waste product removal and blood 
pressure maintenance. After injury, dynamic acute and chronic changes 
occur in the renal tubules and surrounding interstitial niche. The bal-
ance between successful or maladaptive repair processes may ulti-
mately contribute to the progressive decline in kidney function2–5. 
Defining the underlying molecular diversity at a single-cell level is key 
to understanding progression of acute kidney injury (AKI) to chronic 
kidney disease (CKD), kidney failure, heart disease or death—issues 
that remain a global concern6,7.

We report a multimodal single-cell and spatial atlas with integrated 
transcriptomic, epigenomic and imaging data over three major con-
sortia: the Human Biomolecular Atlas Program (HuBMAP)8, the Kidney 
Precision Medicine Project (KPMP)9 and the Human Cell Atlas (HCA)10. 
To ensure robust cell state profiles, healthy reference tissues were 

obtained from multiple sources, and biopsies were collected from 
patients with AKI and CKD under rigorous quality assurance and con-
trol procedures8,9,11. We define niches for healthy and altered states 
across different regions of the human kidney spanning the cortex to 
the papillary tip, and identify gene expression and regulatory mod-
ules in altered states associated with worsening kidney function. The 
resultant atlas greatly expands on existing efforts12–15 and will serve as 
an important resource for investigators and clinicians working towards 
a better understanding of kidney pathophysiology.

Constructing a kidney cellular atlas
To fully examine the molecular profile of kidney cell types, we 
used droplet-based transcriptomic assays (Chromium v3) for sin-
gle nuclei (snCv3) and single cells (scCv3) and the multiomic assay 

https://doi.org/10.1038/s41586-023-05769-3

Received: 31 July 2021

Accepted: 30 January 2023

Published online: 19 July 2023

Open access

 Check for updates

A list of affiliations appears at the end of the paper.

https://doi.org/10.1038/s41586-023-05769-3
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-023-05769-3&domain=pdf


586  |  Nature  |  Vol 619  |  20 July 2023

Article

for single-nucleus chromatin accessibility and mRNA expression 
sequencing (SNARE-seq2, or SNARE2)16–18 (Supplementary Tables 1–3).  
Integrative transcriptome analyses were performed on more than 
400,000 high-quality nuclei/cells (Methods) from 58 reference tissues  
(35 donors) and 52 diseased tissues (36 patients) that covered the spec-
trum of conditions from healthy to AKI and CKD (Fig. 1, Extended Data 
Figs. 1–3 and Supplementary Fig. 1). Unsupervised clustering was first 
performed on snCv3 data, permitting the discovery of 100 distinct 
cell populations, which were annotated to 77 subclasses of epithelial, 
endothelial, stromal, immune and neural cell types (Fig. 2, Methods, 
Extended Data Figs. 1 and 2 and Supplementary Tables 4 and 5). To 
further extend cell type annotations across omic platforms, snCv3 data 
were used to anchor scCv3 and SNARE2 datasets to the same embedding 
space, and cell type labels were assigned through integrative clustering 
(Methods, Extended Data Fig. 3 and Supplementary Tables 6 and 7). 
For spatial localization of these cell types or states in situ, we applied 
3D label-free imaging, multiplex fluorescence imaging (15 individuals)  
and spatial transcriptomic Slide-seq219,20 (6 individuals, 67 pucks) 
and Visium assays (22 individuals, 23 samples) (Fig. 1, Methods and  
Supplementary Table 2). To ensure consistency and agreement of find-
ings across technologies and minimize procurement- and assay-related 
biases, multiple samples were processed with more than one assay 
(Supplementary Table 3 and Extended Data Fig. 1a). Our approach per-
mitted deep and cross-validated molecular profiles for aligned kidney 
cell types, leveraging the distinct advantages of each technology; for 
example, the addition of cytosolic transcripts from scCv3, regulatory 
elements from SNARE2 accessible chromatin, and in situ cell type/state 
localization and interactions from spatial technologies.

Reference and altered states
We provide a very high level of complexity for all cell types along the 
depth of the kidney from the cortex to the papillary tip, in each nephron 
segment and the interstitium (Fig. 2a), identifying 51 canonical human 
kidney cell types with associated biomarkers (Methods and Supplemen-
tary Tables 5−8). This includes cell type epigenetic maps, comprising 

open chromatin regions and cis-regulatory elements with enriched 
transcription-factor-binding motifs (Supplementary Fig. 1 and Sup-
plementary Table 9). To spatially localize cell types within the tissue, 
snCv3 subclasses were used to predict identities in Slide-seq and Visium 
transcriptomic data at different resolutions (10 µm and 55 µm beads, 
respectively) (Fig. 2c–g, Methods and Extended Data Fig. 4–5). This 
enabled us to recapitulate renal corpuscle, tubular, vascular and inter-
stitial cell types with proportions, marker profiles and spatial organiza-
tions consistent with expected or observed (Visium) histopathology 
(Extended Data Fig. 5). Proximity enrichment analysis based on the cell 
type composition of adjacent Slide-seq beads across 32 cortical and 
35 medullary tissue pucks (6 participants) delineated region-specific 
cellular neighbourhoods (Extended Data Fig. 4d,e), including the renal 
corpuscle composition of podocytes (PODs), glomerular capillaries 
(EC-GC), mesangial cells and parietal epithelial cells. These renal cor-
puscle neighbourhoods localized adjacent to the juxtaglomerular 
apparatus cells—renin-producing granular (REN) cells and macula 
densa cells—and endothelial cells of the afferent/efferent arterioles 
(EC-AEA) leading into and out of the renal corpuscle (Fig. 2e–f). This 
neighbourhood analysis further confirmed a distinct vascular smooth 
muscle cell (VSMC) population flanking the afferent/efferent arterioles 
(Extended Data Fig. 4f). Consistent with these annotations, we validated 
the appropriate localization of associated cell type markers across 
platforms (Fig. 2f and Extended Data Fig. 5d–j). In addition to the renal 
corpuscle, we spatially anchored cell type subpopulations to the cortex 
or medulla (Fig. 2c and Extended Data Fig. 5a). The transition of the 
ascending thin limbs (ATL) of the inner medulla to the medullary thick 
ascending limb (M-TAL) of the outer medullary stripe was observed in 
Slide-seq (Fig. 2c), along with the transition from descending thin limb 
(DTL2) and M-TAL in the medulla to the cortical thick ascending limb 
(C-TAL) in the cortex in Visium (Fig. 2g and Extended Data Fig. 5d). Thus, 
the unique strengths of each spatial technology enabled the validation 
of our omic-defined cell types.

A critical and new element of this reference atlas is the characterization 
of cellular states associated with pathophysiological stress or injury. We 
carefully defined these altered states on the basis of previous studies and 
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Fig. 1 | Overview of the technologies used to generate a human kidney cell 
atlas. a, Human kidney samplesconsisted of healthy reference, AKI or CKD 
nephrectomies (Nx), deceased donors (DD) or biopsies. Tissues were processed 
for one or more assays, including snCv3, scCv3, SNARE2, 3D imaging or spatial 
transcriptomics (Slide-seq2, Visium). Scale bars, 1 mm (top) and 300 µm 

(bottom). b, Summary of the samples. Ref, reference. c, Omic RNA data were 
integrated, as shown by joint UMAP embedding, for alignment of cell type 
annotations across the three different data modalities. IC, intercalated cells; 
PC, principal cells; VSM/P, vascular smooth muscle cell or pericyte.
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known features of injury (Methods and Supplementary Table 10). We 
established multiple putative states—namely cycling, transitioning, adap-
tive (successful or maladaptive repair) and degenerative (damaged or 
stressed). These altered states were identified for epithelial cells along the 
nephron, as well as within the stroma and vasculature (Fig. 2a,d). Altered 
states, from reference and disease tissues in different proportions, were 
found to exist across technologies (Extended Data Figs. 1 and 3) and 
showed distinct expression signatures (Supplementary Tables 11–15).

We used several methods to confirm these altered states. Mapping 
our annotations onto an existing mouse AKI model4 provided insights 
into their timecourse after an acute injury event (Extended Data Fig. 6). 
Degenerative states, coinciding with elevated expression of the known 

injury markers SPP1, CST3, CLU and IGFBP721 in humans (Supplementary 
Fig. 2), arose early in mice after injury (Extended Data Fig. 6c–e). These 
states showed a common expression and regulatory signature across 
cell types associated with FOS/JUN signalling (Supplementary Fig. 2) 
and were largely depleted in recovered mouse kidneys, consistent with 
possible cell death or a progression into repair states. Putative adap-
tive (successful or maladaptive tubular repair) states were primarily 
found within the proximal tubule (PT) and TAL subclasses in mouse 
and human kidneys. Both adaptive epithelial (aEpi) cell types showed 
expression profiles associated with epithelial differentiation, mor-
phogenesis, mesenchymal differentiation and EMT, while also exhibit-
ing a marked downregulation of transporters critical to their normal 
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function (Extended Data Fig. 7a–c). The adaptive PT (aPT) population 
both mapped to and correlated with failed repair in rodents (Extended 
Data Fig. 2g), with characteristic expressions of VCAM1, DCDC2 and 
HAVCR14,22 (Extended Data Fig. 7c). Notably, we now identify a similar 
state within the TAL (aTAL), marked in humans by PROM1 (encoding 
CD133) and DCDC2 (Supplementary Table 13). These are consistent with 
CD133+PAX2+ lineage-restricted progenitors that are known to exist in 
the proximal and distal tubules of the adult kidney23,24. Analysis of the 
mouse AKI data revealed that these originated predominantly from 
C-TAL, and followed a similar time course as aPT, persisting 6 weeks 
after AKI, consistent with a potential failed-repair population4. This 
suggests a common aEpi state, sharing molecular signatures associ-
ated with injury and repair, that occurs in higher abundance within 
the PT and cortical TAL.

Distinct altered states were identified within the stroma (aStr) that 
were consistent with cell types involved in wound healing and fibrosis 
after tissue injury25 (Extended Data Fig. 2i). These cell populations 
encompass myofibroblasts (MyoF), cycling MyoF (cycMyoF) and a 
group of adaptive fibroblasts (aFIB) representing potential MyoF 
progenitors25. Their expression signatures included genes encoding 
periostin (POSTN), fibroblast activation protein alpha (FAP), smooth 
muscle actin (ACTA2) and collagens (Extended Data Fig. 7d). aStr cells 
were enriched after mouse AKI, and they persisted at later timepoints 
(Extended Data Fig. 6d,e). Furthermore, they exhibited high matri-
some expression25, consistent with their predicted role in extracellular 
matrix deposition and fibrosis (Extended Data Fig. 7e). Thus, careful 
annotation of altered states across kidney cell types has provided a 
means for labelling injury populations. This is important not only for 
diseased tissues, but also in reference tissues in which they might arise 
from ischaemic stress during sample acquisition or normal ageing. Key 
outcomes are the ability to annotate healthy reference cell clusters 
(Supplementary Fig. 3) as well as providing insights into the pathoge-
netic mechanisms of disease.

Spatially mapped injury neighbourhoods
For spatial localization of injury, altered states were mapped to Visium 
data generated on a range of healthy reference, AKI and CKD tissues 
(Supplementary Tables 2 and 3). As expected, altered cell state sig-
natures were enriched in AKI and CKD samples compared with in ref-
erence tissues (Fig. 3a,b). On the basis of cell type colocalization in 
the relatively larger area of Visium spots, immune and stromal cells 
colocalized more frequently with altered epithelial cells (Fig. 3c), con-
sistent with increased fibrosis and inflammation around damaged 
tubules. Furthermore, cell-type-specific altered states in Visium data 
that showed expression profiles consistent with snCv3/scCv3 (Fig. 3d) 
were directly mapped to histological areas of injury. For example, stro-
mal (fibroblast (FIB)), aStr (aFIB) and immune cells (monocyte-derived 
cells (MDCs)) localized to a region of fibrosis within the cortex of a CKD 
biopsy (Fig. 3e,f). This region abutted dilated and atrophic tubules 
that showed an aPT signature marked by CDH622 (Extended Data Fig. 7f 
and Supplementary Table 11). We also found evidence for injury of the 
medullary tubules (Extended Data Fig. 7g–i), with an area showing 
intraluminal cellular cast formation, cell sloughing and loss of nuclei 
that were associated with degenerative CD cells, including degenera-
tive medullary principal cells (dM-PCs) and transitioning principal and 
intercalated cells. This region increased expression of the degenerative 
marker DEFB1, which was previously shown to contribute to fibrosis 
through immune cell recruitment26. These results support co-mapping 
of snCv3/scCv3 reference and altered cell types to histological areas 
of injury.

To further uncover in situ cellular niches and injured microenviron-
ments across kidney disease, we performed 3D multiplexed immuno-
fluorescence imaging and label-free cytometry (3DTC) with second 
harmonic generation for collagen content27 on KPMP AKI and CKD 

kidney biopsy samples (Extended Data Fig. 8a and Supplementary 
Tables 2 and 3). 3DTC defined cellular niches for 1,540,563 cells by 
neighbourhood analysis of 14 classes of cells covering renal cortical and 
medullary structures (Fig. 4a, Methods and Extended Data Fig. 8b–i). 
We identified 14 cellular niches through community detection that 
included expected niches of cortical or medullary epithelium (N7 
and N8 versus N14, N9 and N1, respectively; Fig. 4b,c). The TAL and PT 
neighbourhoods (N7 and N8) were enriched in areas of injury (Fig. 4c 
and Extended Data Fig. 8i). Furthermore, areas of injury were associ-
ated with infiltrating leukocytes, including CD68+ (myeloid), MPO+ 
(N) and CD3+ (lymphoid or T) cells (N6, N11 and N13, respectively). 
Uniquely, CD3+ cells were almost exclusively detected in a subset of 
neighbourhoods with areas of tissue damage including presumptive 
epithelial degeneration (loss of markers and simplification) and fibrosis 
(N13; Fig. 4a (iii) and 4c and Extended Data Fig. 8h), consistent with 
degenerative epithelial enrichment found using Visium (Fig. 3c). By 
contrast, myeloid cells were found in cellular diverse niches with corti-
cal or medullary epithelium (N6 and N11; Fig. 4c). This is consistent with 
the association of M2 macrophages (MAC-M2) with adaptive rather 
than degenerative epithelia in Visium data (Fig. 3c) and their sustained 
presence in mouse ischaemia–reperfusion injury (IRI) (Extended Data 
Fig. 6d). The leukocyte diversity was specific in 3D neighbourhoods, 
as MPO+ and CD3+ cells were overlapping, whereas CD3+ cells were 
conspicuously low in neighbourhoods with CD68+ cells (N11 versus N6; 
Fig. 4c and Extended Data Fig. 8g). As neutrophils colocalized with puta-
tive adaptive and degenerative states (Fig. 3c) and transiently infiltrate 
early in mouse IRI (Extended Data Fig. 6d), neutrophils may infiltrate 
along with T cells predominantly in areas of acute injury marked by 
mixed degenerative and adaptive states. Alternatively, myeloid cells 
(such as MAC-M2) may occur more predominantly within relatively 
healthy areas showing active repair (adaptive or maladaptive). Overall, 
the results from spatial transcriptomics, histological correlation and 
3DTC demonstrate that altered states were enriched in PT and TAL 
neighbourhoods, with distinct immune-active cellular niches associ-
ated with healthy and injured tubules.

Stages and niches of epithelial repair
To obtain a deeper understanding of the genetic networks underlying 
the progression and potential pathology of altered tubular epithe-
lium, we performed trajectory inference on the snCv3/SNARE2 and 
scCv3 subpopulations (Fig. 5a,b, Methods and Extended Data Fig. 9). 
Although most degenerative states appeared too disconnected, aEpi 
trajectories showed dynamic gene expression and regulatory transi-
tions from dedifferentiated to mature functional states (Supplemen-
tary Tables 16–21). We further identified transitory states or modules 
that may be associated with either successful or maladaptive repair. 
Early repair cells showed expression signatures associated with pro-
genitor states (PROM1), microtubule reorganization (DCDC1) and AKI 
(HAVCR1, SPP1) (Fig. 5b and Extended Data Fig. 9c,f). The directionality 
of these repair trajectories was confirmed from RNA velocities esti-
mated from dynamical modelling of transcript splicing kinetics, and 
the alignment with mouse AKI subpopulations (Fig. 5a and Extended 
Data Fig. 9b,g). These analyses enabled the identification of TAL 
repair signatures that were either conserved across species or human  
specific (Fig. 5b).

Epithelial repair signalling was enriched for several growth factors 
and pathways with known roles in promoting normal tubulogenesis, 
as well as maladaptive repair, fibrosis and inflammation. These include 
Wnt, Notch, TGF-β, EGF, MAPK (FOS/JUN), JAK/STAT and Rho/Rac signal-
ling28–36 (Fig. 5c, Extended Data Fig. 9d and Supplementary Tables 19–21),  
with dynamic transcription of several pathway regulators mapped to 
the TAL repair modules (Extended Data Fig. 9h, i). In support of MAPK 
signalling, PT cells that showed expression of PROM1 were subjacent 
to phosphorylated JUN (p-JUN) (Extended Data Fig. 9e). Progressively 
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active REL/NF-κB signalling along the aTAL and aPT trajectories further 
expands on previous roles for this pathway in injured PTs15 (Fig. 5c and 
Supplementary Table 19). We also found increased cAMP signalling 
(CREB transcription factors in aPT) capable of promoting dedifferen-
tiation37 and increased ELF3 activities that are potentially required for 
mesenchymal–epithelial transition38, both indicating that adaptive 
states may be poised for re-epithelialization.

Through integration of SNARE2 epigenomic profiles with snCv3 tran-
scriptomes, detailed gene regulatory networks (GRNs) were inferred 
for TAL trajectory modules. Transcription factors with high network 
importance were identified in each repair state, confirming key roles 
for several major signalling pathways, including their downstream 
target genes and processes (Extended Data Fig. 9j and Supplementary 

Tables 22–24). This highlighted a critical role for TRAP2B (AP-2β), which 
was previously found to be required for terminal differentiation of 
distal tubule cells through activated expression of KCTD139. Both fac-
tors were active or expressed within mid-repair states (Fig. 5c) and 
simulated perturbation of TRAP2B disrupted the repair trajectory tran-
sition (Extended Data Fig. 9l,m). We therefore find adaptive epithelial 
trajectories sharing common molecular profiles that progressively 
upregulate cytokine signalling involved in tubule regeneration, while 
also providing molecular links to pathways associated with fibrosis, 
inflammation and end-stage kidney disease.

Slide-seq, Visium, immunofluorescence staining and RNA in situ 
hybridization (ISH) experiments confirmed spatial localization of adap-
tive states into injury niches (Fig. 5d,e and Extended Data Fig. 10). aTAL 
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populations in Slide-seq-processed tissues (3 niches, 2 individuals; 
Fig. 5d and Extended Data Fig. 11a) were marked by an upregulation 
of the aTAL marker ITGB6 and downregulated EGF expression, which 
is known to occur after TAL injury40. These were identified adjacent to 
areas of aStr enrichment, evidenced by elevated COL1A1 expression. 
These potentially fibrotic regions also showed diverse inflammation 
for both lymphoid (T cell) and myeloid (MAC-M2/MDC) cell types that 
co-localized around vessels (Fig. 5d). Analogously, aTAL injury niches 
were identified in Visium data as spots (55 µm) colocalizing with stro-
mal, lymphoid and myeloid cells (Fig. 5e, Methods and Extended Data 
Fig. 11b–e). Localization of aTAL states to injured tubules was further 
confirmed by ISH, in which PROM1-expressing cells showed clear his-
tological evidence of injury, including epithelial simplification (thin-
ning), loss of nuclei and loss of brush border in PTs (Extended Data 
Fig. 10e). Overall, aTAL, aStr and immune expression profiles from 
spatial transcriptomics were consistent with those identified from 
snCV3 and scCv3, providing both validation and spatial co-localization 
of these cell types and states into niches of ongoing injury and repair.

Given the upregulation of fibrotic cytokine signalling in epithelial 
repair, these regenerating cells may represent maladaptive states if 
they accumulate or fail to complete tubulogenesis. We therefore inves-
tigated the contribution of these states to cell–cell secreted ligand–
receptor interactions within a fibrotic niche (Supplementary Table 25). 
From spatial assays, this niche may comprise aEpi cells adjacent to 
normal and altered arteriole cells and fibroblasts, and immune cells that 
include lymphoid and myeloid cells (Figs. 3–5). Using snCv3 and scCv3 
datasets associated with trajectory modules, we identified aTAL repair 
states as having a higher number of interactions first with immune 
cells (early repair), then with the stroma (mid-repair; Fig. 6a,b). This 
was associated with secreted growth factors of the FGF, BMP, WNT, 
EGF, IGF and TGF-β families and the gain of interactions with MAC-M2 
and T cells (Extended Data Fig. 11f). This indicates that adaptive tubule 
states may recruit activated fibroblasts and MyoF both primarily and 
secondarily through their recruitment of immune cells.

