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A spatially resolved timeline of the human 
maternal–fetal interface
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Noah F. Greenwald1,5, Adam Kagel1, Marc Bosse1, Eleni G. Jaswa6, Zumana Khair1, Shirley Kwok1, 
Shiri Warshawsky1, Hadeesha Piyadasa1, Mako Goldston1, Angie Spence1, Geneva Miller7, 
Morgan Schwartz7, Will Graf7, David Van Valen7, Virginia D. Winn8, Travis Hollmann9, 
Leeat Keren10, Matt van de Rijn1 & Michael Angelo1 ✉

Beginning in the first trimester, fetally derived extravillous trophoblasts (EVTs) invade 
the uterus and remodel its spiral arteries, transforming them into large, dilated blood 
vessels. Several mechanisms have been proposed to explain how EVTs coordinate  
with the maternal decidua to promote a tissue microenvironment conducive to spiral 
artery remodelling (SAR)1–3. However, it remains a matter of debate regarding which 
immune and stromal cells participate in these interactions and how this evolves with 
respect to gestational age. Here we used a multiomics approach, combining the 
strengths of spatial proteomics and transcriptomics, to construct a spatiotemporal 
atlas of the human maternal–fetal interface in the first half of pregnancy. We used 
multiplexed ion beam imaging by time-of-flight and a 37-plex antibody panel to analyse 
around 500,000 cells and 588 arteries within intact decidua from 66 individuals 
between 6 and 20 weeks of gestation, integrating this dataset with co-registered 
transcriptomics profiles. Gestational age substantially influenced the frequency  
of maternal immune and stromal cells, with tolerogenic subsets expressing CD206, 
CD163, TIM-3, galectin-9 and IDO-1 becoming increasingly enriched and colocalized  
at later time points. By contrast, SAR progression preferentially correlated with EVT 
invasion and was transcriptionally defined by 78 gene ontology pathways exhibiting 
distinct monotonic and biphasic trends. Last, we developed an integrated model  
of SAR whereby invasion is accompanied by the upregulation of pro-angiogenic, 
immunoregulatory EVT programmes that promote interactions with the vascular 
endothelium while avoiding the activation of maternal immune cells.

Normal development during healthy pregnancy depends on a com-
plex interplay between maternal cells and placental trophoblasts that 
ultimately transforms the womb into a specialized niche capable of 
meeting the metabolic demands of a growing semi-allogeneic fetus 
while maintaining maternal tolerance1,2. After implantation, the decidua 
is invaded by EVTs. EVTs and maternal cells remodel uterine spiral 
arteries into highly dilated vessels with minimal smooth muscle where 
EVTs have partially replaced the maternal endothelium3. In healthy 
pregnancies, SAR results in low-resistance vessels that deliver blood 
to the intervillous space at low flow velocities that prevent damage to 
the placental architecture4. Conversely, impaired SAR, low numbers 
of tolerogenic maternal cells and abnormal decidual invasion of EVTs 
have each been implicated in placenta-related obstetric complica-
tions, including preeclampsia, intrauterine growth restriction and 
preterm birth5. Therefore, a detailed investigation of the cell population 

dynamics at the maternal–fetal interface is key to understanding the 
biology of normal pregnancy and obstetric complications.

Owing to the poor feasibility of controlled studies in pregnant 
humans, much of what is known about maternal–fetal tolerance 
and SAR is based on small-animal models6. Although some similari-
ties exist, key facets of haemochorial placentation in humans are 
primate-specific7. For example, EVT giant cells in mice do not replace 
the vascular endothelium and are thought to play a minor part in SAR 
compared to maternal uterine natural killer (NK) cells8. The extensive 
degree of EVT invasion in humans is thought to be an evolutionary adap-
tation that permitted upright, bipedal locomotion while maintaining 
adequate blood flow in the third trimester when brain development 
accounts for 60% of fetal metabolic needs9.

The study of human decidual remodelling is further complicated by 
additional inherent challenges. First, cell composition and structure 
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are temporally dynamic. Therefore, aggregating data across differ-
ent gestational ages (GAs) or observing a single time point may be 
misleading. Second, these dynamics are spatially coordinated in the 
local tissue microenvironment. For example, periarterial decidual NK 
cells are thought to contribute to SAR by initiating smooth muscle 
breakdown and by secreting chemokines that attract invading EVTs, 
whereas phagocytic macrophages are thought to facilitate clearance 
of the resultant apoptotic debris10. Overall, the formation of the human 
maternal–fetal interface involves sophisticated spatiotemporal coor-
dination such that tissue composition, structure and function are inex-
tricably coupled.

With this in mind, we constructed a multimodal spatiotemporal atlas 
of the human maternal–fetal interface. We leveraged archival tissue 
banks to assemble a cohort of maternal decidua from 66 women who 
underwent elective terminations of otherwise healthy pregnancies 
at 6–20 weeks of gestation, constituting a large single-cell study of 
the maternal–fetal interface. We performed subcellular imaging with 
multiplexed ion beam imaging by time-of-flight (MIBI-TOF)11 using a 
37-plex antibody panel designed to identify the location, lineage and 
function of all major maternal and fetal cells.

We also profiled the transcriptome of arteries, decidua and EVTs. To 
understand how SAR relates to local decidual composition, we devel-
oped new algorithms to quantify vascular morphology that enabled us 
to assign a remodelling score to each individual artery. We discerned 
which changes in decidual composition, transcriptome and structure 
were preferentially driven by GA, SAR or both. Overall, the frequencies 
and spatial distribution of maternal immune cells exhibited a strong 
temporal dependence that enabled us to predict GA exclusively on the 
basis of these features.

By contrast, EVT invasion and perivascular localization were the 
dominant drivers of SAR in the tissue microenvironment, and these 
processes correlated with extensive shifts in arterial transcription. 
Given these findings, we used our atlas to characterize the temporal 
nature of intravascular EVT invasion in the decidua basalis. The accu-
mulation of perivascular EVTs around arteries preceded smooth muscle 
loss and the appearance of intravascular EVTs, which is consistent with 
a model whereby perivascular EVTs intravasate into the artery lumen. 
Taken together, these investigations support a cooperative interplay 
in the first half of pregnancy in which temporally dependent changes 
in decidual function permit placental EVTs to extensively alter the 
maternal uterine vasculature.

Multiplexed imaging of the decidua
As part of the Human BioMolecular Atlas Program initiative, we created 
a spatiotemporal tissue atlas of the human maternal–fetal interface in 
the first 20 weeks of pregnancy (Fig. 1a). The goal of this study was to 
comprehensively define the structure and composition of decidua and 
to understand how it evolves in the first two trimesters with respect to 
two axes: GA and maternal SAR. We first assembled a large retrospec-
tive cohort of archival formalin-fixed, paraffin-embedded placenta 
and decidua tissue from 66 individuals who underwent elective ter-
mination of pregnancies with no known fetal abnormalities. Archival 
tissue blocks were manually screened by a perinatal pathologist. Tissue 
sections stained with haematoxylin and eosin (H&E) were analysed to 
determine which samples contained decidua, and mostly regions that 
contained anchoring villi were selected. Then, regions of decidua that 
contained spiral arteries were demarcated, cored and assembled into 
two tissue microarrays (TMAs) of 1 mm and 1.5 mm cores. The final data-
set included samples for 6–20 weeks of gestation (13.72 ± 4.8 weeks, 
mean ± SD) from 66 women of varying parity (1.45 ± 1.72), age (28.17 ± 5.9 
years), body–mass index (28.19 ± 7.3 kg m–2) and ethnicity (Fig. 1b–e 
and Supplementary Table 1). Owing to inherent limitations in how the 
tissue was procured, precise anatomical locations could not be deter-
mined. However, 61 out of 66 tissue blocks contained placental villi, 

which suggested that the majority of this cohort was sampled from the 
decidua basalis (Supplementary Table 1 and Methods).

Previous studies of intact tissue that examined only one or a few cell 
populations at a time reported shifts in maternal immune cells towards 
tolerogenic states that are permissive to invasion by fetal EVTs12. To 
gain a more complete picture of the complex cell–cell interactions 
that establish maternal tolerance in the first half of pregnancy, we 
combined the strengths of targeted subcellular imaging with anti-
bodies and spatial transcriptomics on serial co-registered sections 
to construct a comprehensive composite model of SAR and decidual 
remodelling (Fig. 1f).

For MIBI-TOF, we designed and validated a 37-plex antibody panel to 
map the functional state and location of all major maternal and fetal 
cell populations (Fig. 1f and Methods). This panel included canoni-
cal lineage-defining markers and ten functional markers previously 
implicated in maternal immune tolerance13–15 (Fig. 1f).

For spatial transcriptomics, we used the NanoString GeoMx Digital 
Spatial Profiler (DSP) for whole transcriptome analysis of arteries, 
EVTs and decidua. Immunofluorescence imaging of TMAs stained 
with antibodies for HLA-G, vimentin (VIM) and smooth muscle actin 
(SMA) were used to define regions of interest (ROIs) specific for each 
of these histological features (Methods). In total, we collected whole 
transcriptome data from 13 individual arteries, their adjacent decidua, 
5 samples of interstitial and 3 samples of intravascular EVTs (19 cores 
from 17 individuals; Methods).