We also found additional evidence for the activation of EGF pathway 
signalling within the adaptive epithelial trajectories, which in itself 

may lead to activation of TGF-β signalling and create a niche capable 
of promoting fibrosis36. Consistently, EGF ligands NRG1 and NRG3 both 
become expressed in aEpi states for a possible role in stromal cells (STR) 
and MAC-M2 recruitment (Figs. 5d,e and 6c,d). Early and mid-repair 
TAL states may also recruit or stimulate T cells through expression 
of the CD226-interacting protein NECTIN2 (Fig. 6c,d). Alternatively, 
BMP6 signalling from mid-repair states may have a role in preventing 
fibrosis41 through possible SMAD1 activation of fibroblast differentia-
tion within aFIB populations (Fig. 6c,d, Extended Data Fig. 11g,h and 
Supplementary Tables 26–28). BMP6 expression was also detected 
in repair states of the mouse AKI model at late timepoints when aFIB 
cells already showed reduced IGF1 expression (Extended Data Fig. 11g). 
IGF1 secreted from aFIB cells may signal to both stimulate MYOF dif-
ferentiation42 and promote regeneration of the repairing epithelial 
cells through IGF1R43 (Fig. 6c,d). Given the timing of BMP6 and IGF1 
expression after acute injury, BMP6-induced differentiation pathways 
within the aFIB cells may represent a late aTAL signal to dampen the 
fibroblast response. We therefore identify state- and niche-dependent 
signalling for reparative states in proximal and distal tubules that may 
ultimately influence the extent of fibrosis and inflammation.

Adaptive states can be maladaptive
Although recruitment of stromal and immune cells is necessary for 
normal wound healing, persistent recruitment by aEpi cells may 
impair epithelial function or lead to continued release of cytokines 
promoting disease progression. Consistent with this, we found that 
aEpi gene signatures that were conserved across snCv3 and scCv3 
(Supplementary Table 29) were associated with poor renal function 
in CKD cases (Extended Data Fig. 12a). Thus, successful or maladap-
tive repair within the TAL may have a role in the transition to chronic 
disease. Notably, aTAL signatures underlying early repair states were 
significantly associated with disease progression using unadjusted and 
sequentially adjusted survival models within the Nephrotic Syndrome 
Study Network (NEPTUNE) cohort of 193 patients44 (Fig. 6e, Methods, 
Extended Data Fig. 12b and Supplementary Table 30). Furthermore, 
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in an independent cohort of 131 patients with kidney disease in the 
European Renal cDNA Bank (ERCB) cohort, aEpi scores varied by kid-
ney disease diagnosis relative to living donors45. Specifically, patients 
with diabetes, hypertension and focal segmental glomerular sclerosis 
had higher aPT and common aPT–aTAL signatures compared with 
that of living donors after adjusting for age and sex. In the diabetes 
group, the aPT and common aPT–aTAL signatures remained higher 
than that of living donors even after adjusting for age, sex and esti-
mated glomerular filtration rate (eGFR; Methods and Supplementary 
Table 30). Nevertheless, it is important to note that the clinical cor-
relations are based on a small sample size and should therefore be 
interpreted with care.

These findings indicate that altered TAL functionality, including 
its GFR-regulatory role through tubuloglomerular feedback, may 
represent a major contributing factor to progressive kidney failure. 
Furthermore, causal variants for eGFR and chronic kidney failure 
were enriched within TAL regulatory regions that were also enriched 
for oestrogen-related receptor (ESSR) transcription-factor motifs 
(Extended Data Fig. 12c and Supplementary Table 31). ESRR tran-
scription factors (especially ESRRB), which are key players in TAL ion 
transporter expression46, are central regulators of the TAL expression 
network (Extended Data Fig. 12d), become inactivated in adaptive 
states (Fig. 5c) and, in experimental models, could exacerbate AKI and 
fibrosis47. Expression quantitative trait loci (eQTL) associated with 
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kidney function that were previously shown to be enriched primarily 
in PTs also showed enrichment within the TAL, along with signatures 
associated with acute injury and fibrosis in a human AKI to CKD pro-
gression study (Extended Data Fig. 12e). Thus, we demonstrate both 
a potential maladaptive role for the aEpi states and a potential central 
role for the TAL segment in maintaining the health and homeostasis 
of the human kidney. This is consistent with the finding that the top 
renal genes showing decline in a mouse ageing cell atlas were associ-
ated with the TAL48.

Our findings implicate an accumulation of maladaptive epithelia 
during disease progression that may also be consistent with chroni-
cally senescent cells5. This is supported by both increased expres-
sion of ageing-related genes, stress-response transcription factor 

activities and an apparent senescence-associated secretory phenotype 
(SASP) for these cells (Extended Data Fig. 12f,g). As such, we detected 
CDKN1A (also known as p21cip1), CDKN1B (also known as p27kip1), CDKN2A  
(also known as p16ink4a) and CCL2 expression in late aPT and aTAL states. 
Furthermore, expression signatures for reparative processes in aEpi 
states were downregulated in the CKD (n = 28) over AKI (n = 22) cases 
used in this study (snCv3/scCv3; Supplementary Table 32). This is dis-
tinct from the immune response signatures that were more enriched 
in AKI cases more globally across cell types (Extended Data Fig. 12h 
and Supplementary Table 33). Overall, our findings are consistent with 
pro-inflammatory repair processes that may persist after injury22, or 
may subsequently transition to maladaptive or senescent pro-fibrotic 
states during disease progression.
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Fig. 6 | Maladaptive repair signatures. a,b, The ligand–receptor signalling 
strength between TAL states and IMM subclasses (a) or STR subclasses (b).  
The coloured bars indicate the total signalling strength of the cell group by 
summarizing signalling pathways. The grey bars indicate the total signalling 
strength of a signalling pathway by summarizing cell groups. Members of key 
signaling pathways described in the main text are in bold. c, The average gene 
expression values for select ligand–receptor combinations using snCv3/scCv3 

integrated data. d, Dot plots validating select markers shown in c in the Visium 
data. e, Unadjusted Kaplan–Meier curves by cell state scores for composite of 
end-stage renal disease (ESRD) or for 40% drop in eGFR from time of biopsy in 
the NEPTUNE adult patient cohort (199 patients; Supplementary Table 30). 
Patients who reached the end point between screening and biopsy were 
excluded. Enrich., enrichment. P values calculated using log-rank tests for 
trend are shown (P = 0.021 (aPT), P = 0.003 (aTAL), P = 0.55 (degenerative)).
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Discussion
In contrast to recent work to broadly integrate major healthy kidney  
cell types across disparate data modalities49, here we present a compre-
hensive spatially resolved healthy and injured single-cell atlas across 
the corticomedullary axis of the kidney. Signals between tubuli, stroma 
and immune cells that underlie normal and pathological cell neigh-
bourhoods were identified, including putative adaptive or maladap-
tive repair signatures within the epithelial segments that may reflect a 
failure to complete differentiation and tubulogenesis. Spatial analyses 
identified that these epithelial repair states have elevated cytokine 
production, increased interactions with the distinct fibrotic and 
inflammatory cell types, and expression signatures linked to senes-
cence and progression to end-stage kidney disease. Failure of these 
cells to complete tubulogenesis, which might arise from an incompat-
ible cytokine milieu within the fibrotic niche, in itself might ultimately 
contribute to a progressive decline in kidney function. In turn, the 
high-cytokine-producing nature of these cells may further contribute to 
kidney disease through promotion of fibrosis. We portray a clear role for 
the relatively understudied TAL segment of the nephron, a region that 
is critical for maintaining osmotic gradient and blood pressure through 
tubuloglomerular feedback. The insights, discoveries and interactive 
data visualization tools provided here will serve as key resources for 
studies into normal physiology and sex differences, pathways associ-
ated with transitions from healthy and injury states, clinical outcomes, 
disease pathogenesis and targeted interventions.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-023-05769-3.

1.	 Schreibing, F. & Kramann, R. Mapping the human kidney using single-cell genomics. Nat. 
Rev. Nephrol. 18, 347–360 (2022).

2.	 Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular 
targets of kidney disease. Science 360, 758–763 (2018).

3.	 Sheng, L. & Zhuang, S. New insights into the role and mechanism of partial 
epithelial-mesenchymal transition in kidney fibrosis. Front. Physiol. 11, 569322 (2020).

4.	 Kirita, Y., Wu, H., Uchimura, K., Wilson, P. C. & Humphreys, B. D. Cell profiling of mouse 
acute kidney injury reveals conserved cellular responses to injury. Proc. Natl Acad. Sci. USA 
117, 15874–15883 (2020).

5.	 Docherty, M.-H., O’Sullivan, E. D., Bonventre, J. V. & Ferenbach, D. A. Cellular senescence 
in the kidney. J. Am. Soc. Nephrol. 30, 726–736 (2019).

6.	 Lameire, N. H. et al. Acute kidney injury: an increasing global concern. Lancet 382, 170–179 
(2013).

7.	 Zuk, A. & Bonventre, J. V. Acute kidney injury. Annu. Rev. Med. 67, 293–307 (2016).
8.	 HuBMAP Consortium. The human body at cellular resolution: the NIH Human 

Biomolecular Atlas Program. Nature 574, 187–192 (2019).
9.	 de Boer, I. H. et al. Rationale and design of the Kidney Precision Medicine Project. Kidney 

Int. 99, 498–510 (2021).
10.	 Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).
11.	 El-Achkar, T. M. et al. A multimodal and integrated approach to interrogate human kidney 

biopsies with rigor and reproducibility: guidelines from the Kidney Precision Medicine 
Project. Physiol. Genom. 53, 1–11 (2021).

12.	 Lake, B. B. et al. A single-nucleus RNA-sequencing pipeline to decipher the molecular 
anatomy and pathophysiology of human kidneys. Nat. Commun. 10, 2832 (2019).

13.	 Menon, R. et al. Single cell transcriptomics identifies focal segmental glomerulosclerosis 
remission endothelial biomarker. JCI Insight 5, e133267 (2020).

14.	 Stewart, B. J. et al. Spatiotemporal immune zonation of the human kidney. Science 365, 
1461–1466 (2019).

15.	 Muto, Y. et al. Single cell transcriptional and chromatin accessibility profiling redefine 
cellular heterogeneity in the adult human kidney. Nat. Commun. 12, 2190 (2021).

16.	 Chen, S., Lake, B. B. & Zhang, K. High-throughput sequencing of the transcriptome and 
chromatin accessibility in the same cell. Nat. Biotechnol. 37, 1452–1457 (2019).

17.	 Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and 
mouse. Nature 598, 111–119 (2021).

18.	 Plongthongkum, N., Diep, D., Chen, S., Lake, B. B. & Zhang, K. Scalable dual-omics profiling 
with single-nucleus chromatin accessibility and mRNA expression sequencing 2 (SNARE- 
seq2). Nat. Protoc. 16, 4992–5029 (2021).

19.	 Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide 
expression at high spatial resolution. Science 363, 1463–1467 (2019).

20.	 Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution with 
Slide-seqV2. Nat. Biotechnol. 39, 313–319 (2021).

21.	 Murray, P. T. et al. Potential use of biomarkers in acute kidney injury: report and summary 
of recommendations from the 10th Acute Dialysis Quality Initiative consensus conference. 
Kidney Int. 85, 513–521 (2014).

22.	 Gerhardt, L. M. S., Liu, J., Koppitch, K., Cippà, P. E. & McMahon, A. P. Single-nuclear 
transcriptomics reveals diversity of proximal tubule cell states in a dynamic response to 
acute kidney injury. Proc. Natl Acad. Sci. USA 118, e2026684118 (2021).

23.	 Bussolati, B. et al. Isolation of renal progenitor cells from adult human kidney. Am. J. Pathol. 
166, 545–555 (2005).

24.	 Cohen-Zontag, O. et al. Human kidney clonal proliferation disclose lineage-restricted 
precursor characteristics. Sci Rep. 10, 22097 (2020).

25.	 Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis. Nature 589, 
281–286 (2021).

26.	 Andresen, E., Günther, G., Bullwinkel, J., Lange, C. & Heine, H. Increased expression of 
beta-defensin 1 (DEFB1) in chronic obstructive pulmonary disease. PLoS ONE 6, e21898 
(2011).

27.	 Ferkowicz, M. J. et al. Large-scale, three-dimensional tissue cytometry of the human 
kidney: a complete and accessible pipeline. Lab. Invest. 101, 661–676 (2021).

28.	 Schueler, M. et al. DCDC2 mutations cause a renal-hepatic ciliopathy by disrupting Wnt 
signaling. Am. J. Hum. Genet. 96, 81–92 (2015).

29.	 Yu, J. et al. A Wnt7b-dependent pathway regulates the orientation of epithelial cell division 
and establishes the cortico-medullary axis of the mammalian kidney. Development 136, 
161–171 (2009).

30.	 Park, J.-S., Valerius, M. T. & McMahon, A. P. Wnt/beta-catenin signaling regulates nephron 
induction during mouse kidney development. Development 134, 2533–2539 (2007).

31.	 Miller, R. K. & McCrea, P. D. Wnt to build a tube: contributions of Wnt signaling to epithelial 
tubulogenesis. Dev. Dyn. 239, 77–93 (2010).

32.	 Patel, S. et al. Rac-GTPase promotes fibrotic TGF-β1 signaling and chronic kidney disease 
via EGFR, p53, and Hippo/YAP/TAZ pathways. FASEB J. 33, 9797–9810 (2019).

33.	 Edeling, M., Ragi, G., Huang, S., Pavenstädt, H. & Susztak, K. Developmental signalling 
pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nat. Rev. Nephrol. 12, 
426–439 (2016).

34.	 Meecham, A. & Marshall, J. F. The ITGB6 gene: its role in experimental and clinical biology. 
Gene X 5, 100023 (2020).

35.	 Nanjundan, M. et al. Plasma membrane phospholipid scramblase 1 promotes EGF- 
dependent activation of c-Src through the epidermal growth factor receptor. J. Biol. Chem. 
278, 37413–37418 (2003).

36.	 Harskamp, L. R., Gansevoort, R. T., van Goor, H. & Meijer, E. The epidermal growth factor 
receptor pathway in chronic kidney diseases. Nat. Rev. Nephrol. 12, 496–506 (2016).

37.	 Puri, P. et al. Ectopic phosphorylated Creb marks dedifferentiated proximal tubules in 
cystic kidney disease. Am. J. Pathol. 188, 84–94 (2018).

38.	 Sengez, B. et al. The transcription factor Elf3 is essential for a successful mesenchymal to 
epithelial transition. Cells 8, 858 (2019).

39.	 Marneros, A. G. AP-2β/KCTD1 control distal nephron differentiation and protect against 
renal fibrosis. Dev. Cell 54, 348–366 (2020).

40.	 Ju, W. et al. Tissue transcriptome-driven identification of epidermal growth factor as a 
chronic kidney disease biomarker. Sci. Transl. Med. 7, 316ra193 (2015).

41.	 Dendooven, A. et al. Loss of endogenous bone morphogenetic protein-6 aggravates 
renal fibrosis. Am. J. Pathol. 178, 1069–1079 (2011).

42.	 Chetty, A., Cao, G.-J. & Nielsen, H. C. Insulin-like growth factor-I signaling mechanisms, 
type I collagen and alpha smooth muscle actin in human fetal lung fibroblasts. Pediatr. 
Res. 60, 389–394 (2006).

43.	 Wu, Z., Yu, Y., Niu, L., Fei, A. & Pan, S. IGF-1 protects tubular epithelial cells during injury 
via activation of ERK/MAPK signaling pathway. Sci. Rep. 6, 28066 (2016).

44.	 Gadegbeku, C. A. et al. Design of the Nephrotic Syndrome Study Network (NEPTUNE) to 
evaluate primary glomerular nephropathy by a multidisciplinary approach. Kidney Int. 83, 
749–756 (2013).

45.	 Yasuda, Y., Cohen, C. D., Henger, A., Kretzler, M. & European Renal cDNA Bank (ERCB) 
Consortium. Gene expression profiling analysis in nephrology: towards molecular 
definition of renal disease. Clin. Exp. Nephrol. 10, 91–98 (2006).

46.	 Krid, H., Dorison, A., Salhi, A., Cheval, L. & Crambert, G. Expression profile of nuclear 
receptors along male mouse nephron segments reveals a link between ERRβ and thick 
ascending limb function. PLoS ONE 7, e34223 (2012).

47.	 Wang, X. X. et al. Estrogen-related receptor agonism reverses mitochondrial dysfunction 
and inflammation in the aging kidney. Preprint at bioRxiv https://doi.org/10.1101/755801 
(2020).

48.	 Tabula Muris Consortium. A single-cell transcriptomic atlas characterizes ageing tissues 
in the mouse. Nature 583, 590–595 (2020).

49.	 Hansen, J. et al. A reference tissue atlas for the human kidney. Sci. Adv. 8, eabn4965 
(2022).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 
4.0 International License, which permits use, sharing, adaptation, distribution 
and reproduction in any medium or format, as long as you give appropriate 

credit to the original author(s) and the source, provide a link to the Creative Commons licence, 
and indicate if changes were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, 
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

https://doi.org/10.1038/s41586-023-05769-3
https://doi.org/10.1101/755801
http://creativecommons.org/licenses/by/4.0/


594  |  Nature  |  Vol 619  |  20 July 2023

Article

KPMP Consortium

Richard Knight22, Stewart H. Lecker23, Isaac Stillman23, Afolarin A. Amodu10, Titlayo Ilori10, 
Shana Maikhor10, Insa Schmidt10, Gearoid M. McMahon24, Astrid Weins24, Nir Hacohen8, 
Lakeshia Bush16, Agustin Gonzalez-Vicente16, Jonathan Taliercio16, John O’toole16, 

Emilio Poggio16, Leslie Cooperman16, Stacey Jolly16, Leal Herlitz16, Jane Nguyen16, 
Ellen Palmer16, Dianna Sendrey16, Kassandra Spates-Harden16, Paul Appelbaum15, 
Jonathan M. Barasch15, Andrew S. Bomback15, Vivette D. D’Agati15, Karla Mehl15, 
Pietro A. Canetta15, Ning Shang15, Olivia Balderes15, Satoru Kudose15, Laura Barisoni25, 
Theodore Alexandrov26, Yinghua Cheng5, Kenneth W. Dunn5, Katherine J. Kelly5, 
Timothy A. Sutton5, Yumeng Wen18, Celia P. Corona-Villalobos18, Steven Menez18, 
Avi Rosenberg27, Mohammed Atta18, Camille Johansen11, Jennifer Sun11, Neil Roy11, 
Mark Williams11, Evren U. Azeloglu28, Cijang He28, Ravi Iyengar28, Jens Hansen28, 
Yuguang Xiong28, Brad Rovin29, Samir Parikh29, Sethu M. Madhavan29, 
Christopher R. Anderton30, Ljiljana Pasa-Tolic30, Dusan Velickovic30, Olga Troyanskaya31, 
Rachel Sealfon31, Katherine R. Tuttle32, Zoltan G. Laszik33, Garry Nolan34, Minnie Sarwal33, 
Kavya Anjani33, Tara Sigdel33, Heather Ascani35, Ulysses G. J. Balis35, Chrysta Lienczewski35, 
Becky Steck35, Yougqun He35, Jennifer Schaub35, Victoria M. Blanc35, Raghavan Murugan36, 
Parmjeet Randhawa36, Matthew Rosengart36, Mitchell Tublin36, Tina Vita36, John A. Kellum36, 
Daniel E. Hall36, Michele M. Elder36, James Winters36, Matthew Gilliam36, Charles E. Alpers37, 
Kristina N. Blank37, Jonas Carson37, Ian H. De Boer37, Ashveena L. Dighe37, 
Jonathan Himmelfarb37, Sean D. Mooney37, Stuart Shankland37, Kayleen Williams37, 
Christopher Park37, Frederick Dowd37, Robyn L. McClelland37, Stephen Daniel37, 
Andrew N. Hoofnagle37, Adam Wilcox37, Shweta Bansal38, Kumar Sharma38, 
Manjeri Venkatachalam38, Guanshi Zhang38, Annapurna Pamreddy38, Vijaykumar R. Kakade39, 
Dennis Moledina39, Melissa M. Shaw39, Ugochukwu Ugwuowo39, Tanima Arora39, 
Joseph Ardayfio39, Jack Bebiak42, Keith Brown42, Catherine E. Campbell42, John Saul42, 
Anna Shpigel42, Christy Stutzke42, Robert Koewler42, Taneisha Campbell42, Lynda Hayashi42, 
Nichole Jefferson42, Roy Pinkeney42 & Glenda V. Roberts42

22American Association of Kidney Patients, Tampa, FL, USA. 23Beth Israel Deaconess Medical 
Center, Boston, MA, USA. 24Brigham and Women’s Hospital, Boston, MA, USA. 25Duke 
University, Durham, NC, USA. 26Structural and Computational Biology Unit, European 
Molecular Biology Laboratory, Heidelberg, Germany. 27Department of Pathology, Johns 
Hopkins School of Medicine, Baltimore, MD, USA. 28Icahn School of Medicine at Mount Sinai, 
New York, NY, USA. 29Ohio State University, Columbus, OH, USA. 30Pacific Northwest National 
Laboratories, Richland, WA, USA. 31Princeton University, Princeton, NJ, USA. 32Providence 
Health, Spokane, WA, USA. 33University of California, San Francisco, CA, USA. 34Stanford 
University, Stanford, CA, USA. 35University of Michigan, Ann Arbor, MI, USA. 36University of 
Pittsburgh, Pittsburgh, PA, USA. 37University of Washington, Seattle, WA, USA. 38UT Health San 
Antonio, San Antonio, TX, USA. 39Yale University, New Haven, CT, USA. 42Unaffiliated. 

1Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA. 
2Department of Computational Medicine and Bioinformatics, University of Michigan, Ann 
Arbor, MI, USA. 3Department of Pathology and Microbiology, University of Nebraska Medical 
Center, Omaha, NE, USA. 4Department of Biomedical Informatics, Harvard Medical School, 
Boston, MA, USA. 5Department of Medicine, Indiana University School of Medicine, 
Indianapolis, IN, USA. 6Department of Internal Medicine, Division of Nephrology, University  
of Michigan, Ann Arbor, MI, USA. 7Department of Medicine, Washington University School of 
Medicine, St Louis, MO, USA. 8Broad Institute of Harvard and MIT, Cambridge, MA, USA. 9New 
York Genome Center, New York, NY, USA. 10Section of Nephrology, Boston University School 
of Medicine and Boston Medical Center, Boston, MA, USA. 11Kidney and Hypertension Unit, 
Joslin Diabetes Center, Boston, MA, USA. 12Harvard Medical School, Boston, MA, USA. 
13Department of Medicine, Yale University School of Medicine, New Haven, CT, USA. 
14Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. 
15Department of Medicine, Columbia University, New York, NY, USA. 16Lerner Research and 
Glickman Urology and Kidney Institutes, Cleveland Clinic, Cleveland, OH, USA. 17Department 
of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA. 18Division of 
Nephrology, Johns Hopkins School of Medicine, Baltimore, MD, USA. 19Department of Surgery, 
Washington University School of Medicine, St Louis, MO, USA. 20Department of Pathology and 
Immunology, Washington University School of Medicine, St Louis, MO, USA. 21Department of 
Pathology, University of Michigan, Ann Arbor, MI, USA. 40Present address: San Diego Institute 
of Science, Altos Labs, San Diego, CA, USA. 41These authors contributed equally: Blue B. Lake, 
Rajasree Menon, Seth Winfree, Qiwen Hu, Ricardo Melo Ferreira, Kian Kalhor. *A list of authors 
and their affiliations appears at the end of the paper; A full list of members other than authors 
and their affiliations appears in the Supplementary Information. ✉e-mail: meadon@iupui.edu; 
pdaghe2@iu.edu; telachka@iu.edu; kzhang@bioeng.ucsd.edu; kretzler@med.umich.edu; 
sanjayjain@wustl.edu

mailto:meadon@iupui.edu
mailto:pdaghe2@iu.edu
mailto:telachka@iu.edu
mailto:kzhang@bioeng.ucsd.edu
mailto:kretzler@med.umich.edu
mailto:sanjayjain@wustl.edu


Methods

Statistics and reproducibility
For 3D imaging and immunofluorescence staining experiments, each 
staining was repeated on at least two separate individuals or separate 
regions. For immunofluorescence validation studies, commercially 
available antibodies were used; 13 out of the 15 tissue samples were also 
analysed using snCv3 or scCv3. For ISH, 6 tissue samples (4 biopsies 
and 2 nephrectomies) were analysed. For Slide-seq, 67 tissue pucks 
(6 individuals) were analysed, with 2 individuals also analysed using 
snCv3 or Visium. For Visium, 23 kidney tissue sections (22 individu-
als) were imaged, including 6 that were also analysed using snCv3 or 
scCv3 and one examined using Slide-seq. Orthogonal validation of 
spatial transcriptomic annotations revealed similar marker gene 
expression in snCv3/scCv3 and these technologies, as well as spatial 
localization that corresponded with histologically validated Visium 
spot mapping. Although multiomic data from the same samples would 
be the most informative, this remains technically challenging. However, 
wherever possible, several technologies were performed on a subset 
of samples from the same patient and, in some cases, the same tissue 
block was used to generate multimodal data (Extended Data Fig. 1a 
and Supplementary Table 3). This heterogeneous sampling approach 
ensured cell type discovery while minimizing assay-dependent biases 
or artifacts encountered when using different sources of kidney tissue. 
We recognize that the heterogeneity of sample sources for several 
technologies is a potential limitation due logistics and limited patient 
biopsy material.

Ethical compliance
We have complied with all ethical regulations related to this study. All 
experiments on human samples followed all relevant guidelines and 
regulations. Human samples (Supplementary Table 1) collected as 
part of the KPMP consortium (https://KPMP.org) were obtained with 
informed consent and approved under a protocol by the KPMP single 
IRB of the University of Washington Institutional Review Board (IRB 
20190213). Samples as part of the HuBMAP consortium were collected 
by the Kidney Translational Research Center (KTRC) under a protocol 
approved by the Washington University Institutional Review Board (IRB 
201102312). Informed consent was obtained for the use of data and 
samples for all participants at Washington University, including living 
patients undergoing partial or total nephrectomy or rejected kidneys 
from deceased donors. Cortical and papillary biopsy samples from 
patients with stone disease were obtained with informed consent from 
Indiana University and approved by the Indiana University Institutional 
Review Board (IRB 1010002261). For Visium spatial gene expression, 
reference nephrectomies and kidney biopsy samples were obtained 
from the KPMP under informed consent or the Biopsy Biobank Cohort 
of Indiana (BBCI)50 under waived consent as approved by the Indiana 
University Institutional Review Board (IRB 1906572234). Living donor 
biopsies as part of the HCA were obtained with informed consent under 
the Human Kidney Transplant Transcriptomic Atlas (HKTTA) under the 
University of Michigan IRB HUM00150968. Deidentified leftover frozen 
COVID-19 AKI kidney biopsies were obtained from the Johns Hopkins 
University pathology archive under waived consent approved by the 
Johns Hopkins Institutional Review Board (IRB 00090103).

Single-cell and single-nucleus human tissue samples
For single-nucleus omic assays, tissues were processed according 
to a protocol available online (https://doi.org/10.17504/protocols.
io.568g9hw). For nucleus preparation, around 7 sections of 40 µm thick-
ness were collected and stored in RNAlater solution (RNA assays) or kept 
on dry ice (accessible chromatin assays) until processing or used fresh. 
To confirm tissue composition, 5 µm sections flanking these thick sec-
tions were obtained for histology and the relative amount of cortex or 
medulla composition including glomeruli was determined. For single- 

cell omic assays, tissues used (15 CKD,12 AKI and 18 living donor biopsy 
cores) were preserved using CryoStor (StemCell Technologies).

Single-cell, single-nucleus and SNARE2 RNA-seq, quality control 
and clustering
Isolation of single nuclei. Nuclei were isolated from cryosec-
tioned tissues according to a protocol available online (https://
doi.org/10.17504/protocols.io.ufketkw) with the exception that 
4′,6-diamidino-2-phenylindole (DAPI) was excluded from the nuclear 
extraction buffer and used only to stain a subset of nuclei used for 
counting. Nuclei were used directly for omic assays.

Isolation of single cells. Single cells were isolated from frozen tissues 
according to a protocol available online (https://doi.org/10.17504/
protocols.io.7dthi6n). The single-cell suspension was immediately 
transferred to the University of Michigan Advanced Genomics Core 
facility for further processing.

10x Chromium v3 RNA-seq analysis. 10x single-nucleus RNA-seq 
and 10x single-cell RNA-seq were performed according to protocols 
available online (https://doi.org/10.17504/protocols.io.86khzcw and 
https://doi.org/10.17504/protocols.io.7dthi6n, respectively), both 
using the 10x Chromium Single-Cell 3′ Reagent Kit v3. Sample demulti-
plexing, barcode processing and gene expression quantifications were 
performed using the 10x Cell Ranger (v.3) pipeline using the GRCh38 
(hg38) reference genome with the exception of a subset of scCv3  
experiments that used hg19 (indicated in Supplementary Table 1). For 
single-nucleus data, introns were included in the expression estimates.

SNARE2 dual RNA and ATAC-seq analysis. SNARE-seq217, as outlined 
previously18, was performed according to a protocol available online 
(https://doi.org/10.17504/protocols.io.be5gjg3w). Accessible chroma-
tin and RNA libraries were sequenced separately on the NovaSeq 6000 
(Illumina) system (NovaSeq Control Software v.1.6.0 and v.1.7.0) using 
the 300 cycle and 200 cycle reagent kits, respectively.

SNARE2 data processing. Detailed step-by-step processing for 
SNARE2 data has been outlined previously18. This has now been devel
oped as an automated data processing pipeline that is available at 
GitHub (https://github.com/huqiwen0313/snarePip). snarePip (v.1.0.1) 
was used to process all the SNARE2 datasets. The pipeline provides 
an automated framework for complex single-cell analysis, including 
quality assessment, doublet removal, cell clustering and identification, 
robust peak generation and differential accessible region identification, 
with flexible analysis modules and generation of summary reports for 
both quality assessment and downstream analysis. The directed acyclic 
graph was used to incorporate the entirety of the data-processing steps 
for better error control and reproducibility. For RNA processing, this 
involved removal of accessible chromatin contaminating reads using 
cutadapt (v.3.1)51, dropEst (v.0.8.6)52 to extract cell barcodes and STAR 
(version 2.5.2b)53 to align tagged reads to the genome (GRCh38). For  
accessible chromatin data, this involved snaptools (v.1.2.3)54 and mini-
map (v.2-2.20)55 for alignment to the genome (GRCh38).

Quality control of sequencing data. 10x snRNA-seq (snCv3). Cell 
barcodes passing 10x Cell Ranger filters were used for downstream 
analyses. Mitochondrial transcripts (MT-*) were removed, doublets 
were identified using the DoubletDetection software (v.2.4.0)56 and 
removed. All of the samples were combined across experiments and 
cell barcodes with greater than 400 and less than 7,500 genes detected 
were retained for downstream analyses. To further remove low-quality 
datasets, a gene UMI ratio filter (gene.vs.molecule.cell.filter) was ap-
plied using Pagoda2 (https://github.com/hms-dbmi/pagoda2).
10x scRNA-seq (scCv3). As a quality-control step, a cut-off of <50% mito-
chondrial reads per cell was applied. The ambient mRNA contamination 
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was corrected using SoupX (v.1.5.0)57. The mRNA content and the num-
ber of genes for doublets are comparatively higher than for single cells. 
To reduce doublets or multiplets from the analysis, we used a cut-off 
of >500 and <5,000 genes per cell.
SNARE2 RNA. Cell barcodes for each sample were retained with the fol-
lowing criteria: having an DropEst cell score of greater than 0.9; having 
greater than 200 UMI detected; having greater than 200 and less than 
7,500 genes detected. Doublets identified by both DoubletDetection 
(v.3.0) and Scrublet (https://github.com/swolock/scrublet; v.0.2.2) 
were removed. To further remove low-quality datasets, a gene UMI 
ratio filter (gene.vs.molecule.cell.filter) was applied using Pagoda2.
SNARE2 ATAC. Cell barcodes for each sample that had already passed 
quality filtering from RNA data were further retained with the follow-
ing criteria: having transcriptional start site (TSS) enrichment greater 
than 0.15; having at least 1,000 read fragments and at least 500 UMI; 
having fragments overlapping the promoter region ratio of greater 
than 0.15. Samples were retained only if they exhibited greater than 
500 dual omic cells after quality filtering.

Clustering snCv3. Clustering analysis was performed using Pagoda2, 
whereby counts were normalized to the total number per nucleus, 
batch variations were corrected by scaling expression of each gene 
to the dataset-wide average. After variance normalization, all 5,526 
significantly variant genes were used for principal component analysis 
(PCA). Clustering was performed at different k values (50, 100, 200, 
500) on the basis of the top 50 principal components, with cluster  
identities determined using the infomap community detection  
algorithm. The primary cluster resolution (k = 100) was chosen on the 
basis of the extent of clustering observed. Principal components and 
cluster annotations were then imported into Seurat (v.4.0.0) and uni-
form manifold approximation and projection (UMAP) dimensional-
ity reduction was performed using the top 50 principal components 
identified using Pagoda2. Subsequent analyses were then performed  
in Seurat. A cluster decision tree was implemented to determine  
whether a cluster should be merged, split further or labelled as an alt
ered state. For this, differentially expressed genes between clusters 
were identified for each resolution using the FindAllMarkers function 
in Seurat (only.pos = TRUE, max.cells.per.ident = 1000, logfc.thresh-
old = 0.25, min.pct = 0.25). Possible altered states were initially defined  
for clusters with one or more of the following features: low genes  
detected, a high number of mitochondrial transcripts, a high number of  
endoplasmic-reticulum-associated transcripts, upregulation of injury 
markers (CST3, IGFBP7, CLU, FABP1, HAVCR1, TIMP2, LCN2) or enrich-
ment in AKI or CKD samples. Clusters (k = 100) that showed no distinct 
markers were assessed for altered-state features; if present, then these 
clusters were tagged as possible altered states, if absent then clusters 
were merged on the basis of their cluster resolution at k = 200 or 500. 
If this merging occurred across major classes (epithelial, endothelial, 
immune, stromal) at higher k values, then these clusters were instead 
labelled as ambiguous or low quality (including possible multiplets). 
For k = 100 clusters (non-epithelial only) that did show distinct mark-
ers, their k = 50 subclusters were assessed for distinct marker genes; if 
present, then these clusters were split further. The remaining split and 
unsplit clusters were then assessed for altered-state features. If present, 
they were tagged as possible altered states, if absent they were assessed 
as the final cluster. Annotations of clusters were based on known posi-
tive and negative cell type markers11,12,58–60 (Supplementary Table 5), 
the regional distribution of the clusters across the corticomedullary 
axis and altered state (including cell cycle) features. For separation of 
EC-DVR from EC-AEA, the combined population was independently clus-
tered using Pagoda2 and clusters associated with medullary sampling 
were annotated as EC-DVR. For separation of the REN cluster, stromal 
cells expressing REN were selected on the basis of normalized expression 
values of greater than 3. Final overall assessment of clustering accuracy 
was performed using the Single Cell Clustering Assessment Framework 

(SCCAF v.0.0.10) using the default settings, and compared against that 
associated with broad cell type classifications (subclass level 1).

Annotating snCv3 clusters. To overcome the challenge of dis-
parate nomenclature for kidney cell annotations, we leveraged a 
cross-consortium effort to use the extensive knowledge base from 
human and rodent single-cell gene expression datasets, as well as the 
domain expertise from pathologists, biologists, nephrologists and 
ontologists11,12,22,58–61 (see also Supplementary Tables 4 and 5 and the 
HuBMAP ASCT+B Reporter at GitHub (https://hubmapconsortium.
github.io/ccf-asct-reporter)). This enabled the adoption of a standard-
ized anatomical and cell type nomenclature for major and minor cell 
types and their subclasses (Supplementary Table 4), showing distinct 
and consistent expression profiles of known markers and absence of 
specific segment markers for some of the cell types (Extended Data 
Fig. 2a and Supplementary Table 5). The knowledge of the regions dis-
sected and histological composition of snCv3 data further enabled 
stratification of distinct cortical and outer and inner medullary cell 
populations (Fig. 2b and Extended Data Fig. 1). The cell type identities 
and regional locations were confirmed through orthogonal valida-
tion using spatial technologies presented here and correlations with 
existing human or rodent stromal, immune, endothelial and epithelial 
datasets4,25,58,59,61,62 (Extended Data Fig. 2b–l).

Atlas cell type resolution
Our atlas now includes a higher granularity for the loop of Henle, distal 
convoluted tubule and collecting duct segments, now resolving three 
descending thin limb cell types (DTL1, 2, 3); different subpopulations 
of medullary or cortical thick ascending limb cells (M-TAL/C-TAL); two 
types of distal convoluted tubule cells (DCT1, 2); intercalated and prin-
cipal cells of the connecting tubules (CNT-IC and CNT-PC); cortical, 
outer medullary and inner medullary collecting duct subpopulations 
(CCD, OMCD, IMCD); and papillary tip epithelial cells abutting the calyx 
(PapE). Molecular profiles for rare cell types important in homeostasis 
were annotated, including juxtaglomerular renin-producing granular 
cells (REN); macula densa cells (MD); and a cell population with enriched 
Schwann/neuronal (SCI/NEU) genes NRXN1, PLP1 and S100B. Major 
endothelial cell types were stratified, including endothelial cells of 
the lymphatics (EC-LYM) and vasa recta (EC-AVR, EC-DVR). Specific 
stromal and immune cell types were distinguished, including distinct 
fibroblast populations across the cortico-medullary axis and 12 immune 
cell types from lymphoid and myeloid lineages.

Integrating snCv3 and SNARE2 datasets
Integration of snCv3 and SNARE RNA data was performed using Seurat 
(v.4.0.0) using snCv3 as reference. All counts were normalized using 
sctransform, anchors were identified between datasets based on the 
snCv3 Pagoda2 principal components. SNARE2 data were then pro-
jected onto the snCv3 UMAP structure and snCv3 cell type labels were 
transferred to SNARE2 using the MapQuery function. Both datasets 
were then merged and UMAP embeddings were recomputed using the 
snCv3 projected principal components. Integrated clusters were identi-
fied using Pagoda2, with the k-nearest neighbour graph (k = 100) based 
on the integrated principal components and using the infomap com-
munity detection algorithm. The SNARE2 component of the integrated 
clusters was then annotated to the most overlapping, correlated and/
or predicted snCv3 cluster label, with manual inspection of cell type 
markers used to confirm identities. Integrated clusters that overlapped 
different classes of cell types were labelled as ambiguous or low-quality 
clusters. Segregation of EC-AEA, EC-DVR and REN subpopulations was 
performed as described for snCv3 above.

Integrating snCv3 and scCv3 datasets
Integration of snCv3 and scCv3 data was performed using Seurat 
v.4.0.0 with snCv3 as a reference. All counts were normalized using 
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sctransform, anchors were identified between datasets based on the 
snCv3 Pagoda2 principal components. scCv3 data were then projected 
onto the snCv3 UMAP structure and snCv3 cell type labels were trans-
ferred to scCv3 using the MapQuery function. Both datasets were 
then merged and UMAP embeddings recomputed using the snCv3 
projected principal components. Integrated clusters were identified 
using Pagoda2, with the k-nearest neighbour graph (k = 100) based 
on the integrated principal components and using the infomap com-
munity detection algorithm. The scCv3 component of the integrated 
clusters was then annotated to the most overlapping or correlated 
snCv3 subclass, with manual inspection of cell type markers used to 
confirm identities. Cell types that could not be accurately resolved 
(PT-S1/PT-S2) were kept merged. Integrated clusters that overlapped 
different classes of cell types or that were too ambiguous to anno-
tate were considered to be low quality and were removed from the 
analysis. Segregation of EC-AEA, EC-DVR and REN subpopulations was 
performed as described above.

Assessment of snCv3, scCv3 and SNARE2 data integration
As described above, we used the demonstrated Seurat v.4.0.0 integra-
tion strategy63 to project query datasets (scCv3, SNARE2 RNA) into the 
same PCA space as our snCv3 reference. These imputed principal com-
ponents were used to generate an integrated embedding and integrated 
clustering through Pagoda2. Query datasets within these integrated 
clusters were manually annotated on the basis of co-clustering with the 
reference data, predicted subclass levels and the manual inspection of 
marker genes. This process was necessary to account for misalignments 
that occurred for altered states showing more ambiguous marker gene 
expression profiles, especially for mapping between single-nucleus and 
single-cell technologies. To assess the accuracy in our alignments, we 
performed correlation of average expression signatures between the 
assigned query cell populations and the original reference cell popula-
tions (Extended Data Fig. 3e). Although several samples were examined 
using more than one platform (Supplementary Table 3 and Extended 
Data Fig. 1a), not all conditions could be covered by all technologies, 
with AKI/CKD biopsies too limited in size to process with SNARE2 and 
deeper medullary region capture being less likely for needle biopsies. 
Despite the differences in patient conditions and regions sampled, 
we were able to confirm cross-platform sampling with minimal batch 
contributions for a majority of our subclass (level 3) assignments (77 
total). This was demonstrated through integrated bar plots for assay, 
patient, sex and condition contributions (Extended Data Fig. 3e). The 
degree to which cells/nuclei between assays were mixed within these 
subclasses was confirmed using normalized relative entropy weighted 
by subclass size64, with an average assay entropy across subclasses 
(covered by more than one technology) of 0.71 and an average patient 
entropy of 0.71 (out of 1). Mixing within the subclasses was also assessed 
on the cell embeddings (principal components) using the average 
silhouette width or ASW (scib.metrics.silhouette_batch function of 
the scIB package v.1.0.365), with an average score of 0.86 for assays and 
0.82 for patients (out of 1). Finally, the average of k-nearest neighbour 
batch effect test (kBET) score per subclass, computed for all patients 
using the scib.metrics.kBET function of the scIB package, was 0.49 (out 
of 1), which is consistent with other integration efforts65.