For cell segmentation, we used an optimized version of our previously 
validated deep-learning pipeline that was refined for decidua-specific 
cell types using 93,000 manual annotations (Methods). In total, we 
identified 495,349 segmented cells across 211 images and classified 
them into 25 cell populations (Fig. 2a,b, Methods and Extended Data 
Fig. 1). Functional marker expression in these populations was deter-
mined using per-marker thresholds (Methods). Noteworthy histo-
logical features—such as arteries, vessels, glands, the cell columns and 
decidual tissue boundaries—were manually annotated in collaboration 
with a perinatal pathologist.

Non-immune maternal (structural) cells accounted for the majority 
(56.3%) of all segmented events in the decidua and were predominantly 
composed of decidual fibroblasts (60.5%) and myofibroblasts (24.8%), 
with smaller contributions from vascular endothelial cells (7.6%) and 
glandular epithelial cells (7.1%; Fig. 2b). Notably, we observed a new, 
rare subset of TIGIT+ glandular cells (0.34% of glandular cells; Supple-
mentary Information). Consistent with previous work16 that quantified 
maternal populations in situ, maternal immune cells (31% of all cells) 
were dominated by macrophages (47.6% of immune cells) and NK cells 
(42.6% of immune cells), with minor contributions from T cells (8% of 
immune cells), dendritic cells (1.3% of immune cells) and mast cells 
(0.5% of immune cells).

Decidual macrophages ubiquitously expressed both CD163 and 
CD206, which is consistent with a M2-polarized, tolerogenic phenotype 
(Fig. 2g). In line with previous work17 that showed pregnancy-specific 
recruitment, 77% of these cells expressed DC-SIGN (Fig. 2a). We further 
classified DC-SIGN+ macrophages into three subsets on the basis of 
CD11c and HLA-DR expression: Mac2a, Mac2b and Mac2c. DC-SIGN– 
macrophages (Mac1a and Mac1b) were subclustered on the basis of 
CD68 expression (Fig. 2a,b).

Four subsets of NK cells (NK1, NK2, NK3 and NK4) were classified on 
the basis of the combinatorial expression of CD57, CD11c and CD8. NK1 
cells (CD57–CD16low) constituted the largest NK cell population pre-
sent, making up 59.7% of NK cells (Fig. 2a,b). A new CD57+ population of 
decidual NK cells (NK2, 25.8% of NK cells) that had only been previously 
identified in peripheral blood during pregnancy18 was also identified. 
Moreover, most of this population expressed the tissue-residency 
marker CD49a (94.2%; Extended Data Fig. 2a,b). As described below, 
the frequency and spatial distribution of NK2 cells suggests that they 
play a distinct role in SAR (Extended Data Fig. 2c).



Nature  |  Vol 619  |  20 July 2023  |  597

T cells consisted of CD8+ cells (53.2% of T cells), NK T (NKT) cells 
(28.8% of T cells), CD4+ cells (17.1% of T cells) and sparse numbers of 
regulatory T (Treg) cells (Fig. 2a,b). We identified a PD-1+-activated popu-
lation of Treg cells with a TIM-3+LCK+ subset that accounted for >50% 
of this population (Fig. 2a,b). Notably, both Treg cells and NKT cells 
were the most proliferative cell populations. Together with CD8+ NK 
cells, Treg cells and NKT cells expressed granzyme B more frequently 
than any other cell type. TIGIT was most frequently expressed by Treg 
cells—a rare subset that has been suggested to bind PVR (also known 
as CD155) on EVTs2. This interaction has been observed in the tumour 
microenvironment19 and may serve a similar role in driving maternal–
fetal tolerance.

Fetal cells (12.6% of all cells) were primarily composed of four sub-
sets of EVTs that were delineated on the basis of the combinatorial 
expression of HLA-G, CK7, CD57 and CD56 (Fig. 2a). HLA-G+ EVTs were 
CK7+ (EVT1a), CK7– (EVT1b) or CD56+ (EVT1c) (Fig. 2c–f). EVT2 lacked 
HLA-G and were CD57–CK7low and were located predominantly at the 
base of attaching cell columns. Taken together, these data provide 
spatial context to previous work that used dissociated samples15,20; 
that is, an ensemble of functional states in fetal and maternal cells are 
collectively aligned to maintain a tolerogenic niche.

SAR correlates with local composition
Perfusion of the intervillous space by uterine spiral arteries is the sole 
source of oxygen and nutrients to the growing fetus after the establish-
ment of arterial flow. During the first half of pregnancy, these vessels 
undergo an extensive remodelling process that culminates in dilated, 
non-contractile vessels depleted of smooth muscle where the maternal 
endothelium has been partially replaced by EVTs. Abnormal SAR is asso-
ciated with obstetric complications such as intrauterine growth restric-
tion and preeclampsia5. However, it is still not fully understood which 
cell populations directly participate in SAR, how this process is locally 
regulated and to what extent these changes are synchronized with GA.