Integrating snCv3 with published datasets
Integration with published data was performed using Seurat v.4.0.0 
with snCv3 as a reference. All counts were normalized using sctrans-
form, anchors were identified between datasets on the basis of the 
snCv3 Pagoda2 principal components. Published data were then pro-
jected onto the snCv3 UMAP structure and snCv3 cell type labels were 
transferred to the published dataset using the MapQuery function. 
Ref. 12 snDrop-seq data are available at the Gene Expression Omnibus 
(GEO: GSE121862). Ref. 15 single-nucleus RNA-seq and ref. 14 single-cell 
RNA-seq count matrices and metadata tables were downloaded from 

the UCSC Cell Browser (Cell Browser dataset IDs human-kidney-atac 
and kidney-atlas, respectively).

NSForest marker genes
To identify a minimal set of markers that can identify snCv3 clusters 
and subclasses (subclass.l3), or scCv3 integrated subclasses (subclass.
l3), we used the Necessary and Sufficient Forest66 (NSForest v.2; https://
github.com/JCVenterInstitute/NSForest/releases/tag/v2.0) software 
using the default settings.

Correlation analyses
For correlation of RNA expression values between snCv3 and scCv3, 
or SNARE2, average scaled expression values were generated, and 
pairwise correlations were performed using variable genes identi-
fied from Pagoda2 analysis of snCv3 (top 5,526 genes). For compari-
son with mouse single-cell RNA-seq data of healthy reference tissue59, 
raw counts were downloaded from the GEO (GSE129798). For com-
parison with mouse single-cell RNA-seq from IRI tissue4, raw counts 
were downloaded from the GEO (GSE139107). For human fibroblast 
and myofibroblast data25, raw counts were downloaded from Zenodo 
(https://doi.org/10.5281/zenodo.4059315). For each dataset, raw 
counts were processed using Seurat: counts for all cell barcodes were 
scaled by total UMI counts, multiplied by 10,000 and transformed to 
log space. For comparison with mouse single-cell types of the distal 
nephron61, the precomputed Seurat object was downloaded from the 
GEO (GSE150338). For mouse bulk distal segment data61, normalized 
counts were downloaded from the GEO (GSE150338) and added to the 
‘data’ slot in a Seurat object. Bulk-sorted immune cell reference data 
were obtained using the celldex package67 using the MonacoImmune-
Data()62 and ImmGenData()67,68 functions and log counts imported 
into the ‘data’ slot of Seurat. For correlation against these reference 
datasets, averaged scaled gene expression values for each cluster were 
calculated (Seurat) using an intersected set of variable genes identi-
fied for each dataset (identified using Padoda2 for snCv3 and Seurat 
for reference datasets). For immune reference correlations, a list of 
immune-related genes downloaded from ImmPort (https://immport.
org) was used instead of the variable genes. Correlations were plot-
ted using the corrplot package (https://github.com/taiyun/corrplot). 
Immune annotations within our atlas were further confirmed by manual 
comparison with recently reported data14.

Cross-species alignment of cell types/states
For mouse single-nucleus RNA-seq data from IRI tissue4, raw counts 
were downloaded from the GEO (GSE139107). Integration was per-
formed using Seurat v.4.0.0 with snCv3 as a reference. All counts were 
normalized using sctransform, anchors were identified between data-
sets on the basis of the snCv3 Pagoda2 principal components. Mouse 
data were then projected onto the snCv3 UMAP structure and snCv3 
cell type labels were transferred using the MapQuery function.

Computing single-nucleus/cell-level expression scores
To identify markers associated with altered states (degenerative;  
adaptive—epithelial or aEpi; adaptive—stromal or aStr; cycling), snCv3 
and scCv3 data were independently used to identify differentially 
expressed genes between reference and corresponding altered states 
for each subclass level 1 (subclass.l1). To ensure general state-level 
markers, differentially expressed genes were identified using the 
FindConservedMarkers function (grouping.var = “condition.l1”,  
min.pct = 0.25, max.cells.per.ident = 300) in Seurat. A minimal set 
of general degenerative conserved genes was identified as enriched 
(P < 0.05) in the degenerative state of each condition.l1 (reference, AKI 
and CKD) and in at least 4 out of the 11 (snCv3) or 9 (scCv3) subclass.l1 
cell groupings. A minimal set of conserved aEpi genes was identified as 
enriched (P < 0.05) in the adaptive state of each condition.l1 (reference, 
AKI and CKD) in both the aPT and aTAL cell populations. This aEpi gene 
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set was then further trimmed to include only those genes that were 
enriched within the adaptive epithelial population (aPT/aTAL) versus all 
others using the FindMarkers function and with a minimum P value of 
0.05 and average log2-transformed fold change of >0.6. A minimal set of 
conserved aStr genes was identified as enriched (P < 0.05) in the adap-
tive state of each condition.l1 (reference, AKI and CKD for snCv2; refer-
ence and AKI for scCv3) for stromal cells. To increase representation 
from MyoF in scCv3 showing a small number of these cells, MyoF-alone 
enriched genes (average log2-transformed fold change ≥ 0.6; adjusted 
P < 0.05) were included for the scCv3 gene set. The aStr gene sets were 
then further trimmed to include only those genes that were enriched 
within the adaptive stromal population (aFIB and MYOF) compared with 
all others using the FindMarkers function and with a minimum P value 
of 0.05 and average log2-transformed fold change of >0.6. A minimal set 
of cycling-associated genes was identified as those enriched (adjusted 
P < 0.05 and average log2-transformed fold change > 0.6) in the cycling 
state across all associated subclass.l1 cell groupings.

Scores for altered state, extracellular matrix and for gene sets associ-
ated with ageing or SASP were computed for each cell from averaged 
normalized counts using only the genes showing a minimum correla-
tion to the averaged whole gene set of 0.1 (ref. 25) (https://github.com/
mahmoudibrahim/KidneyMap). Ageing and SASP genes were obtained 
from ref. 48 (top 20 genes upregulated in ageing kidney)48, ref. 69 (genes 
from table S3, group.age A), ref. 70 (SASP genes from figure 2c) or ref. 71  
(from table S1 (sheet IR Epithelial SASP), having a positive AVE log2 
ratio)71.

Gene set enrichment analyses (GSEA)
To compute gene set enrichments for aPT and aTAL, conserved genes 
differentially expressed in the adaptive over reference states were iden-
tified as indicated above. Gene set ontologies from the Molecular Signa-
tures Database (MSigDB) were downloaded from https://gsea-msigdb.
org and pathway enrichments were computed using fgsea72 and gage73, 
retaining only Gene Ontology terms that were significant (P < 0.05) for 
both. Redundant pathways were collapsed using the fgsea function 
collapsePathways and visualized using ggplot.

SNARE2 accessible chromatin analyses
SNARE2 chromatin data were analysed using Signac74 (v.1.1.1). Peak call-
ing was performed using the CallPeaks function and MACS (v.3.0.0a6; 
https://github.com/macs3-project/MACS) separately for clusters, sub-
class.l1 and subclass.l3 annotations. Peak regions were then combined 
and used to generate a peak count matrix using the FeatureMatrix func-
tion, then used to create a new assay within the SNARE2 Seurat object 
using the CreateChromatinAssay function. Gene annotation of the 
peaks was performed using GetGRangesFromEnsDb(ensdb = EnsDb. 
Hsapiens.v86). TSS enrichment, nucleosome signal and blacklist frac-
tions were all computed using Signac. Jaspar motifs ( JASPAR2020, all 
vertebrate) were used to generate a motif matrix and motif object that 
was added to the Seurat object using the AddMotifs function. For motif 
activity scores, chromVAR75 (v.1.12.0; https://greenleaflab.github.io/
chromVAR) was performed using the RunChromVAR function. The 
chromVAR deviation score matrix was then added to a separate assay 
slot of the Seurat object. To assess the chromatin data, UMAP embed-
dings were computed from cis-regulatory topics that were identified 
through latent Dirichlet allocation using CisTopic76 (v.0.3.0; https://
github.com/aertslab/cisTopic) and the runCGSModels function. Only 
regions accessible in 50 nuclei and nuclei with 200 of these accessible 
regions were used for cisTopic and downstream analyses. The UMAP 
coordinates for the remaining nuclei were added to the Seurat object. 
To ensure high-quality accessible chromatin profiles, only clusters 
with more than 50 nuclei were retained for downstream analyses 
(Supplementary Table 7). For joint embedding of SNARE2 accessible 
chromatin and gene expression, a weighted nearest-neighbour graph 
was computed using the FindMultiModalNeighbors function (Seurat) 

based on PCA (RNA) and latent semantic indexing or LSI (accessible 
chromatin) dimensionality reductions. UMAP dimensionality reduc-
tion was performed to visualize the joint embedding.

DAR analyses
Sites that were differentially accessible for a given cell grouping (sub-
class) were identified against a selection of background cells with the 
best matched total peak counts, to best account for technical differ-
ences in the total accessibility for each cell. For this, the total peaks in 
each cell were used for estimation of the distribution of total peaks 
(depth distribution) for the cells belonging to the test cluster, and 
10,000 background cells with a similar depth distribution to the test 
cluster were randomly selected. Differentially accessible sites (DARs) 
were then identified as significantly enriched in the positive cells over 
selected background cells using the CalcDiffAccess function (https://
github.com/yanwu2014/chromfunks), where P values were calculated 
using Fisher’s exact tests on a hypergeometric distribution and adjusted 
P values (or q values) were calculated using the Benjamini–Hochberg 
method. For subclass level 2 DARs, VSM/P clusters were merged and the 
MD was combined with C-TAL before to DAR calling. Subclasses with 
>100 DARs with q < 0.01 were used for further analysis. Co-accessibility 
between all peak regions was computed using Cicero77 (v.1.8.1). Sites 
were then linked to genes on the basis of co-accessibility with promoter 
regions, occurring within 3,000 bp of a gene’s TSS, using the Region-
GeneLinks function (https://github.com/yanwu2014/chromfunks) 
and the ChIPSeeker package78. DARs associated with markers for each 
subclass (identified at the subclass.l2 level using snCv3, P < 0.05) and 
showing q < 0.01 and a log-transformed fold change of >1 were selected 
for visualization. For this, DAR accessibility (peak counts) was averaged, 
scaled (trimming values to a minimum of 0 and a maximum of 5) and 
visualized using the ggHeat plotting function of the SWNE package79. 
Motif enrichment within cell type DARs was computed using the hyper-
geometric test (FindMotifs function) in Signac.

Transcription factor analyses
To identify active transcription factors from SNARE2 accessible chro-
matin data, differential activities (or deviation scores) of TFBSs between 
different populations were assessed using the Find[All]Markers func-
tion through logistic regression and using the number of peak counts 
as a latent variable. Only transcription factors with expression detected 
within the corresponding cluster, subclass or state grouping were 
included. For PT and TAL clusters, TFBSs that were differentially active 
(P < 0.05, average log2-transformed fold change of >0.35) and associ-
ated with transcription factors with expression detected in at least 
2.5% of nuclei (SNARE2) were identified between clusters. Common 
aPT/aTAL TFBS activities were identified from an intersection of those 
differentially active and expressed within adaptive PT and TAL clusters. 
For aPT and aTAL trajectory modules, TFBSs showing differential activ-
ity between modules (adjusted P < 0.05, average log2-transformed fold 
change of >0.35) and expression detected within at least 2.5% of nuclei/
cells (snCv3/scCv3) were identified. For common degenerative state 
TFBS activities, differentially active TFBSs were identified between 
reference and degenerative states for each level 1 subclass. Significant 
degenerative state TFBS activities (P < 0.05, average log2-transformed 
fold change of >0.35) in three or more subclass.l1 were trimmed to those 
showing expression detected in more than 20% of the degenerative 
state nuclei/cells for snCv3/scCv3.

Ligand–receptor interaction analyses
Ligand–receptor analyses were performed on the basis of the Cell-
Chat package (v.1.0.0; https://github.com/sqjin/CellChat). Only cells 
in TAL, immune and stroma of subclass level 2 (immune: cDC, cycMNP, 
MAC-M2, MAST, MDC, N, ncMON, NKT, pDC, PL, T and B; stroma: MyoF, 
FIB, dFIB, cycMyoF and aFIB) and interactions for secreted ligands 
were used to infer the cell–cell communication. For cells in the TAL 
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trajectory, we computed the intercellular cell communication probabil-
ity between each module and other cell populations using the CellChat 
function computeCommunProb (see ref. 80 for a detailed description of 
the method). The overall scaled communication probability was then 
visualized based on a circle plot using a customized plot_communica-
tion function (Code availability). To further understand which signals 
contribute most to the ligand–receptor (LR) interaction pathways, 
we generated the pathway enrichment heat map of each interaction 
for incoming, outgoing and overall signals using the plotSigHeatmap 
function (Code availability). The contribution of significant LR pairs 
of each interaction was also identified using netAnalysis_contribution 
in the CellChat package.

GWAS analyses
To link SNARE2 cell types to kidney genome-wide association study 
(GWAS) traits and diseases, we first summed the binary peak acces-
sibility profiles for all cells belonging to the same cell type to create a 
pseudobulk peak-by-subclass accessibility matrix. Pseudobulk analyses 
give more stable results, especially as SNARE2 accessibility data can be 
sparse. To ensure sufficient coverage, we used subclass level 2 group-
ings with the following modifications: VSM/P clusters were merged; MD 
was combined with C-TAL; subclasses with <100 DARs with q < 0.01 were 
excluded. We used g-chromVAR81 (v.0.3.2), an extension of chromVAR 
for GWAS data, to identify cell types with higher than expected acces-
sibility of genomic regions overlapping GWAS-linked single-nucleotide 
polymorphisms (SNPs). Running g-chromVAR requires first identi-
fying GWAS-linked SNPs that are more likely to be causal, a process 
known as fine-mapping. For the chronic kidney failure GWAS traits, we 
used existing fine-mapped SNPs from the CausalDB database, using 
the posterior probabilities generated by CAVIARBF82,83. The original 
GWAS summary statistics files were obtained from an atlas of genetic 
associations from the UK BioBank84. We manually fine-mapped the 
CKD, eGFR, blood urea nitrogen and gout traits using the same code 
that was used to generate the CausalDB database (https://github.com/
mulinlab/CAUSALdb-finemapping-pip). The summary statistics for all 
of these traits are available at the CKDGen Consortium site (https://
ckdgen.imbi.uni-freiburg.de/)85,86. We also manually fine-mapped the 
hypertension trait and the original summary statistics can be found 
on the EBI GWAS Catalog87. We looked only at causal SNPs with a pos-
terior causal probability of at least 0.05 to ensure that SNPs with low 
causal probabilities did not cause false-positive signals. Moreover, as 
g-chromVAR selects a semi-random set of peaks with similar average 
accessibility and GC content as background peaks, the method has an 
element of randomness. To ensure stable results, we ran g-chromVAR 
20 times and averaged the results. Cluster/trait z-scores were plotted 
using ggheat (https://github.com/yanwu2014/swne).

To link causal SNPs to genes, we used functions outlined in the 
chromfunks repository (https://github.com/yanwu2014/chromfunks;  
/R/link_genes.R). This involved the identification of causal peaks for 
each cell type and trait (minimum peak Z score of 1, minimum peak 
posterior probability score of 0.025). Sites were then linked to genes on 
the basis of co-accessibility (Cicero) with promoter regions, occurring  
within 3,000 bp of a gene’s TSS. Only sites associated with genes 
detected as expressed in 10% of TAL nuclei/cells (snCv3/scCv3) were 
included. Motif enrichment within the causal SNP and TAL-associated 
peaks was performed using the FindMotifs function in Seurat and only 
motifs for transcription factors expressed in 10% of TAL nuclei/cells  
(snCv3/scCv3) were included (Supplementary Table 31). For a TAL- 
associated ESRRB transcription factor subnetwork, peaks were linked 
to genes using Cicero, then subset to those associated with TAL (C-TAL, 
M-TAL) marker genes that were identified using the Find[All]Markers 
function in Seurat for subclass.l3 (P < 0.05). Transcription factors were 
then linked to gene-associated peaks on the basis of the presence of 
the motif and correlation of peak and TFBS co-accessibility (chrom-
VAR), using a correlation cut-off of 0.3. Only transcription factors with 

expression detected within 20% of TAL cells or nuclei (snCv3/scCv3) 
were included. Eigenvector centralities were then computed using 
igraph and the transcription-factor-to-gene network was visualized 
using PlotNetwork in chromfunks.

Disease-associated gene set enrichment analyses
Genes linked with CKDGen consortium GWAS loci for the kidney func-
tional traits eGFR and urinary albumin-creatinine ratio (UACR) were 
obtained from table S14 of ref. 88. These included the top 500 genes 
per trait or only those genes also implicated in monogenic glomerular 
diseases. eQTLs associated with eGFR, systolic blood pressure and 
general kidney function were obtained from tables S20, S21 and S22 of 
ref. 89, respectively. Genes associated with the transition from acute to 
chronic organ injury after ischaemia–reperfusion were obtained from 
ref. 90 from the following supplementary tables: Acute_Human_Specific 
(table S3, Human specific column); Acute_Mouse_Overlap (table S3, 
Shared column); Mid_Acute (table S8, cluster 2 genes); Late_Human_
Specific (table S9, Human specific column); Late_Mouse_Overlap 
(table S9, Shared column); Late_Fibrosis (table S6, positive logFC); 
Late_Recovery (table S6, negative logFC). Each gene set was assessed 
for its enrichment within combined snCv3 and scCv3 subclass (level 3)  
differentially expressed genes (adjusted P < 0.05, log-transformed 
fold change of >0.25). Enrichments were performed using Fisher’s 
exact tests and the resultant −log10[P] values were scaled and visual-
ized using ggplot2.

Patient cohorts used for clinical association analyses
NEPTUNE91 (193 adult patients) and ERCB45 (131 patients) expression 
data were used as validation cohorts to determine the significance 
between patients with different levels of cell state gene expression. 
NEPTUNE (NCT01209000) is a multicentre (21 sites) prospective 
study of children and adults with proteinuria recruited at the time 
of first clinically indicated kidney biopsy (Supplementary Table 34). 
The study participants were followed prospectively, every 4 months 
for the first year, and then biannually thereafter for up to 5 years. At 
each study visit, medical history, medication use and standard local 
laboratory test results were recorded, while blood and urine samples 
were collected for central measurement of serum creatinine and urine 
protein/creatinine ratio (UPCR) and eGFR (ml per min per 1.73 m2). 
End-stage kidney disease (ESKD) was defined as initiation of dialysis, 
receipt of kidney transplant or eGFR <15 ml per min per 1.73 m2 meas-
ured at two sequential clinical visits; and the composite end point of 
kidney functional loss by a combination of ESKD or 40% reduction in 
eGFR92. Genome-wide transcriptome analysis was performed on the 
research core obtained at the time of a clinically indicated biopsy using 
RNA-seq by the University of Michigan Advanced Genomics Core using 
the Illumina HiSeq2000 system. Read counts were extracted from the 
fastq files using HTSeq (v.0.11). NEPTUNE mRNA-seq data and clinical 
data are controlled access data and will be available to researchers on 
request to NEPTUNE-STUDY@umich.edu.

ERCB is the European multicentre study that collects biopsy tissue 
for gene expression profiling across 28 sites. Transcriptional profiles 
of biopsies from patients in the ERCB were obtained from the GEO 
(GSE104954).

Clinical association of cell state scores
The gene expression data from the tubulointerstitial compartment of 
the kidney biopsies from NEPTUNE patients was used to calculate the 
composite scores for the genes enriched in degenerative, aPT, aTAL and 
aStr states. The expression of the genes that were uniquely enriched 
in the cell state (described above) and that were found in both snCv3 
and scCv3 were used to calculate the composite cell state score (Sup-
plementary Table 29). As scCv3 did not efficiently identify all stromal 
cell types, the union of the enriched genes from scCv3 and snCv3 data 
were used to calculate the aStr cell state score. We also generated a 
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cell state score for the genes that were commonly enriched in aPT and 
aTAL cells (common).

For outcome analyses (40% loss of eGFR or ESKD) in the NEPTUNE 
cohort, patient profiles were binned according to the degree of cell state 
score by tertile. Clinical outcomes were available on 193 participants 
with a total of 30 events. Kaplan–Meier analyses were performed using 
log-rank tests to determine significance between patients in different 
tertiles of cell state gene expression. Moreover, for the different cell 
state scores, multivariable adjusted Cox proportional hazard analyses 
were performed using five statistical models adjusting for different sets 
of potential confounding effects given the overall few number of events: 
(1) age, sex and race; (2) baseline eGFR and UPCR; (3) immunosuppressive 
treatment and FSGS status; (4) eGFR, UPCR and race self-reported as Black 
(factors that were associated with outcome in this dataset); and (5) immu-
nosuppressive treatment, eGFR and UPCR (Supplementary Table 30). 
Note that the adjusted models simply assess whether the association with 
outcome persists after adjusting for common clinical features (that is, 
confounding effects), but do not assess for prediction accuracy.

In the ERCB cohort, differential expression analyses using multi-
variable regression modelling were performed between the cell state 
scores in the disease groups and living donors. Age and sex were used 
as covariates. The cell state scores for both NEPTUNE and ERCB bulk 
mRNA transcriptomics data were generated93. In brief, the cell state 
scores were generated by creating Z scores for each of the cell state gene 
sets and then using the average Z score as the cell state composite score. 
These analyses found scores for all adaptive epithelial, but not degen-
erative, states were significantly higher in the patients with diabetic 
nephropathy patients compared to that of living donors (Supplemen-
tary Table 30). After adjusting for sex and age, both aPT and aTAL were 
significant when scores from patients with diabetic nephropathy were 
compared with those of living donors and aPT scores were significant 
even after correcting for the different disease groups.

Sample-level analysis and clustering on clinical association  
gene sets
To find association of patients based on altered-state gene signatures that 
were used in clinical association analyses (Supplementary Table 30), we 
performed sample-level clustering. All of the cells from the same patient 
in snCv3 and scCv3 were aggregated to get pseudo-bulk count matrices 
on the basis of the associated clinical gene set. The matrices were further 
normalized by RPKM followed by t-distributed stochastic neighbour 
embedding (t-SNE) dimensionality reduction. Groups of patients were 
then identified based on k-means clustering and density-based spatial 
clustering (DBSCAN) methods in the reduced space. To associate the 
patient clusters with clinical features, we calculated the distribution 
of eGFR in each identified group (Code availability).

To identify gene sets that best differentiate between AKI and CKD 
patients in the PT and TAL cell populations, we trained a gene-specific 
logistic regression model based on the sample-level gene expression. 
The model was used to assess the predictive power that differentiate 
patients with AKI and CKD in both snCv3 and scCv3 measured by area 
under the curve (AUC). The genes with AUC > 0.65 on both snCV3 and 
scCv3 were selected for downstream analysis (Supplementary Table 32).

To identify genes that were differentially expressed between AKI and 
CKD across all cell types, we aggregated the cells associated with each 
subclass (level 1) to generate cell-type-specific pseudocounts for each 
sample and performed differential gene expression analysis based on 
the DEseq2 method using the estimatePerCellTypeDE function in the 
Cacoa package (v.0.2.0; https://github.com/kharchenkolab/cacoa).

Pseudotime analysis of PT and TAL cells
To find cells associated with disease progression, we performed tra-
jectory analysis for PT and TAL cells. To get accurate pseudotime and 
trajectory estimation, we removed degenerative cell populations in 
both PT and TAL and inferred the trajectory for single nuclei and single 

cells separately using the Slingshot package94 (v.2.0.0). We specified 
normal cell populations as the end points for trajectory inference  
(S1–S3 in PT and M-TAL in TAL) using the Slingshot parameter end.
clus. The correspondent trajectory embedding was visualized using 
the plotEmbedding function in the Pagoda2 package.

To identify whether the gene expression was statistically significantly 
associated with the inferred trajectory, we modelled the expression 
of a gene as a function of the estimated pseudotime by fitting a gam 
model with cubic spline regression using formula expi = f(t) + ϵ, where 
t is the pseudotime and f is the function of cubic spline. The model is 
then compared to a reduced model expi = f(1) + ϵ to get P-value estimates 
using the F-test. The Benjamin–Hochberg method was used to calculate 
the adjusted P values. To further identify candidate genes showing 
potential differences between patients with AKI and CKD, we extended 
the base gam model by fitting a conditional-smooth interaction using 
CKD as a reference.

Gene module detection and cell assignment
To identify expression modules for significant gene sets along the 
estimated trajectories, we applied the module detection algorithm 
implemented in the WGCNA package95 (v.1.70-3) based on the smoothed 
gene expression matrix with parameters softPower = 10 and minMod-
uleSize = 20. The similar modules detected by the original parameters 
were further merged. In total, we identified five different modules in 
PT and six modules in TAL cells. For the gene sets in each module, we 
further performed pathway analysis using the Reactome online tool96 
(https://reactome.org/PathwayBrowser/). The enrichment of clinical 
associated gene sets for each module (Fig. 6e) was assessed by per-
forming log ratio enrichment tests. To predict the transcription factor 
activities of PT and TAL subclass genes, we used the DoRothEA package 
(v.1.7.2) as targets. DoRothEA transcription factors and transcriptional 
targets were curated from both human and mouse evidence. The tran-
scription factor activity scores for each cell type were calculated based 
on the run_viper function of the viper package (v.3.15; https://biocon-
ductor.org/packages/release/bioc/html/viper.html).

To identify cells that are associated with each module, we developed 
a systematic approach. In brief, for the cells in the smoothed expres-
sion matrix, we performed dimension reduction using PCA followed 
by Louvain clustering. This enabled the identification of cell clusters 
along the trajectory. For the identified cell clusters, we then performed 
hierarchical clustering to calculate the correlation of each module on 
the basis of mean gene expression values and further linked the clus-
ters with associated modules by cutting the hierarchical tree. Finally, 
module labels for each cell were assigned on the basis of its associated 
clusters. To link single-cell datasets with single-nucleus modules, we 
performed k-means clustering based on the joint embedding of PT or 
TAL cells and assigned the cells in scCv3 to modules on the basis of the 
majority voting from its k’s nearest neighbours (Code availability).

To further investigate cluster-free compositional change between 
disease conditions, we also performed cell density analysis, in which 
we compared the normalized cell density between AKI and CKD condi-
tions through 2D kernel estimates using Cacoa Package. Z scores were 
calculated to identify the regions that showed significant differences 
in cell density.

To validate the direction of modules inferred from human data, 
we performed joint alignment of the human and mouse trajectories. 
The individual trajectories inferred separately from these two species 
(Slingshot, described above) were aligned to generate a joint trajectory 
using CellAlign (https://github.com/shenorrLab/cellAlign) with param-
eters winSz = 0.1 and NumPts = 1000. The collection groups (timepoints 
from injury) derived from mouse data were then projected to human 
cells based on the joint trajectory. The genes that were conserved or 
divergent between the two species were specified as overlapping/ 
distinct gene sets that were tested for significance based on a gam 
model inferred from the trajectory (see above).
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RNA velocity analyses
Spliced and unspliced reads were counted from Cell Ranger BAM files 
for each snCv3 run using velocyto97 (v.0.17.17) and using the GRCh38 
gene annotations prepackaged with the Cell Ranger pipeline. Repeti-
tive elements were downloaded from the UCSC genome browser and 
masked from these counts. Corresponding loom files were loaded into 
R using the SeuratWrappers function ReadVelocity and converted to 
Seurat objects using the as.Seurat function. aPT or aTAL trajectory 
populations were then subset and RNA velocity estimates were calcu-
lated using scVelo98 (v.0.2.4) through a likelihood-based dynamical 
model. Velocity embeddings on the trajectory UMAPs were visual-
ized using the pl.velocity_embedding_stream function. Latent times 
based on transcriptional dynamics predicted from splicing kinetics 
were computed and the top 300 dynamical genes were plotted using 
the pl.heatmap function. Top likelihood genes were computed for 
each TAL module to identify potential drivers for these states. Spliced 
versus unspliced or latent time scatter plots were generated using the 
pl.scatter function.

GRN analyses
GRNs associated with TAL trajectory modules were constructed using 
Celloracle (v.0.9.1) with the default parameters outlined in the pro-
vided tutorials (https://morris-lab.github.io/CellOracle.documenta-
tion). The base GRN was first constructed from SNARE2 accessible 
chromatin data. Co-accessible peaks across cell types identified using 
Cicero (v.1.8.1) were linked to genes through their TSS peaks to iden-
tify accessible promoter/enhancer DNA regions. Peaks were then 
scanned for transcription-factor-binding motifs (gimme.vertebrate.
v5.0) to generate a base GRN. snCv3 data were then used to identify 
TAL state-specific GRNs. To ensure that relevant genes were used, we 
included genes that varied across the aTAL trajectory (Supplemen-
tary Table 17), showed dynamic module-specific transcription from 
scVelo analyses (Supplementary Table 21), were variably expressed 
across TAL cells (Pagoda2) or that were associated with differential 
transcription factor activities (Supplementary Table 20). GRN infer-
ence through regularized machine learning regression models was 
performed to prune inactive (insignificant or weak) connections 
and to select active edges associated with regulatory connections 
within each module or state, retaining the top 2,000 edges ranged by 
edge strength. Network scores for different centrality metrics were 
then calculated and visualized using Celloracle plotting functions. 
For in silico transcription factor perturbation analyses, target gene 
expression was set to 0 and resultant gene expression values were 
extrapolated or interpolated using the default parameters of Cellora-
cle and according to the provided tutorial. Stromal GRN construction 
was performed as indicated above, except using a gene subset that 
included variable STR genes identified using Pagoda2; subclass level 
3 markers for FIB, aFIB, MyoF (adjusted P < 0.05); or transcription 
factors with expression detected in at least 2.5% of nuclei (SNARE2) 
and having binding sites that were differentially active between STR 
subclasses (P < 0.05). To ensure BMP target SMADs were represented, 
SMAD1/5/8 were also included.

SLIDE-seq2
Puck preparation and sequencing. Tissue pucks were prepared  
from fresh frozen kidney tissue either embedded in Optimal Cut-
ting Temperature (OCT) compound or frozen in liquid nitrogen and  
sequenced20,99 according to a step-by-step protocol (https://doi.org/ 
10.17504/protocols.io.bvv6n69e). Libraries were sequenced on the 
NovaSeq S2 flowcell (NovaSeq 6000) with a standard loading con-
centration of 2 nM (read structure: read 1, 42 bp; index 1, 8 bp; read 2, 
60 bp; index 2, 0 bp). Demultiplexing, genome alignment and spatial 
matching was performed using Slide-seq tools (https://github.com/
MacoskoLab/slideseq-tools/releases/tag/0.1).

Deconvolution. We used Giotto100 (v.1.0.3) for handling the slide-seq 
data and RCTD101 (v.1.2.0) for the cell type deconvolution. As only ref-
erence tissue was used for slide-seq, all degenerative states as well as 
PapE, NEU, B and N were removed from the snCv3 Seurat object prior 
to deconvolution. The Seurat object was randomly subsampled to 
have at most 3,000 cells from each level 2 (l2) subtype and the level 1  
(l1) subclasses of ATL and DTL were merged. For each data source, that 
is, HuBMAP or KPMP (Supplementary Table 2), the counts from all 
beads across all pucks were pooled and deconvolved hierarchically: 
first, beads with less than 100 UMIs and genes detected in less than 150 
beads were removed. Then, the broad l1 subclass annotations in the 
Seurat object were used to deconvolve all beads (gene_cutoff = 0.0003, 
gene_cutoff_reg = 0.00035, fc_cutoff = 0.45, fc_cutoff_reg = 0.6, manu-
ally adding REN in the RCTD gene list and merging ATL and DTL subtypes 
as TL). The prediction weights were normalized to sum to 100 per bead. 
Beads for which one cell type had a relative weight of 40% or higher were 
classified as that l1 subclass. Then, for each l1 subclass, all classified 
beads were further deconvolved using the l2 annotation of that sub-
class, as well as the remaining subclass l1 annotations (same parameters 
as l1). Note that, for each l2 deconvolution, the bulk parameters in RCTD 
were fitted using all beads and then the RCTD object was subsetted to 
only contain the selected beads for the l2 deconvolution. Classifica-
tion at subclass l2 was done similar to l1 with the maximum relative 
weight cut-off of 30% or 50% depending on the stringency needed for 
an analysis (50% for Figs. 2c,f and Extended Data Fig. 4b and 30% in other 
analyses). For plotting gene counts, the scaling was performed with the 
command normalizeGiotto(gObj, scalefactor = 10000, log_norm = T, 
scale_genes = T, scale_cells = F). The marker gene dot plots were plotted 
using the DotPlot function in Seurat (v.4.0.0).

Cell type interaction. Coarse cell–cell interactions can be revealed by 
looking for cell types that tend to be in close proximity. For each puck, 
we created a neighbourhood graph based on Delaunay triangulation 
in which each bead is connected by an edge to at least one other neigh-
bouring bead, provided that their distance is smaller than 50 µm. For 
each pair of cell types, we count the number of times they are connected 
by edges. Then, the cell type labels are randomly permuted 2,500 times 
to form the null distribution of the number of connections. The expec
ted number of connections between pairs of cell types is calculated 
from this simulation and the proximity enrichment is defined as the 
ratio of the observed over the expected frequency of connections. 
The network construction and enrichment analysis were performed 
using Giotto’s createSpatialNetwork and cellProximityEnrichment 
commands, respectively. Those beads with maximum level 2 weight 
less than 30% were removed. We further excluded spurious beads that 
were outside of the visual boundary of the tissue (only for the pucks 
of which the names start with ‘Puck_210113’) by manually specifying 
straight lines that follow the tissue boundary. For cortical pucks (Sup-
plementary Table 2), M-PC, C-PC and IMCD labels were relabelled as PC; 
M-TAL and C-TAL as TAL; and EC-DVR was merged into EC-AEA. Other 
medullary and cycling subtypes were removed. For medullary pucks, 
M-PC and C-PC were relabelled as PC; M-TAL and C-TAL as TAL; all DTL 
subtypes as DTL; and EC-AEA was merged into EC-DVR. Other cortical 
and cycling subtypes were removed.

To generate the proximity plots in Extended Data Fig. 4, the enrich-
ment values for each cell type pair were averaged across all pucks from 
the same region and plots were generated using the R package ggGally 
(v.2.1.2). For the cortex and medulla, respectively, only the connections 
with mean enrichment values higher than 0.7 and 0.8 were plotted.

10x Visium spatial transcriptomics
Preparation, imaging and sequencing. Human kidney tissue was 
prepared and imaged according to the Visium Spatial Gene Expression 
(10x Genomics) manufacturer’s protocol (CG000240, Visium Tissue 
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Preparation Guide) and as previously described102. Nephrectomy (n = 6), 
AKI (n = 6) and CKD (n = 11) samples were sectioned at 10 µm thickness 
from OCT-compound-embedded blocks. These 23 samples represent 22 
participants because 2 samples (1 cortex and 1 medulla) were obtained 
from the same participant with CKD. A Keyence BZ-X810 microscope 
equipped with a Nikon ×10 CFI Plan Fluor objective was used to acquire 
H&E-stained bright-field mosaics, which were subsequently stitched. 
mRNA was isolated from stained tissue sections after permeabiliza-
tion for 12 min. Released mRNA was bound to oligonucleotides in the 
fiducial capture areas. mRNA was then reverse-transcribed and under
went second strand synthesis, denaturation, cDNA amplification and 
SPRIselect cDNA cleanup (Visium CG000239 protocol) as part of library 
preparation. Sequencing was performed on the Illumina NovaSeq 6000 
system103.

Gene expression analysis. Space Ranger (v.1.0 or higher) with the  
reference genome GRCh38 was used to perform expression analysis, 
mapping, counting and clustering. Summary statistics and quality- 
control metrics are included in Extended Data Fig. 5 and Supplementary 
Table 2. Normalization was performed using SCTransform104. Final data 
processing was performed in Seurat (v.3.2.3). Expression feature plots 
depict the intensity of transcript expression in each spot. In each Visium 
sample, the outermost layer of spots was eliminated from comparative 
analyses if the edge was manually cut by a razor.

Deconvolution. Using Seurat (v.3.2.0), a transfer score system was 
used to assess and map the proportion of signatures arising from each 
55 µm spot. The transfer score reflects a probability between each spot’s 
signature and its association with a given snCv3 subclass (level 2). The 
highest probability transfer scores have the highest proportion mapped 
within each spatial transcriptomics spot pie graph. For cell type feature 
plots (Figs. 2g and 3f and Extended Data Fig. 7i), subclass level 2 cell type 
transfer scores were mapped to convey the proportion of signature 
underlying each spot. For cell state feature plots (Fig. 3b), instead of 
mapping subclass level 2 cell types, the aEpi cell state annotated in 
snCv3 was mapped across all spots in the samples. We summed the 
proportion of signatures arising from all cell types corresponding to 
each of the 6 cell states in all spots of all samples (Fig. 3a). The propor-
tions of cell state were compared across nephrectomy, AKI and CKD 
samples using Fisher’s exact tests.

Colocalization of epithelial, immune and stromal cells. In all spots 
across all samples, we categorized spots into healthy, adaptive or 
degenerative epithelial cell states on the basis of the highest propor-
tion of epithelial cell state signature as calculated in Fig. 3a. For stro-
mal or immune cell type colocalization, we first selected spots with 
non-zero transfer scores of each cell type in all 23 samples. The presence 
of stromal or immune cell signature was considered colocalized with an 
epithelial cell if its stromal or immune transfer score exceeded its mean 
transfer score across all selected spots. An odds ratio was calculated 
for colocalization between the healthy, adaptive and degenerative 
epithelial cell state with stromal or immune cell signature.

Cell state marker expression. To compare marker gene expression 
associated with the healthy, adaptive and degenerative cell states 
(Fig. 3d), we first categorized a subset of spots from AKI and CKD sam-
ples into 1 of 5 predominant cell types: POD, PT, TAL, CD or FIB. For 
the PT, TAL and fibroblasts, a spot was selected if the highest propor-
tion of its signature (level 1 mapping) corresponded to one of these 
cell types. For the CD subset, a spot was selected if the sum of level 1 
mapping proportions for the PC and IC contributed most to its signa-
ture. POD spots were defined by the presence of a minimum of 20% 
signature arising from the level 1 POD label. Once the subsets of PT, 
TAL, fibroblast, CD and POD spots were selected, each spot was fur-
ther divided into healthy, adaptive or degenerative cell state groups 

based on the highest proportion of cell state signature as calculated 
in Fig. 3a. For PODs, the presence of EC-GC signature was considered 
to be a degenerative equivalent given that a loss of POD markers was 
associated with an observed gain in EC-GC signatures within DKD  
samples.

Niche analysis. To examine the diversity of cell types colocalizing with 
TAL epithelial cells, we selected spots with more than 20% TAL signa-
ture and in which the highest proportion of signature arose from level 
1 TAL mapping. Using Seurat clustering methodology, selected spots 
were reclustered after Seurat label transfer scores were substituted in 
lieu of gene expression. Spots with similar proportions of signature 
arising from TAL cell types and states, stromal cells and immune cells 
were clustered into 13 niches. Niches were mapped over the 23 kidney 
samples and the marker gene expression in each niche was determined. 
To depict the relative proportion of each cell type, the transfer score 
average was first computed in each niche. Next, a z score for each cell 
type was calculated across the niches.

Histological validation. To determine whether the 74 snCv3 subclasses 
(level 2) were appropriately mapped to histological structures, the 
proportion of signature in each spot was compared to a histologically 
validated set of six unsupervised clusters defined by Space Ranger102 
(Extended Data Fig. 5a). These six unsupervised clusters (glomerulus, 
PT, loop of Henle, distal convoluted tubule, connecting tubule and col-
lecting duct, and the interstitium) had an overall alignment of 97.6% 
with the underlying histopathologic structures in the H&E image. In 
each sample, regions of cortex and medulla were defined by histological 
evaluation, including the presence of glomeruli. Of the 23 samples, 18 
samples were composed of only cortex, 4 samples were a combination 
of cortex and medulla and 1 sample was completely medulla.

Label-free and multifluorescence large-scale 3D imaging
Kidney biopsy cores frozen in OCT from patients with AKI or CKD 
enrolled in KPMP were used for label-free imaging followed by 
multiplexed-fluorescence large-scale 3D imaging as outlined in the pro-
tocol (https://doi.org/10.17504/protocols.io.9avh2e6) and described in 
a recent publication27. Frozen biopsies were sectioned to a thickness of 
50 µm using a cryostat and then immediately fixed in 4% fresh paraform-
aldehyde (PFA) for 24 h and subsequently stored at 4 °C in 0.25% PFA.

The first step in imaging consists of label-free imaging with mul-
tiphoton microscopy to collect autofluorescence and second harmonic 
images of the unlabelled tissue mounted in non-hardening mounting 
medium. Imaging was conducted using a Leica SP8 confocal scan-head 
mounted to an upright DM6000 microscope. For large-scale imaging 
of tissues at the sub-micrometer resolution, the Leica Tile Scan func-
tion was used to collect a mosaic of smaller image volumes using a 
high-power, high-numerical aperture objective. Leica LASX software 
(v.3.5) was then used to stitch these component volumes into a single 
image volume of the entire sample. The scanner zoom and focus motor 
control were set to provide voxel dimensions of 0.5 × 0.5 μm laterally 
and 1 μm axially.