We therefore used our spatiotemporal atlas to construct a SAR tra-
jectory to understand how this relates to temporal changes in decidua 
composition and structure21. Using artery size, smooth muscle disrup-
tion, endothelial continuity and EVT infiltration, we manually assigned 
each artery to one of five sequential remodelling stages on the basis of 
previously published criteria (Methods and Fig. 3a). To ensure that scor-
ing was not biased by demographics of the individuals or the composi-
tion of neighbouring arteries and stroma, scoring was performed by 
blinded experts on cropped images in which only the artery of interest 
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Fig. 1 | Study design and workflow. a, Diagram of a human embryo in utero at 
6 weeks of gestation. Left, the maternal–fetal interface consisting of decidua 
basalis (purple) with maternal spiral arteries (light pink) and fetal chorionic villi 
in the intervillous space (bottom right corner). Middle and right, early-stage 
(6 weeks) unremodelled spiral artery and progression to late-stage (20 weeks) 
remodelled artery and anchoring fetal villi. b, Cohort parity distribution.  

c, Cohort age distribution. d, Cohort distribution of body–mass index. e, Cohort 
ethnicity distribution. f, TMA construction and serial sections for multiomics 
workflow. Top, antibody panel, MIBI acquisition and spatial proteomics data 
extraction. Bottom, morphology marker panel and probe diagram, NanoString 
DSP ROI selection and spatial transcriptomics data extraction. The schematics 
in f were created using BioRender (https://biorender.com).
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was visible. Out of 588 arteries, 186 were unremodelled and assigned 
to stage 1 (Fig. 3b,c). Stage 2 arteries (300 arteries) were character-
ized by moderate smooth muscle disruption and endothelial swelling 
(Fig. 3d,e). Stage 3 arteries (43 arteries) exhibited more dilation, smooth 
muscle loss and early endothelial disruption (Fig. 3f,g). Progression 
to stage 4 (34 arteries) was marked by the presence of EVTs within the 
arterial lumen (Fig. 3h,i). Fully remodelled stage 5 arteries (25 arteries) 
were identified on the basis of their very large size, near-complete 
smooth muscle loss and EVT endothelization (Fig. 3j,k, Extended Data 
Fig. 3a and Supplementary Table 2).

Although SAR correlated to some extent with GA (Spearman’s 
ρ = 0.28, P = 1.5 × 10−12), in many cases these were discordant. For 
example, at least one late-stage artery (stage 4–5) was present in 40% 
of week 8 samples, whereas minimally remodelled arteries were pre-
sent throughout (Fig. 3l). Moreover, SAR staging of arteries from the 
same individual often varied significantly between tissue cores (32% 
of individuals had arteries that differed by at least two stages), which 
suggested that aspects of SAR are locally regulated by the tissue micro-
environment (Fig. 3l and Extended Data Fig. 3b).

We exploited this discordance between SAR and GA to identify 
changes in decidual composition that were predominantly driven by 
one or the other. We first developed a quantitative scheme to assign a 
continuous remodelling score. For each artery, we extracted 35 param-
eters that described the same aspects of arterial morphology used 
for manual scoring (Fig. 3m, Methods and Extended Data Fig. 3c,d). 
Together with manual staging, we used this profile to construct a highly 
resolved pseudotime trajectory of SAR using linear discriminant analy-
sis (LDA). This trajectory assigned a continuous remodelling score to 
each artery (δ) (Fig. 3m and Methods). Thus, each artery in our dataset 
could be mapped along a temporal or remodelling trajectory using GA 
or δ, respectively (Extended Data Fig. 4a–c).

Applying linear regression to these values per image, we deter-
mined which aspects of decidual remodelling were preferentially cor-
related with GA or SAR (Methods and Extended Data Fig. 4d,e). The 
frequency of decidual EVTs was better correlated with SAR, whereas 
changes in the proportion of maternal immune cells were mostly 
driven by GA (Fig. 3n). A notable exception to the latter correlation 
was observed within the NK cell compartment, in which the ratio of 
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NK2 cells (CD57+) to NK1 cells (CD57–) decreased with SAR progression  
(Fig. 3n).