Labelling of tissue for fluorescence microscopy was preceded by 
washing in phosphate-buffered saline (PBS) and blocking with PBS 
with 0.1% Triton X-100 (MP Biomedical) and 10% normal donkey serum 
( Jackson Immuno Research). Antibodies for indirect immunofluores-
cence were applied first for 8–16 h at room temperature, followed by 
washing cycles of PBS with 0.1% Triton X-100. An incubation cycle with 
secondary antibodies occurred next, followed by washing and finally 
application of directly labelled antibodies. Antibodies targeting mark-
ers for tubular cells and structures (aquaporin-1, uromodulin, F-actin) 
and immune cells (myeloperoxidase, CD68, CD3, siglec 8) were used, 
in addition to nuclei labelling using DAPI (Supplementary Table 35). 
After the final washing cycles, the tissue was mounted in Prolong Glass 
(Thermo Fisher Scientific).
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Confocal microscopy was conducted using a Leica ×20/0.75 NA 
multi-immersion objective (adjusted for oil immersion), with excita-
tion sequentially provided by a solid-state laser launch with laser lines 
at 405 nm, 488 nm, 552 nm and 635 nm. Images in 16 channels (emission 
spectra collected by PMT detectors adjusted for the following ranges: 
410–430 nm, 430–450 nm, 450–470 nm, 470–490 nm, 500–509 nm, 
510–519 nm, 520–530 nm, 530–540 nm, 570–590 nm, 590–610 nm, 
610–630 nm, 631–651 nm, 643–664 nm, 664–685 nm, 685–706 nm 
and 706–726 nm) were collected for each focal plane of each panel 
of the 3D mosaic. The resulting 16-channel image was then spectrally 
deconvolved (by linear unmixing using the Leica LASX linear unmixing 
software) to discriminate the eight fluorescent probes in the sample. 
Validation of the linear unmixing was described previously27.

Confocal immunofluorescence microscopy
Human kidney tissue samples from the cortex or medulla were fixed in 
4% PFA, cryopreserved in 30% sucrose and frozen in OCT cryomolds, 
and were cut into 5 μm sections. The sections were post-fixed with 4% 
PFA for 15 min at room temperature, blocked in blocking buffer (1% BSA, 
0.2% skimmed milk, 0.3% Triton X-100 in 1× PBS) for 30 min at room tem-
perature and then immunofluorescence microscopy was performed, 
first by overnight incubation at 4 °C with primary antibodies, fol-
lowed by labelling with secondary antibodies. The primary antibodies 
included NRXN-1β, TUJ1, collagen I and III, synapsin-1, NPSH-1, SLC14A2, 
UMOD, CD31, CD34, CD11b, PROM1, KIM1, VCAM1, AQP1, AQP2, CD45 
and S100 (Supplementary Table 36). After washing, labelling with the 
secondary antibodies was performed using Alexa-488-conjugated goat 
anti-mouse IgG, Cy3-conjugated goat anti-rabbit IgG or Cy5-conjugated 
donkey anti-goat IgG at room temperature for 1 h. After washing, the 
sections were counterstained with DAPI for nuclear staining. Images 
were acquired with a Nikon 80i C1 confocal microscope.

In situ hybridization
Human kidney tissues were sectioned with 3 μm from formalin-fixed, 
paraffin-embedded (FFPE) blocks. In situ detections of PROM1, CST3 
and EGF mRNA transcripts were performed with the use of RNAscope 
Probes Hs-PROM1 (311261, Advanced Cell Diagnostics), Hs-CST3 
(528181, Advanced Cell Diagnostics), and Hs-EGF (605771, Advanced 
Cell Diagnostics) and RNAscope kit (322330, Advanced Cell Diagnos-
tics) according to the manufacturer’s protocol. RNAscope Positive 
Control Probe Hs-UBC (310041, Advanced Cell Diagnostics) was used 
as a positive control. A horseradish-peroxidase-based signal amplifica-
tion system (322310, RNAscope 2.0 HD Detection Kit-Brown, Advanced 
Cell Diagnostics) was used to hybridize with target probes followed by 
DAB staining. The sections were then counterstained with haematoxy-
lin (3535-16, RICCA Chemical Company). Positive staining was deter-
mined by brown dots. After rehydrating, the sections were immersed 
in periodic acid solution (0.5%, P7875, Sigma-Aldrich) for 5 min, rinsed 
in three changes of distilled water, incubated with Schiff’s reagent 
(3952016, Sigma-Aldrich) for 15 min and then rinsed in running tap water 
for 5 min. Nuclei were counterstained with haematoxylin 2 (220-102, 
Thermo Fisher Scientific) for 2 min. The sections were then rinsed in 
water, dehydrated in alcohol, cleared in xylene and finally mounted 
with Cytoseal XYL (8312-4, Thermo Fisher Scientific).

Tissue cytometry and in situ cell classification
Tissue cytometry and analysis were conducted using the Volumetric 
Tissue Exploration and Analysis (VTEA) software (v.1.0a-r9). VTEA is 
a 3D image processing workspace that was developed as a plug-in for 
ImageJ105. The version of VTEA, which includes the supervised and 
unsupervised labelling of cells and combining spatial and features 
based gating strategies, used here is available at GitHub (https://github.
com/icbm-iupui/volumetric-tissue-exploration-analysis) and through 
the FIJI updater. In this analytical pipeline, each individual nucleus was 
segmented using intensity thresholding and connected component 

segmentation built into VTEA and ImageJ. Each surveyed nucleus 
became a surrogate for a cell, to which the location and marker staining 
around or within the nucleus could be registered. This captured infor-
mation could be used to classify cells on the basis of marker intensity 
or spatial features using scatterplot displays that enable various gating 
strategies and statistical analysis, including export as .csv files of all 
segmented cells and the associated features106. Cells classified on the 
basis of marker intensity are summarized in Supplementary Table 37. 
Gated cells were mapped back directly into the image volumes, which 
enabled immediate validation of the gates. Moreover, direct gating 
on the image could be performed, which could trace all of the cells 
within the chosen region-of-interest back to the data display on the 
scatter plot. Thus, cell classification could also be performed based 
on direct annotation of regions-of-interest (ROIs) within the image 
volumes. Annotated ROIs were determined by the pixel-wise agree-
ment between 3 of 4 experts who performed annotation on each biopsy 
specimen separately.

Using tissue cytometry, 14 cell classes were defined based on the 
following features: (1) PT cells: AQP1+ cells in cortex ± brush border 
staining. (2) C-TAL cells: UMOD+ cells in cortex. (3) Glomerular cells 
(which encompass PODs, glomerular endothelium and mesangial cells) 
annotated ROIs based on morphology and F-actin staining. (4) Cortical 
large and medium vessel cells: annotated ROIs based on morphology 
and F-actin staining. (5) Cortical distal nephron cells (distal tubules 
(CD), connecting tubules (CNT) and collecting ducts (C-CD) or cortical 
distal nephrons): AQP1−UMOD− and annotated ROIs based on unique 
morphology in cortex. (6) M-TAL cells: UMOD+ cells in the medulla. 
(7) DTL: AQP1+ cells in the medulla. (8) Medullary collecting ducts: 
AQP1−UMOD− and annotated ROIs based on unique morphology in the  
medulla. (9) Vascular bundles in the medulla: annotated ROIs based 
onunique morphology in the medulla and F-actin staining. (10) Neu-
trophils: MPO+ cells. (11) Activated macrophages: MPO−CD68+ cells.  
(12) T cells: CD3+ cells. (13) Cells in altered regions: annotated ROIs 
based on loss of (unrecognizable) tubular morphology, expanded inter-
stitium, increased fibrosis (by second harmonic generation imaging)  
and cell infiltrates. (14) Not determined: unable to be classified on the 
basis of the above criteria.

Using such an approach,1,540,563 cells were labelled from all the 
biopsies used in this analysis.

3D neighbourhood building and representation
3D neighbourhoods were calculated for every cell in each biopsy 
using VTEA and a radius of 25 μm (50 voxels in x and y and 25 voxels 
in z). We reasoned the largest measurable neighbourhood/niche in 
our 3D approach is limited by the 50 μm thickness of the sections 
imaged (z dimension). Thus, per Nyquist sampling, the radius used 
was about 25 μm, which is consistent with previous approaches107–109. 
For each 3D neighbourhood, VTEA was used to calculate the features: 
fraction-of-total and sum of each labelled cell per neighbourhood. A 
list of neighbourhoods, positions in 3D and their features was exported 
by biopsy sample as .csv files.

Neighbourhood visualization and statistical analysis
CSV files of neighbourhoods by biopsy sample were generated in VTEA 
and imported into R (v.4.0.4), parsed for the sum of each labelled cell 
and monotypic neighbourhoods removed. These features were scaled 
by Z-standardization and used for Louvain community detection  
(R packages FNN (v.1.1.3) and igraph (v.1.2.6)) and t-SNE manifold 
projection (R package Rtsne (v.0.15)). To understand the interactions  
within neighbourhoods, pairwise interactions by neighbourhood  
were tallied and plotted on a chord plot (R package: circlize (v.0.4.12)) 
and Pearson’s correlation coefficients were calculated and plotted  
(R packages Hmisc (v.4.5.0) and corrplot (v.0.84)). Subclasses of neigh
bourhoods, those with at least one cell with a specific label were selected  
and plotted as network plots (R package igraph (v.1.2.6)) with edges in 
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CD3 and Altered neighbourhoods scaled at 40% of all other subclasses 
to facilitate visualization. All scripts are provided as an annotated  
RStudio notebook file (.rmd).

Plots and figures
UMAP, feature, dot and violin plots for snCv3, scCv3, SNARE2 and 
Visium data were generated using Seurat. Correlation plots were 
generated using the corrplot package. Genome coverage plots were 
performed using Signac. Plots for 3D cytometry and neighbourhood 
analysis were generated in R with circlize, ggplot2 and igraph.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Processed data, interactive and visualization tools: the snCv3, scCv3, 
SNARE2, Slide-seq and Visium processed data files are all available 
for download at the GEO (Superseries GSE183279). snCv3 healthy 
reference data are available for reference-based single-cell mapping 
using the Azimuth tool (https://azimuth.hubmapconsortium.org/). 
All snCv3 and scCv3 processed data can be accessed and viewed at 
cellxgene (https://cellxgene.cziscience.com/collections/bcb61471-
2a44-4d00-a0af-ff085512674c). snCv3 (excluding COVID-AKI and CKD 
nephrectomy samples), scCv3, Visium (KPMP biopsies) and 3D imaging 
can all be visualized and examined using the KPMP Data Atlas Explorer 
(https://atlas.kpmp.org/explorer/). For 3D imaging, the cytometry data, 
cell classifications, gates and neighbourhood analysis data are available 
at Zenodo (https://doi.org/10.5281/zenodo.7120941). Raw sequencing 
and imaging data: raw sequencing data are under controlled access 
(human data) as they are potentially identifiable and can be accessed 
from the respective sources indicated below (summarized in Supple-
mentary Tables 1 and 2). Raw and processed sequencing and imaging 
data (snCv3, scCv3, 3D imaging and Visium) generated as part of the 
KPMP have been deposited (https://atlas.kpmp.org/repository/) and 
compiled (https://doi.org/10.48698/3z31-8924) online. 3D imaging 
raw data are freely available to download; however, KPMP raw sequenc-
ing data (snCv3, scCv3, Visium) have restricted access. These can be 
requested from KPMP by contacting A.L.D. (info@kpmp.org) and are 
available by signing a data use agreement (DUA) promising to abide 
by KPMP security standards and to not re-identify participants, share 
data outside those named on the DUA Exhibit A or sell the data. Data 
access is granted to anyone signing the KPMP DUA as is. KPMP will 
respond to initial data requests within 12–36 h and provide data up to 
one month after the DUA has been signed. Manuscripts resulting from 
KPMP controlled access data are requested to go through the KPMP 
publications and presentations (P&P) committee to ensure that KPMP is 
acknowledged appropriately and authorship follows ICJME standards. 
The KPMP P&P committee reviews and approves manuscripts every 
2 weeks and, to date, no manuscript has been rejected. Any analysis 
resulting from KPMP data may be published or shared provided that 
it does not re-identify KPMP participants. Slide-seq raw sequencing 
data generated as part of KPMP pilot nephrectomy tissue are available 
for download from the GEO (Superseries GSE183279). Raw sequencing 
data (snCv3, SNARE2, Slide-seq) generated as part of the Human Bio-
molecular Atlas Project (HuBMAP) have been deposited (https://portal.
hubmapconsortium.org/) and compiled (https://doi.org/10.35079/
hbm776.rgsw.867) online. The HuBMAP raw sequencing data have 
restricted access and are available for download from the database 
of Genotypes and Phenotypes (dbGaP: phs002249) by requesting for 
authorized access following instructions on the dbGaP website. The 
process to request access to this dbGaP study is available online (https://
dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?adddataset=phs002249&page=
login). In brief, to download the human sequencing data for this study 

after obtaining authorization from the NIH DAC, one would go through 
the SRA (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA671343). 
snCv3 data not deposited to KPMP or HuBMAP are available from the 
GEO (GSE183279) or, for Covid AKI raw sequencing files, on request 
from Washington University Kidney Translational Research Center 
(KTRC) to S.J. (sanjayjain@wustl.edu) due to patient confidentiality. 
Response to requests or questions will be addressed within a week. 
Code access and data use agreement forms can be accessed online 
(https://research.wustl.edu/core-facilities/ktrc/). Once the executed 
form is received and approved, data will be distributed within a month. 
There is no authorship restriction on the use of COVID data. Additional 
published/public datasets: the following publicly available RNA-seq 
datasets were used in this study: mouse kidney single cell (GEO: 
GSE129798); mouse kidney injury single nucleus (GEO: GSE139107); 
human fibroblast and myofibroblast single cell (Zenodo: https://doi.
org/10.5281/zenodo.4059315); mouse distal nephron single cell and 
bulk distal segment (GEO: GSE150338); human kidney mature immune 
single cell (https://kidney-atlas.cells.ucsc.edu); and human kidney 
single nucleus (GEO: GSE151302; https://human-kidney-atac.cells.ucsc.
edu). GWAS summary statistics were from the CKDGen Consortium 
(all eGFR; https://ckdgen.imbi.uni-freiburg.de/files/Wuttke2019), EBI 
GWAS Catalog (hypertension; https://www.ebi.ac.uk/gwas/efotraits/
EFO_0000537) and the CausalDB database (release 1.1 2019-09-29; 
http://www.mulinlab.org/causaldb). NEPTUNE sequencing and clinical 
data were obtained from NEPTUNE. Owing to patient confidentiality, 
these data have restricted access and are available only on request to 
NEPTUNE-STUDY@umich.edu. ERCB data were obtained from the GEO 
(GSE104954). Raw sequencing data (scCv3) on living donor biopsies as 
part of the Chan Zuckerberg Initiative (CZI) and HCA are available from 
the GEO (GSE169285). Additional Visium spatial transcriptomic data 
not in the KPMP repository are available from the GEO (GSE171406). 
Figures: schemata of the human nephron and renal corpuscle were 
developed by the KPMP and HuBMAP (https://doi.org/10.48698/DEM4-
0Q93). Source data are provided with this paper.

Code availability
Code to reproduce figures are available to download from GitHub 
(https://github.com/KPMP/Cell-State-Atlas-2022). No additional  
custom computational code was generated in this study.
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Extended Data Fig. 1 | snCv3 cell types and quality metrics. a. Number of 
samples processed across technologies assessed both individually and in 
combination. b. UMAP plots for snCv3 clusters. c. UMAP plots as in (b) showing 
the corresponding tissue regions, sex, patient identities and conditions. d. Bar 
and violin plots for snCv3 patients shown in (c). Barplots showing the total 
number of post-QC nuclei used in the snCv3 clustering analysis, and the 
proportions that were associated with level 1 subclasses, regions sampled or 
the health or disease conditions. Violin plots show the percentage of transcripts 

associated with the mitochondria (Mt) or endoplasmic reticulum (ER), as well 
as mean genes and mean transcripts detected per patient sample. e. Receiver 
operating characteristic (ROC) curve showing snCv3 clustering quality as 
assessed by the descrimination between subclasses (level 1) or clusters (b) 
using the Single Cell Clustering Assessment Framework (SCCAF). f. Bar and 
violin plots as in (d) for snCv3 clusters shown in (b), including proportion of 
nuclei contributed by each patient.



Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | snCv3 marker genes and comparison with reference 
data. a. Dot plot showing averaged marker gene expression values (log scale) 
and proportion expressed for snCv3 clusters. b. Cell type labels predicted from 
Lake et. al. 201912 mapped on the snCv3 UMAP embedding. Inset shows the 
corresponding prediction score values. c. UMAP of Lake et. al. 201912 data 
mapped to snCv3 embeddings showing subclass level 3 predicted labels. Inset 
shows the corresponding prediction score values. d. UMAP of Muto et al. 202115 
data mapped to snCv3 embeddings showing subclass level 3 predicted labels. 
Inset shows the corresponding prediction score values. e. Heatmap showing 
correlation of averaged scaled gene expression values for snCv3 epithelial 
(reference state) clusters and mouse bulk segmental RNA-seq data from Chen 
et al., 202161. f. Heatmap showing correlation of averaged scaled gene expression 
values for snCv3 distal tubule clusters (reference states) and mouse scRNA-seq 
data from Chen et al., 202161. g. Heatmap showing correlation of averaged 
scaled gene expression values for snCv3 clusters (reference and altered/

adaptive states) and mouse snRNA-seq clusters from Kirita et al., 20204.  
h. Heatmap showing correlation of averaged scaled gene expression values 
(reference states) for snCv3 clusters and mouse scRNA-seq clusters from 
Ransick et al., 201959. i. Heatmap showing correlation of averaged scaled gene 
expression values for snCv3 stromal clusters (reference and altered/adaptive 
states) against human scRNA-seq clusters from Kuppe et al., 202025. j. Heatmap 
showing correlation of averaged scaled gene expression values for snCv3 
immune cell clusters and mouse immune cell types from Immgen.org.  
k. Heatmap showing correlation of averaged scaled gene expression values for 
snCv3 immune cell clusters and human immune cell types from Monaco et al. 
201962. l. UMAP of Stewart et al., 201914 immune single-cell RNA-seq data 
mapped to snCv3 embeddings showing subclass level 3 predicted labels (top) 
and the prior published cell type annotations (bottom). Inset shows the 
corresponding prediction score values.



Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | scCv3 integration and quality metrics. a. UMAP  
plot showing integrated snCv3, scCv3 and SNARE2 (RNA) subclass level 3 
annotations. scCv3 and SNARE2 (RNA) datasets were projected onto the snCv3 
embeddings. b. UMAP plots as in (a) show mapping of the corresponding sex, 
patient identities and conditions for scCv3 and SNARE2 datasets. c. Joint 
embedding of SNARE2 RNA and AC modalities. d. Barplots showing the total 
number of post-QC nuclei and subclass level 1 cell types detected per scCv3 or 
SNARE2 patient. Violin plots show the percentage of transcripts associated 
with the mitochondria (Mt) or endoplasmic reticulum (ER), as well as mean 

genes, mean transcripts, mean accessible peaks or mean TSS enrichment 
scores detected per patient. e. Barplots showing the total number of post-QC 
nuclei/cells per subclass (level 3) combined across platforms (snCv3, scCv3, 
SNARE2). Patient entropy as well as tissue type, region, condition, sex and 
assay proportions are shown. Heatmap of correlation values for each scCv3  
and SNARE2 subclass against the corresponding snCv3 subclass is shown (top 
panel). Grey values indicate absence of a comparison where subclasses were 
not covered by one or more of the technologies.