To further investigate this finding, we examined how the spatial distri-
bution of NK cells near arteries changed as SAR progressed (Methods). 
Notably, NK2 cells were the only subset of maternal immune cells to 
preferentially localize around arteries (Supplementary Table 3). NK2 

cell accumulation around arteries spiked specifically at stage 2 of SAR, 
when smooth muscle swelling and disruption are maximal (P =2 × 10−3; 
Extended Data Fig. 2c). Notably, CD57 expression in human NK cells is 
associated with a cytotoxic phenotype in tumours18, which suggests 
that this subset could serve a similar role in mediating early smooth 
muscle disruption during SAR.

l m

a

b
c

SMA VIM HLA-G CD31 CD45

c

d

e

e
SMA VIM HLA-G CD31 CD45

f

g

g
SMA VIM HLA-G CD31 CD45

h

i

i
SMA VIM HLA-G CD31 CD45

j k

k
SMA VIM HLA-G CD31 CD45

50 μm 50 μm 50 μm 50 μm 50 μm

Stage 1

Smooth muscle Endothelial cell
Immune cell

Intravascular EVTs

Stage 4Stage 2

Swollen endothelium and
disrupted smooth muscle layer

Stage 3

Substantial loss of 
smooth muscle

Stage 5

Endothelialized EVTs line lumen 
of spiral artery

n

6 8 10 12 14 16 18 20
GA (weeks)

0

0.5

1.0

Fr
eq

ue
nc

y 1

2

3

4

5

Stage

o

log2( /GA)
–6 –4 –2 0 2 4 6

0

5

10

15

20

25

30

35

40

–l
og

10
(P

 v
al

ue
)

12

Mac2a
Macrophages

CD8+ T
T cells

NK3
NK cells

Macrophages
Immune cells

NK cells
Immune cells

Fibroblasts
Structural

Myo�broblasts
Structural

T cells
Immune cells

EVT1a
Fetal cells

EVT1c
Fetal cells

Structural
All cells

Immune cells
All cells

EVT
All cells

NK2
NK cells

NK1
NK cells

EVT2
Fetal cells

Macrophage

NK cell

Structural

Fetal

T cell

Mast cell

Other immune

M
at

er
na

l

Cell frequency
Out of category

SAR ( )-drivenGA-driven

–2 –1 0 1 2 3

Trend size

P value cutoff = 0.05

SAR manual
staging

Digitizing morphological featuresDigitizing morpho

 = 3.15

Continuous SAR score LDA

+

Endothelial and smooth
muscle continuity

Endothelial and smooth
muscle thickness

Gene expression (Z-score)

–1 0 1

0

0.2

0.4

0.6

0.8

1.0

P
ro

p
or

tio
n 

of
 t

re
nd

in
g 

ge
ne

s 
in

 a
rt

er
ie

s

–1.2

–0.8

–0.4

0

0.4

Translational initiation

n = 39 genes

N
or

m
al

iz
ed

 e
xp

re
ss

io
n

2.0 2.5 3.0 3.5 4.0

2.0 2.5 3.0 3.5 4.01 2 3 4 5

Notch signalling

–1.0

–0.5

0

0.5

1.0

n = 10 genes

N
or

m
al

iz
ed

 e
xp

re
ss

io
n

SAR 
( )

GA

Sync

Fig. 3 | SAR progression significantly influences maternal–fetal interface 
composition. a, Characteristics of SAR stages 1–5 manually assessed. b, MIBI 
colour overlay of manually assessed stage 1 arteries. Representative image of 
n = 70 FOVs. c, Inset of b showing stage 1 arteries. d, MIBI colour overlay of 
manually assessed stage 2 arteries. Representative image of n = 98 FOVs.  
e, Inset of d. Arrowhead indicates swollen endothelial cells. f, MIBI colour overlay 
of manually assessed stage 3 arteries. Representative image of n = 29 FOVs.  
g, Inset of f. Arrowhead indicates substantial loss of smooth muscle. h, MIBI 
colour overlay of one manually assessed stage 4 artery. Representative image 
of n = 21 FOVs. i, Inset of h. Arrowheads indicate intravascular EVTs. j, MIBI 
colour overlay of one manually assessed stage 5 artery. Representative image 
of n = 20 FOVs. k, Inset of j. Arrowhead indicates endothelialized EVTs lining the 
spiral artery lumen. l, Distribution of SAR manually assessed stages by GA.  

GA in days is binned to weeks for visualization. m, Schematic of calculating the 
continuous SAR remodelling score (δ). n, Volcano plot distinguishing GA-driven 
from SAR (δ)-driven cell-type frequencies. x axis, log2 ratio of R2 derived from 
linear regression against SAR (δ) and GA. y axis, –log10 of the P value for the 
better-fitting regression model. Points are colour-coded by the trend size 
observed in the better-fitting regression model. o, Left, proportion of genes in 
artery (2,932 in total) tissue where expression changes significantly correlate 
with SAR (δ) (1,785), GA (517) or both (Sync; 633). Centre, SAR (δ)-correlated 
genes in artery tissue showing mean normalized expression (Z-score) by SAR 
(δ) stage. Right, two SAR (δ)-trending gene ontology pathways showing 
normalized expression of genes in the GO pathway by SAR (δ). Data are 
presented as the mean gene expression ± s.e.m.
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To create a transcriptional trajectory that integrated with our spatial 
proteomics data, we used NanoString DSP on serial sections of the TMA 
imaged by MIBI-TOF. We collected whole transcriptome profiles of 13 
individual arteries at various stages of remodelling and their adjacent 
decidua (a total of 26 ROIs; Methods). Matching these samples with 
their respective MIBI-TOF images enabled us to assign a remodelling 
score and GA to each transcriptome profile (Methods). We then used 
a methodology similar to that presented in Fig. 3n to categorize genes 
that displayed temporal expression trends as correlated with either 
SAR, GA or both (Methods).

For arteries, 2,935 out of 18,695 genes exhibited significant trends, 
with most genes preferentially correlating with SAR (Fig. 3o). Within 
this group of genes, we identified 78 temporally synchronized gene 
ontology pathways, including modules related to vessel remodelling 
and translation (Methods and Supplementary Table 4). These path-
ways exhibited both monotonic and biphasic trends (Fig. 3o), which 
showed that SAR is a composite of interrelated processes that occur 
continuously and episodically. We identified 185 genes that peaked at 
stage 2 of remodelling before subsequently declining. This expression 
pattern correlated with perivascular enrichment of NK2 cells as indi-
cated by our MIBI data (Extended Data Fig. 2c). In addition, this group 
of genes was enriched for genes related to collagen fibril organization 
and responses to bone morphogenic protein (Fig. 3o and Extended Data 
Fig. 5). Consistent with cell growth and subsequent apoptosis of arterial 
smooth muscle, translation-related genes followed a biphasic trend, 
peaking at around stage 3 of remodelling (Fig. 3o and Extended Data 
Fig. 5). We also observed continual downregulation of genes involved 
in Notch signalling as SAR progressed (Fig. 3o). Taken together, these 
multimodal data provide a fully integrated atlas of decidual remodel-
ling that describes tissue structure, single-cell function and changes 
in transcriptional programmes.

Immune composition correlates with GA
We next interrogated these data to identify GA-dependent, temporal 
changes in decidual composition. This analysis revealed a substan-
tial shift from a lymphoid-dominant to myeloid-dominant landscape. 
Images at weeks 6–8 (Fig. 4c,e) showed NK cells and T cells exhibiting 
cytotoxic (Fig. 4d) and immunosuppressive (Fig. 4e) phenotypes and 
greatly outnumbering macrophages (Fig. 4b,c). By contrast, images 
from weeks 16 to 20 were dominated by interstitial EVTs (Fig. 4a,f,g) and 
tolerogenic macrophages (Fig. 4h). To further evaluate this relationship, 
we asked whether immune cell composition in the decidua alone could 
be used to predict GA. Using immune features that were preferentially 
associated with GA (Fig. 3n), we trained and validated a ridge regres-
sion model on a per-image basis using a random 70/30 test–train split 
(Extended Data Fig. 6a). Notably, the model predicted GA in the withheld 
test set within 19 days of the true value (R2 = 0.7; Fig. 4i). On inspecting 
the model weights, the relative contribution of decidual immune cells 
was consistent with the observed shift in the proportion of myeloid 
and lymphoid cells. Relative frequencies of T cells and NK cells were 
negatively correlated with GA, whereas total macrophage frequency 
was positively correlated with GA (Fig. 4j). Notably, a regression model 
for predicting SAR (δ) based on the same immune cell frequencies per-
formed poorly (R2 = 0.05; Extended Data Fig. 6b), which reinforced our 
hypothesis that these changes are driven by GA and not SAR.

Using computational approaches validated in previous work to iden-
tify significant spatial enrichment of two cell types22–24 (Methods), we 
observed that the majority of significant pairwise enrichments involved 
EVT, NK cells and macrophages (Extended Data Fig. 6c and Supplemen-
tary Table 3). Again, by examining these relationships on a per-image 
basis, we were able to distinguish spatial relationships that evolved 
dynamically with respect to GA (Methods). Of these relationships, the 
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error. j, Ridge regression model coefficient loadings for GA-associated 
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pregnancy-specific Mac2a population was involved in the largest num-
ber of pairwise enrichments, becoming more enriched around several 
NK cell and EVT subsets, even though NK cells were in decline.