Extended Data Fig. 4 | Slide-seq predicted cell types. a. UMI counts per  
bead for classified beads. Normalized RCTD weights for the beads classified at 
subclass level 2 (Methods). Region of the tissue associated with beads for each 
subclass. Frequency of cell types predicted across pucks. b. Dot plot showing 
expression of cell type markers identified by snCv3 in the classified Slide-seq 
beads. c. Representative pucks showing subclass level 2 classifications. Cell 
types are grouped into 3 categories and plotted separately for clarity. Scale bar 

is 300 µm. d-e. Cell proximity networks for Slide-seq cell types associated with 
cortical or medullary regions. For panels a, b, d and e all pucks (6 individuals) 
were combined. f. Left panel: Slide-seq puck area indicated in (c) and predicted 
cell types for the AEAs and surrounding cell types. Right panel: mapped 
expression values for corresponding marker genes (scaled). AEA mapping over 
Visium histology is depicted in Extended Data Fig. 5j, colocalized with REN 
expression. Scale bar is 100 µm.
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | 10X Visium predicted cell types. a. Analysis of subclass 
(level 2) predictions on 10x Visium spots (23 samples, 22 individuals). The top 
panel presents the distribution of transfer scores for the subclass (level 2) with 
the highest score in each spot. The UMI count panel presents the UMI counts 
associated with these spots. The cell type proportion panel depicts the 
proportion of transcriptomic signatures for each subclass, corresponding to 
its transfer score relative to all non-zero transfer scores in that spot. The 
relative proportion of cell type subclass signatures arising from the cortex or 
medulla in the 23 samples is shown. The bottom panel reveals the alignment 
between the predicted cell type subclass and unsupervised clusters that were 
histologically validated (Methods). b. Dot plot showing gene expression of 
select cell markers by predicted subclass (level 2) for all 23 Visium samples.  
c. The proportion of transcriptomic signatures in the 23 samples revealed a 
similar distribution of cell types across healthy reference nephrectomies, 
chronic kidney disease (CKD), and acute kidney injury (AKI) samples. d. Cortical 
(left, I) and medullary (right, U) portions of specimen 21-0063 reveal POD 
signatures confined to the cortex, while M-TAL signatures were found in the 
medulla. White arrows denote the connection point between the cortex and 

medulla portions of the sample. e. A histologic image of the cortex (bounded  
in d) reveals level 1 cell type mapping of POD, EC-GC, and VSM/P cells to a 
glomerulus. PT and TAL signatures were seen mapped over distinct regions of 
tubules. f. Expression of NPHS2 (for glomeruli), ALDOB (for PT), and SLC12A1 
(for TAL) in the cortex. g. A histologic image of the medulla (bounded in d) 
reveals level 1 cell type mapping of a high proportion of TAL cells within the 
medulla. h. Feature plots showing SLC12A1 but not NPHS2 or ALDOB expression 
in the medulla. i. Proportion of cortex and medulla cell types for sample  
21-0063 (9555 total spots over two sections of the same individual). j. A cortical 
image in a healthy reference sample (19-M61) showing EC-AEA entering the 
glomerular corpuscle near the MD. Two glomeruli contain signatures arising 
predominantly from POD and EC-GC. Two TAL niches are outlined. TAL niche 1 
is enriched in healthy cortical TAL signature and TAL niche 8 near the afferent 
arteriole is enriched for Macula Densa (MD) signature. NPHS2 expression is 
found within the glomeruli and renin (REN) expression is highest in the EC-AEA. 
A full level 2 cell type deconvolution is provided in the final panel (right). Scale 
bars are 300 μm in length.
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Extended Data Fig. 6 | Altered states in a mouse model of AKI. a. UMAP 
showing mouse AKI (IRI) data4 with cell types predicted from snCv3. Mouse 
datasets were projected onto the snCv3 UMAP embeddings (Fig. 2b). 
Histograms of prediction scores for subclasses (level 1 and 3) are shown.  
b. UMAP plots as in (a) showing the original cell type annotations4 and injury 
groups (time points following IRI) for mouse data. c. Barplot showing the 

proportion of altered states for each mouse injury group. d. Barplot showing 
proportion of each injury group for a subset of predicted subclasses. Arrows 
indicate altered states or immune cells (MAC-M2) that persisted at 6 weeks 
following injury. e. UMAP as in (a) showing the distribution of reference and 
altered states over the different injury groups.



Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Altered state expression signatures. a-b. Gene Set 
Enrichment Analyses (GSEA) for genes upregulated or downregulated in 
adaptive PT (a) and TAL (b) states compared to reference states. c. Dot plot 
showing averaged marker gene expression values (log scale) and proportion 
expressed for snCv3 clusters. d. Dot plot showing averaged marker gene 
expression values (log scale) and proportion expressed for integrated snCv3/
scCv3 reference, degenerative and adaptive stromal clusters. e. Violin plots 
showing aSTR and ECM (matrisome) scores for snCv3 clusters. f. Visium feature 

plots of normalized counts for select markers mapped to regions shown in 
Fig. 3e. Scale bar is 100 µm. g. Visium feature plot of normalized counts for a 
select marker mapped to region shown in (h). Scale bar is 100 µm. h. Histology 
and predicted cell types for a medullary region of acute tubular necrosis (cellular 
cast formation within tubular lumens, loss of brush border, loss of nuclei, and 
epithelial simplification). Pie charts are proportions of predicted transfer 
scores. Area corresponds to the upper bounded region in Fig. 3b. Scale bar is 
100 µm. i. Predicted transfer scores for area shown in (h). Scale bar is 100 µm.



Extended Data Fig. 8 | 3D imaging identifies injury neighbourhoods.  
a. Maximum intensity projections of immunofluorescence and second 
harmonic images for 13 example biopsies, scale bars 500 µm. b. Overview of 
neighbourhood classes as given in Fig. 4b for reference. c. Distribution of 
neighbourhoods by specimen in neighbourhood clusters plotted in tSNE space 
from Fig. 4. d. Feature plots of the number of cells per neighbourhood for 
cortical TAL (C-TAL), altered morphology and proximal tubule (PT). C-TALs and 
PTs are found in neighbourhoods with altered morphology, cyan and orange vs. 
red and magenta arrowheads. e-h. Neighbourhoods with at least one cell for 
the labels indicated were subsetted and neighbourhood graphs generated to 
indicate the pairwise interaction between cell labels. At right: maximum 

Z-projections of 3D confocal fluorescence images with white arrow indicating 
MPO+ cells (e and f) or CD68+ cells (g), orange arrows indicating CD3+ cells and 
asterisks highlighting fibrosis (white) or areas of altered morphology/injury 
(yellow). Scale bar = 100 μm. h and i, pairwise subset analysis of CD3+, PT and 
TAL (orange, magenta and cyan arrows respectively). CD3+ cells cluster in 
regions of fibrosis (orange arrowhead and white asterisks). UMOD positive 
casts associate with regions of injury and CD3+ cells (orange asterisk), the 
tubular epithelium is intact with brush borders (white #), has evidence of 
epithelial simplification (orange #) or less AQP1 marker and epithelial 
simplification (red #). Scale bar = 100 µm.
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | PT and TAL repair trajectories. a. Trajectory of PT  
cells for snCv3 and scCv3 datasets. Bottom UMAPs are coloured by cell density 
for each condition (AKI/CKD), including the cell density difference between 
AKI and CKD. b. UMAP of PT subclasses (PT-S1-S3, aPT) with projected RNA 
velocities, derived from a dynamical model of PT repair modules, visualized as 
streamlines (Methods). c. Heatmap of smoothed gene expression profiles 
along the inferred pseudo-time for PT cells. Colour blocks on the left show 
different repair states or modules identified based on the gene expression 
profiles. d. Right panel: dot plot of SNARE2 average accessibilities (chromVAR) 
and proportion accessible for TFBSs showing differential activity in aPT 
modules. Left panel: dot plot of averaged gene expression values (log scale) 
and proportion expressed for integrated snCv3/scCv3 modules. e. 3D confocal 
imaging of a reference kidney tissue section stained for PROM-1 (red), Phopho-
c-Jun (p-c-JUN, yellow), F-actin (with FITC phalloidin, green) and DNA with DAPI 
(cyan) (scale bar 100 µm). Regions of PROM-1 within a glomerulus (G) and a 
proximal tubule (PT) are indicated and enlarged in the right panels (rendered 
3D volumes, scale bar 10 μm). This area shows the association of PROM-1 
expression with p-c-Jun+ cells in the tubules. 3D rendering was performed 
using the Voxx software from the Indiana Center for Biological Microscopy 

(voxx.sitehost.iu.edu/). f. Top panels: TAL UMAPs as in Fig. 5a (snCv3) showing 
condition densities as in (a). Bottom panels: changes of smoothed gene 
expression (snCv3) for representative genes as a function of inferred pseudotime 
coloured by disease conditions. g. TAL UMAP as in Fig. 5a (snCv3) with projected 
RNA velocities, derived from a dynamical model for TAL repair modules, 
visualized as streamlines (Methods). h. Heatmap showing expression value 
dynamics (snCv3) along latent time inferred from RNA velocities for the top 
300 likelihood-ranked genes. Top colour bar indicates aTAL repair modules.  
i. Scatter plots (u, unspliced; s, spliced; t, latent time) for putative driver genes 
(snCv3) identified by high likelihoods in the dynamical model. j. Gene regulatory 
networks associated with TAL repair modules (Methods, see Supplementary 
Table 23). Eigenvector centrality scores were plotted for select factors with 
high influence on different states. k. UMAP embedding (snCv3) showing 
pseudotime gradient and the derived vector field associated with TAL repair.  
l-m. UMAP embedding showing simulated vector fields following TFAP2B (l) or 
NR3C1 (m) perturbation. Barplots show inner product calculations (perturbation  
scores) comparing directionality and size of TAL repair flow vectors and the 
simulated perturbation vectors. Negative perturbation scores indicate a block 
in differentiation.
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Extended Data Fig. 10 | See next page for caption.



Extended Data Fig. 10 | Adaptive epithelia localized to areas of injury.  
a. Immunofluorescent (IF) staining of VCAM1, AQP1, KIM1 (HAVCR1) in the  
aPT (performed on replicate sections from 3 individuals). Scale bars represent 
20 µm. b. IF staining of UMOD, PROM1 and KIM1 in the TAL (performed on 
replicate sections from 3 individuals). Scale bars represent 20 µm. c-e. RNA 
in situ hybridization (ISH) for PROM1, CST3 or EGF (performed on adjacent 
sections from 6 individuals). c. ISH for PROM1 and CST3 in adjacent sections. 
PROM1 is localized to an area showing interstitial fibrosis and tubular atrophy. 
Scale bar is 100 μm. d. RNA ISH for PROM1 (left panel) and EGF (right panel) in 

adjacent corticomedullary sections. PROM1 positive epithelial cells seen in 
injured tubules (epithelial simplification, loss of nuclei) that are EGF negative 
(blue asterisks, upper inset image) and EGF positive healthy TAL (red asterisks, 
lower inset image). Scale bar is 100 μm. e. ISH for PROM1 and EGF (healthy TAL) 
showing PROM1 localization to PT (blue asterisks, left inset) and TAL (red 
asterisks, right inset) showing histological evidence of injury (epithelial thinning, 
nuclei loss, brush border loss in PT). Adjacent section (lower panel) shows EGF 
positivity in healthy TAL cells. Scale bar is 50 μm.
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Extended Data Fig. 11 | See next page for caption.



Extended Data Fig. 11 | TAL adaptive or maladaptive repair niches.  
a. Slide-seq fibrotic/inflammatory niches from Fig. 5d showing full predicted 
subclass level 3 cell type distributions. Scale bar is 100 μm. b. Visium TAL niches 
were identified by clustering TAL dominant spots according to Seurat label 
transfer scores. The UMAP denotes 13 TAL niches which were distributed across 
the 23 samples (patient inset) and across disease state conditions (condition 
inset). c. Visium niche cluster compositions. Signature proportions of TAL cell 
types, injury cell states, stromal cells, and immune cells. Niche 5 contained 
significant stromal, niche 7 contained lymphoid, and niche 11 contained myeloid 
cell signatures. Some niches (e.g. 9) had significant contributions from 
neighbouring non-TAL epithelial cells (“Proportion Other” bar plot). The 
colocalization score (Methods) for cell types within each niche is based on 
Seurat label transfer scores and provided as a dot plot. d. A subset of TAL niches 
(1, 3, 5, 7) were overlaid upon a histologic image of the cortex in sample M19-F52_3, 
with each niche often represented by multiple contiguous spots. Scale bar is 

300 μm in length. e. Representative region (patient 28-12265) showing niche 5 
(STR) localized in proximity to interstitial fibrosis, and niche 3 (aTAL) localized 
adjacent to myeloid cell infiltration. Scale bar is 300 μm. f. Circle plot of ligand-
receptor cell cell communications between TAL repair modules or states and 
immune cell subclasses. Dot size indicates relative proportion of the subclasses 
and TAL module, edge width represents strength of the communication.  
g. Dotplots showing expression level and percent expressed for select ligands 
or receptors within the mouse AKI data. Data were grouped into injury groups 
less than or equal to 2 days (including control cells) and groups greater than  
2 days post-injury. The asterix highlights an IGF1 expression difference found 
between early and late injury groups of the aFIB population. h. Gene regulatory 
networks associated with STR cell types (see Supplementary Table 27). 
Eigenvector centrality scores were plotted for select factors with high influence 
on different subclasses. Ontologies for target genes downstream of select 
transcription factors are shown.
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Extended Data Fig. 12 | See next page for caption.



Extended Data Fig. 12 | Association of cell state scores with clinical 
phenotypes. a. Embedding plots: grouping of patient-level expression profiles 
for the aTAL, aStr, Degen, and aPT genesets used for clinical outcome association 
(Supplementary Table 27) for snCv3 (Top) and scCv3 (Bottom). Barplots: the 
distribution of eGFR among the identified groups. b. Unadjusted Kaplan Meier 
curves by aStr (P = 0.001) and common aPT and aTAL (P = 0.03) state scores for 
composite of ESRD or 40% drop in eGFR from time of biopsy in Neptune adult 
patient cohort (see Supplementary Table 30). A score generated using 100 
randomly selected genes failed to show any correlation (P = 0.52) with disease 
survival. c. Heatmap of causal variants (z-scores) that were enriched in SNARE2 
cell-type specific accessible chromatin. Dots represent Z-scores > 2 (or P value 
< 0.05). Dotplots show averaged ESRRB binding site accessibility or gene 
expression (log values) and percent accessible or expressed. d. ESRRB 
subnetwork of TF connections to target genes generated using SNARE2 RNA 
and AC data, demonstrating a central role for ESRRB in regulating TAL marker 

genes. Inset shows the ESRRB motif. Boxes represent ESRRB target genes 
showing causal variant enrichment (c) within linked regulatory regions (AC 
peaks). e. Heatmap showing enrichment scores (scaled -log10(p values)) for  
the RNA expression (snCv3/scCv3) of gene sets associated with eQTL linked to 
kidney function or disease88,89 or associated with progression of acute to 
chronic injury90. f. Dot plots of averaged gene expression values (snCv3/scCv3) 
or TF binding site accessibilities (SNARE) and proportion expressed/accessible. 
Violin plots show gene expression scores for gene sets associated with aging 
(Tabula Muris Consortium48 and Takemon et al.69) or SASP (Ruscetti et al.70 or 
Basisty et al.71). g. Violin plots showing expression scores for gene sets shown in 
(f) for all non-immune subclasses. h. Bottom: Number of differentially expressed 
genes between AKI and CKD cases for each major cell type in snCv3 and scCv3 
datasets. Top: enrichment of functional gene ontology terms for each major 
cell type. Colour indicates -log adjusted p-value (derived from GSEA and 
calculated based on permutation).
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated 

Our web collection on statistics for biologists contains articles on many of the points above. 

Software and code 

Policy information about availability of computer code 

Data collection 10x Chromium v3 and Illumina Novaseq 6000 instrument control software (v1.6.0 and 1.7.0); Leica LASX software (v. 3.5); 3D label free 

autofluorescence and fluorescence imaging data were captured using a Leica SP8 confocal scan-head mounted to an upright DM6000 

microscope. For large-scale imaging of tissues at submicron resolution, the Leica Tile Scan function was used to collect a mosaic of smaller 

image volumes using a high-power, high-numerical aperture objective. Leica LASX software (v. 3.5) was then used to stitch these component 

volumes into a single image volume of the entire sample. The scanner zoom and focus motor control were set to provide voxel dimensions of 

0.5 x 0.5 um laterally and 1 um axially. 2D Immunofluorescence images and data were captured using Nikon EZ-C1 (3.91) confocal system and 

images produced using NIS-elements software (BR3.2 64 bit). 

Data analysis Code to reproduce figures are available to download from github.com/KPMP/Cell-State-Atlas-2022. 

snCv3 and scCv3 sample demultiplexing, barcode processing, and gene expression quantifications were performed with the 10X Cell Ranger 

v3 pipeline using the GRCh38 (hg38) or GRCh37 (hg19, indicated in Comments column of Supplementary Table 1)) reference genome. For 

single nucleus data, introns were also included in the expression estimates. SNARE2 data processing pipeline (snarePIP v1.0.1) is available at 

github.com/huqiwen0313/snarePip. For SNARE2 RNA processing, this involved removal of AC contaminating reads using cutadapt (version 

3.1), dropEst (version 0.8.6) to extract cell barcodes and STAR (version 2.5.2b) to align tagged reads to the genome (GRCh38). For SNARE2 AC 

data, this involved snaptools (version v1.2.3) and minimap (version 2-2.20) for alignment to the genome (GRCh38). snCv3 doublets were 

identified using DoubletDetection software (version 2.4.0). SNARE2 doublets were identified by both DoubletDetection (version 3.0) and 

Scrublet (github.com/swolock/scrublet, version 0.2.2). Ambient RNA in scCv3 was corrected using SoupX (version 1.5.0). snCv3/scCv3/SNARE 

analyses involved the following R packages: Seurat (version 4.0.0), Pagoda2 (version 1.0.2), corrplot (version 0.84), Signac (version 1.1.1), 

MACS (version 3.0.0a6), chromVAR (version 1.12.0), CisTopic (version 0.3.0), Cicero (version 1.8.1), swne (version 0.6.20), ggdendro (version 

0.1.20), circlize (version 0.4.12), g-chromVAR (version 0.3.2), Slingshot (version 2.0.0), WGCNA package (version 1.70-3), Cacao (version 0.2.0), 

SCCAF (version 0.0.10), sclB (version 1.0.3), DoRothEA (version 1.7.2), viper (version 3.15), CellAlign (https://github.com/shenorrLab/cellAlign), 

velocyto (version 0.6), CellChat (version 1.0.0). The following python packages were also used: NSForest (version 2.0), velocyto (version 

0.17.17), scVelo (version 0.2.4), Celloracle (version 0.9.1), CausalDB database (github.com/mulinlab/CAUSALdb-finemapping-pip). Additional 
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code for analysis of chromatin data is provided at github.com/yanwu2014/chromfunks. 

Slide-seq2 demultiplexing, genome alignment and spatial matching was performed using Slide-seq tools github.com/MacoskoLab/slideseq- 

tools/releases/tag/0.1. Slide-seq analysis was performed using: Giotto (version 1.0.3), RCTD (version 1.2.0), ggGally (version 2.1.2) and Seurat 

(version 4.0.0). 10X visium expression analysis, mapping, counting, and clustering was performed using Space Ranger (version 1.0.0) and final 

data processing was done in Seurat (version 3.2.0 and 3.2.3). Tissue cytometry and analysis were conducted using the Volumetric Tissue 

Exploration and Analysis (VTEA) software (version 1.0a-r9, www.github.com/icbm-iupui/volumetric-tissue-exploration-analysis) and RStudio 

(version 1.4) with R (version 4.0.2), corrplot (version 0.84), igraph (version 1.2.6), FNN (version 1.1.3), circlize (version 0.4.12), Hmisc 

(version 4.5.0), corrplot (version 0.84) and Rtsne (version 0.15). 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information. 
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Policy information about availability of data 

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

Processed data, interactive and visualization tools: The snCv3, scCv3, SNARE2, Slide-seq and Visium processed data files are all available for download from GEO 

(Superseries GSE183279). snCv3 healthy reference data is available for reference-based single cell mapping by the Azimuth tool: https:// 

azimuth.hubmapconsortium.org/. All snCv3 and scCv3 processed data can be accessed and viewed at cellxgene (https://cellxgene.cziscience.com/collections/ 

bcb61471-2a44-4d00-a0af-ff085512674c). snCv3 (excluding COVID-AKI and CKD nephrectomy samples), scCv3, Visium (KPMP biopsies) and 3D imaging can all be 

visualized and interrogated using the KPMP Data Atlas Explorer: https://atlas.kpmp.org/explorer/. For 3D imaging, the cytometry, cell classifications, gates and 

neighborhood analysis data are located at: https://doi.org/10.5281/zenodo.7120941. 

Raw sequencing and imaging data: Raw sequencing data are under controlled access (human data) as they are potentially identifiable and can be accessed from the 

respective sources indicated below (summarized in Supplementary Table 1). Raw and processed sequencing and imaging data (snCv3, scCv3, 3D imaging, Slide-seq, 

Visium) generated as part of the Kidney Precision Medicine Project (KPMP) has been deposited at https://atlas.kpmp.org/repository/ and compiled at https:// 

doi.org/10.48698/3z31-8924. Raw sequencing data can be requested and are available by signing a data use agreement with KPMP. Raw sequencing data (snCv3, 

SNARE2, Slide-seq) generated as part of the Human Biomolecular Atlas Project (HuBMAP) has been deposited at https://portal.hubmapconsortium.org/ and 

compiled at https://doi.org/10.35079/hbm776.rgsw.867. The HUBMAP raw data are available for download from the database of Genotypes and Phenotypes 

(dbGaP, phs002249). snCv3 data not deposited to KPMP or HUBMAP are available from GEO (GSE183279) or, for Covid AKI raw sequencing files, upon request from 

WU KTRC (sanjayjain@wustl.edu) due to patient confidentiality. 

Additional published/public data sets: The following publicly available RNA-seq data sets were used in this study: mouse kidney single-cell (GEO, GSE129798); mouse 

kidney injury single-nucleus (GEO, GSE139107); human fibroblast and myofibroblast single-cell (Zenodo, 10.5281/zenodo.4059315); mouse distal nephron single- 

cell and bulk distal segment (GEO, GSE150338); human kidney mature immune single-cell (https://kidney-atlas.cells.ucsc.edu); and human kidney single-nucleus 

(GEO, GSE151302; https://human-kidney-atac.cells.ucsc.edu). GWAS summary statistics were from the CKDGen Consortium (all eGFR, https://ckdgen.imbi.uni- 

freiburg.de/files/Wuttke2019), EB! GWAS Catalog (hypertension, https://www.ebi.ac.uk/gwas/efotraits/EFO_0000537), and the CausalDB database (Release 1.1 

2019-09-29, http://www.mulinlab.org/causaldb). NEPTUNE sequencing and clinical data were obtained from the Nephrotic Syndrome Study Network and are 

available upon request to NEPTUNE-STUDY @umich.edu due to patient confidentiality. ERCB data was obtained from GEO (GSE104954). Raw sequencing data 

(scCv3) on living donor biopsies as part of the Chan Zuckerberg Initiative (CZI) and Human Cell Atlas (HCA) are available from GEO (GSE169285). Additional visium 

spatial transcriptomic data not in the KPMP repository are available from GEO (GSE171406). 