Upregulation of tolerogenic markers with GA
Having examined the influence of GA and SAR in driving changes in the 
frequency of cell populations in the decidua, we next used a similar 
approach to understand how these two time axes correlate with shifts 
in functional marker expression. These data revealed three overarching 
trends. First, both SAR and GA were associated with dynamic changes in 
IDO-1 expression. We identified a GA-driven decline in IDO-1+ glandular 
cells, in line with previous observations of IDO-1+ glandular cells in the 
first trimester but not at term25. We also observed a SAR-driven decline 
in IDO-1+ dendritic cells and an increase in IDO-1+ vascular endothe-
lium that was comparably correlated with both GA and SAR (Fig. 5b,d).  
Second, consistent with the cell frequency analysis (Fig. 3n) in which NK1 
cells exhibited a preferential increase with SAR, NK1 cells also exhibited 
a similar increase in Ki67+ frequency, becoming more proliferative as 
SAR progressed (Fig. 5a). Third, functional shifts in innate immunity 
were preferentially correlated with GA. All five macrophage popula-
tions upregulated either TIM-3 and/or its cognate ligand galectin-9 
(GAL-9) with GA (Fig. 5a,b). This trend was most prominent in the Mac2a 
and Mac2b populations, in which a tightly correlated upregulation of 
both TIM-3 and GAL-9 was observed (Fig. 5e,g,h and Supplementary 
Information).

Notably, GAL-9 upregulation was also detected in fibroblasts at 
12–20 weeks GA (Fig. 5b,g–i). In previous work, interactions between 
maternal immune and stromal cell populations have been implicated 
in the promotion of fetal tolerance26. With this in mind, we next sought 
to determine whether the GAL-9+ fibroblasts subset was biased to 
colocalize within specific spatial niches. To answer this question, we 
quantified their frequency within ten tissue microenvironments that 
were identified by clustering the cell-type compositions of the closest 
neighbours of each cell (Methods). GAL-9+ fibroblasts were strongly 
biased to colocalize with CD57+ NK cells (NK2, microenvironment G; 
Fig. 5f). Notably, this trend was accompanied by a GA-dependent 
increase in the expression of inducible nitric oxide synthase (iNOS) 
in NK2 cells (Fig. 5a). Both TIM-3 and GAL-9 have been implicated in 
the suppression of antitumour surveillance by impairing the activity 
of cytotoxic NK cells and T cells in various human cancers27. Together 
with the transient perivascular enrichment of NK2 cells observed in 
early SAR, these findings suggest that expression of these proteins 
by macrophages and fibroblasts could have a concerted tolerizing 
role with fetal EVTs to attenuate immune cytotoxicity subsequent to 
NK-cell-dependent disruption of arterial smooth muscle.

Spatiotemporal EVT phenotype
Although it is accepted that EVT plugs formed during early gesta-
tion near the intervillous space are derived from the cell columns, it 
is unclear whether intravascular EVTs found deeper in the decidua 
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basalis share this origin. These cells could also arrive at this location 
through intravasation—a migratory route by which interstitial EVTs 
within the decidua invade the vascular lumen by transiting across the 
arterial wall3 (Extended Data Fig. 7a).

To examine this possibility, we used our spatiotemporal atlas to 
quantify how the phenotype and spatial distribution of EVTs evolve 

with respect to SAR. First, we manually defined feature masks in our 
images to demarcate cell columns and three decidual compartments: 
interstitial, perivascular and intravascular (Fig. 6a–c and Extended 
Data Fig. 7b). We then quantified EVT frequency in each. Together 
with our SAR temporal trajectory, we first used these data to answer 
a question that has been qualitatively explored in previous work28. 
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That is, whether the initial accumulation of EVTs is in the perivascular 
compartment (adjacent to arteries) or within the intravascular com-
partment. Perivascular EVTs were consistently present earlier in SAR 
than intravascular EVTs (Fig. 6d). Furthermore, out of all arteries with 
intravascular EVTs, 75% also had perivascular EVTs, which is a higher 
percentage than would be expected if retrograde migration was the 
primary source of intravascular EVTs (Extended Data Fig. 7c). In arter-
ies where both types of EVTs were present, the ratio of intravascular to 
perivascular EVTs followed a smooth trend with respect to SAR, such 
that intravascular EVTs increased at the expense of perivascular EVTs 
(R2 = 0.5, P = 9 × 10−12; Extended Data Fig. 7d).

Loss of smooth muscle and endothelium have defining roles in 
determining the extent of SAR. Using morphometrics to quantify these 
cell types, we examined how the integrity of these concentric layers 
relates to EVT enrichment (Methods). Perivascular EVTs were consist-
ently present at an earlier stage, whereas intravascular EVTs appeared 
only after 80% of smooth muscle was lost (Extended Data Fig. 7e).  
Notably, intravascular EVTs increased proportionally with endothe-
lial loss, whereas perivascular EVTs were present irrespective of this 
process (Extended Data Fig. 7f). Together, these findings align with a 
process whereby near-complete loss of smooth muscle permits perivas-
cular EVTs to invade the artery lumen through discontinuities in the 
vascular endothelium29.