Figures: Source data are provided with this paper. Additional figures can be accessed at Zenodo https://doi.org/10.5281/zenodo.6987337. Schemata of the human 

nephron and renal corpuscle were developed by the Kidney Precision Medicine Project and HuBMAP (https://doi.org/10.48698/DEM4-0Q93). 
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Life sciences study design 
  

All studies must disclose on these points even when the disclosure is negative. 

Sample size Sample sizes were not predetermined by statistical methods due to nature of this study. The strength lies in the number of individuals 

analyzed, technologies represented for orthogonal validation and cells analyzed (more than any existing study for the kidney). For snCv3 (n = 

36), scCv3 (n = 45), SNARE2 (n = 7), 3D imaging (n = 15), 10X Visium (n = 22) and Slide-seq (n = 6) single nuclei, single cells or tissue sections 

were obtained from living or deceased donor tissues ("'n" here refers to individuals, the number of independent samples is explained in detail 

in the "Replication" section below). These were obtained from healthy reference, AKI or CKD individuals. To ensure robust cell state profiles, 

reference tissues were obtained from multiple sources, and biopsies were collected from AKI and CKD patients under rigorous quality 

assurance and control procedures. This ensured that cell type clusters were not driven by technical artifacts and that our analyses showed 

rigor and reproducibility. 
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Data exclusions 

Replication 

Randomization 

Blinding 

Behaviou 

Low quality cells or nuclei were excluded from analyses based on established quality filtering metrics: 

snCv3: 

CellRanger Empty barcode filter 

Doublets identified using DoubletDetection software 

< 400 or > 7500 genes detected per cell 

Gene/UMI ratio filter (Pagoda2) 

scCv3: 

> 50% mitochondrial reads 

< 500 or > 5000 genes detected per cell 

SNARE2 - RNA: 

DropEst cell score < 0.9 

Doublets identified using DoubletDetection and Scrublet software 

< 200 or > 7500 genes detected per cell 

Gene/UMI ratio filter (Pagoda2) 

SNARE2 - AC: 

Cell barcodes not passing RNA QC filters 

< 0.15 tss enrichment 

< 1000 read fragments or 500 UMI per cell 

< 0.15 of read fragments overlapping promoter regions 

samples showing < 500 dual omic cells after quality filtering 

Gene/UMI ratio filter (Pagoda2) 

Visium 10x: 

In each Visium sample, spots were eliminated if they did not overly tissue. In addition, the outermost layer of spots was eliminated from 

comparative analyses if the edge was manually cut by a razor. 

RNA-Seq: snCv3 data was generated from 44 independent samples or experiments to cover 36 individuals, scCv3 was generated from 49 

samples covering 45 individuals, and SNARE2 was generated from 17 samples covering 7 individuals. snCv3 clustering analysis was performed 

at multiple k values and cluster assignments were performed using a defined process (see Methods). Reproducibility of assigned cell type 

annotations was evident from consistent aligned populations found across technologies (scCv3, SNARE, Slide-seq, Visium) and high correlation 

values with reference (published) data sets. 

Imaging: For 3D imaging and immunofluorescence staining experiments, each staining was repeated on at least 2 separate individuals or 

separate regions. For ISH, each stain was performed on 6 separate individuals. For Visium spatial transcriptomics, 23 samples from 22 

individuals were included in the analysis. These included at least 6 samples from each of the reference, CKD, and AKI categories. For Slide-seq 

we generated 31 cortical and 36 medullary pucks from 6 individuals. For immunofluorescence validation studies, commercially available 

antibodies were used; the immunostaining included tissue from patients not contributing to omics data. Similarly, orthogonal validation of 

omics annotations and spatial localization in Visium studies also included more than four samples each from reference and disease biopsies 

that were not used to generate single cell gene expression data. This heterogeneity in sampling demonstrated the reproducibility and rigor of 

the atlas. All attempts at replication were successful for these imaging experiments. 

Further, several technologies were performed on samples from the same individual and in some cases the same tissue block was used to 

generate multimodal data. 

Randomization was not used as it was not relevant for this study design as healthy and disease samples were obtained as available. 

Generation of data and processed files were agnostic to the disease conditions. Batch effects were corrected by scaling expression of each 

gene to the dataset-wide average and shown to have minimal effect from cell type or cluster contribution plots. 

All human specimens used in this study were de-identified, however select attributes (condition, age, sex) were available to all investigators. A 

majority of the analyses were not performed blind as these sample attributes were needed for accurate annotation of cell types or states and 

for the design of downstream analyses to create maps. 
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Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design struclure (e.g. factorial, nested, 

hierarchicol), nature and number of experimental units and replicates. 

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National 

Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and 

imple is meant to represent when applicable. For studies involving existing da 
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describe the data and its source 

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size 

calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient. 

Data collection Describe the dato collection procedure, including who recorded the dato and how 

Timing and spatial scale = /ndicate the start and stop dotes of data collection, neting the frequency and periodicity of sampling and providing a rationale for g p g the | y E y pling ( | 
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which   
the data are taken 

    

  

5, state so OR if data were ided, describe the exclusions and the rationale behind them, 

ablished. 

Data exclusions If no data were excluded from the analys 

indicating whether exclusion criteria were pre 

e 

  

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to 

epeat the experiment failed OR state that all attempts to repeat the experiment were successful. t | f I f } 

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were 

controlled. tf this is not relevant to your study, explain why. 

    ‘plain why 

  

scribe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR « Blinding De 
blinding was not relevant tu your study. 

Did the study involve field work? [_| Yes No 

Field work, collection and transport 
  

emperature, rainfall).     i ndition Describe the study conditions for field work, providing relevant purameters (e. S J g k 

le the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth). J ung | ! ¢ ! u g | 

  

Location   

   ponsible manner and in 

  

port your samples ina re 

  

ss habitats and to collect and impo   Access & import/export Describe the efforts you have made to ac 

compliance with local, national and international laws, noting any permits that were         obtained (give the name of the issuing authority,    

the date of issue, and any identifying information). 

caused by the study and how it was minimized.     any disturban Disturbance Descr 

Sy a 
; 

Reporting for specific materials, systems and methods 
  

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.  



Materials & experimental systems Methods 
  

n/a Involved in the study 

LIX Antibodies 

Eukaryotic cell lines 

Palaeontology and archaeology 

n/a | Involved in the study 

XL] chip-seq 

Xx EC] Flow cytometry 

Xi LE] MRI-based neuroimaging 
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Antibodies 

Antibodies used The antibodies used and associated details are tabulated in Supplemental tables 35 and 36. 

For 3D cytometry studies 

Primary antibody or Fluorescent probe, Target, Vendor, Dilution, Secondary antibody, Vendor, Dilution 

Goat anti-aquaporin1(AQP1), Proximal tubules, Santa Cruz (sc-9878), 1:50, (please note, very minimal content about this 

discontinued antibody) 

Alexa568 donkey anti-goat, ThermoFisher(A-11057), 1:200 

Rabbit anti-myeloperoxidase(MPO), Neutrophils, Abcam (ab9535), 1:50 

DyLight 594 donkey anti-rabbit, ThermoFisher(SA5-10040), 1:200 

Mouse anti-CD68, Macrophages, Dako (M0876), 1:50, Alexa 633donkey anti-mouse, ThermoFisher(A16019)(Conjugated in-house 

with ThermoFisher (A20170), 1:200 

Mouse Alexa660 anti-SIGLEC8, Eosinophils, Biolegend (347102)(Conjugated in-house with ThermoFisher (A20171)), 1:50 

Sheep Alexa546 anti-Uromodulin(UMOD), Thick ascending limb, R&D Systems (AF5144), 1:200, conjugated in house with kit (https:// 

www.thermofisher.com/order/catalog/product/A20183) 

Mouse Alexa647 anti-CD3, T-cells, BD Pharmingen (557706), 1:50 

DAPI, Nuclei, ThermoFisher (D1306), 1:100 

Oregon Green Phalloidin, Filamentous actin (vasculature, brush border), ThermoFisher 07466, 1:200 

For 2D confocal immunofluorescence microscopy 

Primary Antibody, Against Raised in, Company Cat #, Primary antibody dilution, secondary Antibody, secondary Antibody dilution, 

Uromodulin human mouse Ray biotech 119-13298 1:100 Goat anti-mouse alexa-488 1:400 

CD133 (PROM1) human, mouse, rat Rabbit ThermoFisher PAS-38014 1:50 goat anti-ratbbit-cy3 1:400 

KIM1 human Rabbit ThermoFisher PAS-79345 1:250 goat anti-rabbit -cy3 1:400 

VCAM1 human, rat mouse ThermoFisher MA5-11447 1:50 Goat anti-mouse alexa-488 1:400 

AQP1 human Rabbit santa cruz sc-20810 1:100 goat anti-rabbit -cy3 1:400 

Validation Validation of antibodies and confidence in their staining is derived from several sets of data including vendors specifications, omitting 

primary antibody, well-established expected cell-type staining pattern for the indicated antibodies in the literature, referring to 

human protein atlas data where available and orthogonal validations in the multiomics data presented. 

3D IF antibodies: 

AQP1 - https://www.scbt.com/p/aqp1-antibody-I-19 

AF-568 - https://www.thermofisher.com/antibody/product/Donkey-anti-Goat-lgG-H-L-Cross-Adsorbed-Secondary-Antibody- 

Polyclonal/A-11057 

MPO - https://www.abcam.com/myeloperoxidase-antibody-ab9535.html 

DyLight-594 - https://www.thermofisher.com/antibody/product/Donkey-anti-Rabbit-IgG-H-L-Cross-Adsorbed-Secondary-Antibody- 

Polyclonal/SA5-10040 

CD68 - https://www.agilent.com/en/product/immunohistochemistry/antibodies-controls/primary-antibodies/cd68-%28concentrate 

%29-76550 

Conjugated in-house to AF-633 — kit # https://www.thermofisher.com/order/catalog/product/A20170 

SIGLEC8 (AF660) - https://www.biolegend.com/de-at/products/purified-anti-human-siglec-8-antibody-6383 

Conjugated in-house to AF-660 — kit # https://www.thermofisher.com/order/catalog/product/A20171 

UMOD - https://www.rndsystems.com/products/human-uromodulin-antibody_af5144 

Conjugated in-house to AF-546 — kit # https://www.thermofisher.com/order/catalog/product/A20183 (https:// 

www.ncbi.nlm.nih.gov/pmc/articles/PMC8363780/) 

CD3 - https://www.bdbiosciences.com/en-us/products/reagents/flow-cytometry-reagents/research-reagents/single-color- 

antibodies-ruo/alexa-fluor-647-mouse-anti-human-cd3.557706 

DAPI - https://www.thermofisher.com/order/catalog/product/D21490 

Phalloidin - https://www.thermofisher.com/order/catalog/product/O7466 

2D Antibodies: 

Uromodulin - https://www.raybiotech.com/mouse-anti-human-uromodulin/ 

CD133 (PROM1) - https://www.thermofisher.com/antibody/product/CD133-Antibody-Polyclonal/PA5-38014 

KIM1 - https://www.thermofisher.com/antibody/product/KIM-1-Antibody-Polyclonal/PAS-79345 

VCAM1 - https://www.thermofisher.com/antibody/product/VCAM-1-Antibody-clone-1-4C3-Monoclonal/MA5-11447 

AQP1 - https://www.citeab.com/antibodies/789773-sc-20810-aqp1-antibody-h-55 
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Eukaryotic cell lines 
  

Policy information about cell lines 

    

    

  

Cell line source(s) State the source of each cell line used. 

Authentication Describe the authenticat for each cell line used OR declare that none of the cell lines used were authenticated 

Mycoplasma contamination Confirm that ¢ e the results o, > tesling for 

my sma contamination. 

Commonly misidentified lines Name any commonly misidentified cell lines used in the study and provide a rationale for their use. 
(See ICLAC register) 

Palaeontology and Archaeology 
  

          
venance information for specimens and describe permit Specimen provenance Provide p 

issuing authority, the date of issue, and any identifying information). Permits 

  

export, 

    Specimen deposition Indicate where 

»y were obtained (e.g. collectio je, sample pretreatment and measurement), where 

e ORs 

Dating methods      
     oration program and t e that no new dates are 

  

[| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information. 

ganization(s) that approved or provided guidance on the study protocol, OR state that na ethical approval or guidance Ethics oversight Identify th 
was required and explain why not 

4 F 

  

Note that full information on the approval of the study protocol must also be provided in the manuscript. 

Animals and other organisms 
  

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research 

     

      

   

   

  

   

  

Laboratory animals For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory 

Wild animals ide detail e where possible. Describe how animals were 

caught and trans «plain why and describe method; if released 

  

ay where and 

Field-collected samples = (or aboratory u 
photoperioc 

  

Ethics oversight Identify the organi 
vas required and 

  

Note that full information on the approval of the study protocol must also be provided in the manuscript. 

Human research participants 
  

Policy information about studies involving human research participants 

Population characteristics The population used here were adults in the age interval 20-80 and included both sexes and participants of different races. 

The associated clinical metadata includes age, sex, race, comorbidities, eGFR, certain medications and is detailed in 

supplemental table 3. The clinical conditions include AKI and CKD. 

Recruitment Participants were recruited from different sites and IRB approval was obtained for use of tissue and data for research ina 

deidentifiable manner. To obtain consent, the coordinators would approach the participant after consultations with the 

clinical team, go over the study with them, address any questions and concerns. Once consent was obtained, samples are 

procured and preserved in a timely manner using standardized protocols that have been published and available on 

KPMP.org. Recruitment of AKI and CKD patients were per established clinical criteria (https://www.kpmp.org/for-clinicians). 

The reference tissue samples were selected from patients with normal kidney function and/or age appropriate 

histopathology as they became available. Samples under waived consent are described in the ethics statement. The 

associated clinical and pathological data is provided in Supplemental Table3 for readers to interpret the study results. 

Ethics oversight We have complied with all ethical regulations related to this study. Human samples (Supplementary Table 1) collected as part 

of the Kidney Precision Medicine Project (KPMP) consortium (KPMP.org) were obtained with informed consent and approved 

under a protocol by the KPMP single IRB of the University of Washington Institutional Review Board (IRB#20190213). Samples 

as part of the Human Biomolecular Atlas Program (HUBMAP) consortium were collected by the Kidney Translational Research 

Center (KTRC) under a protocol approved by the Washington University Institutional Review Board (IRB #201102312). 
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Informed consent was obtained for the use of data and samples for all participants at Washington University, including living 

patients undergoing partial or total nephrectomy or from discarded deceased kidney donors. Cortical and papillary biopsy 

samples from patients with stone disease were obtained with informed consent from Indiana University and approved by the 

Indiana University Institutional Review Board (IRB #1010002261). For Visium Spatial Gene Expression, reference 

nephrectomies and kidney biopsy specimens were obtained from the KPMP under informed consent or the Biopsy Biobank 

Cohort of Indiana (BBCI)49 under waived consent as approved by the Indiana University Institutional Review Board (IRB # 

1906572234). Living donor biopsies as part of the Human Cell Atlas (HCA) were obtained with informed consent under the 

Human Kidney Transplant Transcriptomic Atlas (HKTTA) under IRB HUM00150968. Deidentified leftover frozen COVID-19 AKI 

kidney biopsies were obtained from the Johns Hopkins University pathology archive under waived consent approved by the 

Johns Hopkins Institutional Review Board (IRB 00090103). 

Note that full information on the approval of the study protocol must also be provided in the manuscript. 

Clinical data 
  

Policy information about clinical studies 

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions. 

Clinical trial registration NOT APPLICABLE 

R if not available, 

  

Study protocol Note where the full trial protocol can be accesse explain WAY. 

  

f data collection, noting the time periods of recruitment and dota collection. Data collection Describe the settings ¢ 

Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measure 

Dual use research of concern 
  

Policy information about dual use research of concern 

Hazards 

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 
in the manuscript, pose a threat to: 

No | Yes 

XI}L_] Public health 

[_] National security 

[| Crops and/or livestock 

| Ecosystems 

x [| Any other significant area 

Experiments of concern 

Does the work involve any of these experiments of concern: 

Demonstrate how to render a vaccine ineffective 

Confer resistance to therapeutically useful antibiotics or antiviral agents 

Enhance the virulence of a pathogen or render a nonpathogen virulent 

Increase transmissibility of a pathogen 

Alter the host range of a pathogen 

Enable evasion of diagnostic/detection modalities 

Enable the weaponization of a biological agent or toxin 
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Any other potentially harmful combination of experiments and agents   
ChIP-seq 
  

Data deposition 

[| Confirm that both raw and final processed data have been deposited in a public database such as GEO. 

[| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks. 

Data access links For “initial submissio r "Re ? version” documents, provide revie 

May remain private before publication provide Glink to th id 
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submission     f all files available in the d¢ Files in database submission Provide al 

  

‘ond "Revised version" documents only, to 

  

“Initial su Genome browser session Provide a link to an anonymized genor 

(e.g. UCSC) enable peer review. Write "no longe 
          

lal submission" documents 

Methodology 

Replicates Describe the experimental replicates, specifying number, type and replicate agreement 

    mapped reads, length of reads and 

  

e total number of reads, unique 

  

Sequencing depth 

  

provide supplier name, catalog number, clone name, and lot Antibodies 

  

number, 

{for read mapping and peak calling, including the ChIP, control and index files 

  

Peak calling parameters Specify the command line prograrn and parameters   

  

e the methods used to ensure data quality in full detail, including how many peaks are at FOR 5% and above 5-fold enrichment. 

  

Data quality 

he software used to collect and analyze the ChiP-seq data. For custom code that has been deposited into a community Software 
ry, provide accession details 

  

Flow Cytometry 

Plots 

Confirm that: 

| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC). 

[| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a ‘group’ is an analysis of identical markers). 

| All plots are contour plots with outliers or pseudocolor plots. 

[| A numerical value for number of cells or percentage (with statistics) is provided. 

Methodology 

source of the cells and any tissue processing steps used, 

  

Sample preparation Describe the sample preparation, detailing the bialoc 

  

, specifying make and model number Instrument Identify the instrument used for data colle 

code that has been deposited into a vare used to collect and anal!     Software Describe the sof low cytometry data. For ¢ 

community repository, provide acce 
   

   

yst-sorl fractions, providing 

  

Cell population abundance Desc 

  

2cifying the preliminal     Gating strategy Describe the gating strateay used for all re 

population, indicating where boundaries be 

  

"negative" staining cell populations are defined 

  

[| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information. 

Magnetic resonance imaging 

Experimental design 

  

or DIOCK design. Design type indicate task or resting state; event-relate 

  

Design specifications    
      Behavioral performance measures      expected (e.g. mean, 
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Acquisition 

  

Imaging type(s) Specify: functional, structural, diffusion 

Field strength specify in Tesla 

  

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix sf: 
slice thickness, orientation and TE/TR/flip angle 

  

   

Area of acquisition State whether a whole brain sce 

  

was used OR define the area of acquisition, describing how the region was determined. 

Diffusion MRI [| Used [_] Not used 

Preprocessing 

  

re version and revision number and on specific parameters (model/functions, brain extraction, Preprocessing software Provide detail on soft 

segmentation, smoothing kernel size, ete.). 
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Normalization ' if data 
transformation OR indicate that data were not normatized 

  

re normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for 

    and explain rationale for lack of normatizatior 

  

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized s 

original Talairach, MNI305, ICBM152) OR indicate that the data we     ere Not normalized. 

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 

Is (heart re     physiological signe e, respiration) 

Volume censoring Define your software and/or method and criteria for volu censoring, and state the extent of such censoring. 

  

Statistical modeling & inference 

    (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and Model type and settings 
   second levels (e.g. fixed, random or mixed effects; drift or auto-correlation). 

Effect(s) tested tin terms of the task or stimulus conditions instead of psychological concepts and indicate whether     
torial designs were used   

Specify type of analysis: [ ]Whole brain [ | ROl-based [| Both 

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-w 
(See Eklund et al. 2016) 

> methods 

  

Correction Desc > of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation ar Monte Carlo) 

  

Models & analysis 

n/a | Involved in the study 

[| [| Functional and/or effective connectivity 

[| [| Graph analysis 

[ ] [| Multivariate modeling or predictive analysis 

      rson correla Functional and/or effective connectivity 

  

or dinar oh    

  

Graph analysis Re 

  

    

clion, model, training and evaluation 

  

Multivariate modeling and predictive analysis 
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