To further evaluate this model, we next examined whether the EVT 
phenotype shifts progressively in a manner consistent with a migra-
tory route that passes through the decidua into the artery lumen. The 
proportion of EVT subsets in cell column, interstitial, perivascular and 
intravascular compartments shifted systematically in a manner con-
sistent with this proposed path of migration (Extended Data Fig. 8a,b). 
Examining functional marker expression within each compartment 
again revealed a progressive shift in EVT phenotype. Cell columns 
were distinctly enriched for proliferative (Ki67+) and CD57+ EVTs.  
A progressive decrease in these markers across interstitial, perivascular 
and intravascular EVTs was accompanied by a concomitant increase in 
PD-L1 that peaked in the intravascular compartment (Fig. 6e, Extended 
Data Fig. 8c and Methods).

These analyses collectively align with a spatial trajectory whereby 
decidual invasion of cell column EVTs is synchronized with a downregu-
lation of CD57 and Ki67 and an upregulation of HLA-G. Perivascular 
accumulation of EVTs occurs early in SAR before the appearance of 
intravascular EVTs and any loss in endothelium. In this model, as the 
endothelial barrier is lost, perivascular EVTs invading the artery lumen 
upregulate CD56 and PD-L1 (Extended Data Fig. 8d–h and Methods). 
Notably, owing to its observational nature, this study cannot rule out 
alternative mechanisms by which detaching EVTs arising from EVT 
plugs at the intervillous space undergo retrograde migration.

Irrespective of the migration route, the distinct changes in pheno-
typic markers measured by MIBI-TOF suggest that arterial invasion is 
accompanied by a shift in EVT transcriptional programmes. With this in 
mind, we used NanoString DSP to measure the transcriptomes of inter-
stitial and intravascular EVTs. We found 274 differentially expressed 
genes (DEGs) (Extended Data Figs. 9 and 10a and Methods). In addition 
to confirming previous work noting an upregulation of NCAM1, JAG1 
and LAIR2 specifically in intravascular EVTs30–32, we identified transcrip-
tional changes in genes important for extracellular matrix remodelling 
and angiogenesis (Fig. 6f). For example, MMP12, MMP15 and ADAMTS4 
were specifically upregulated in intravascular EVTs (mean log(fold 
change) of 11.67 for MMP12, 9.74 for MMP15, and 7.88 for ADAMTS4), 
which suggested that these proteins play a significant role in late-stage 
SAR. In addition, arterial invasion was accompanied by a shift from 
VEGFR1 (also known as FLT1) to VEGFR3 (also known as FLT4) (Fig. 6f).

Intravascular EVTs also upregulated DKK3, C5orf30 (also known as 
MACIR) and CD24 (Fig. 6f), which have each been shown in previous 
work to have roles in fetal viability, tumour invasion or immune toler-
ance33–35. Similarly, we observed an accompanying downregulation of 

genes associated with invasion in intravascular EVTs, such as MGAT5. 
With respect to immune modulation, C5orf30 is a potent immunometa-
bolic regulator that has been shown to inhibit macrophage-mediated 
tissue damage in rheumatoid arthritis33. Similarly, CD24 binding to 
Siglec-10 was recently found in many cancers to promote immune 
evasion by serving as an anti-phagocytic, ‘don’t eat me’ signal36. Taken 
together, our multimodal approach paints a picture of a highly regu-
lated and controlled process. We observe a transcriptional shift away 
from a more invasive phenotype (SERPINE1 and CORO6) in interstitial 
EVTs towards genes implicated in vascular remodelling in intravascular 
EVTs. Notably, this was accompanied by an increase in immunoregula-
tory modules that allow EVTs to be in continuous contact with maternal 
blood while avoiding immune activation (Fig. 6e,f).

To understand how these changes promote SAR, we investigated 
potential cell–cell interactions between intravascular EVTs and arterial 
cells using NicheNet37 (Methods). We identified ten protein–protein 
interactions between EVTs and arteries that were predicted to affect 
121 downstream targets (Fig. 6g,h, Extended Data Fig. 10b and Sup-
plementary Table 5). For example, interactions between EVT JAG1 and 
arterial Notch were predicted to drive downstream changes in arterial 
MEOX1 and MT2A, which have been implicated in endothelial dysfunc-
tion and apoptosis38,39. Similarly, CGA–FSHR and LEP–LEPR interactions 
correlated with changes in arterial hormone receptors (LHCGR) and 
several cell adhesion targets, respectively (Fig. 6h and Extended Data 
Fig. 10b). Notably, among the most prominent downstream targets 
were the olfactory receptors OR51E2 and the human-specific OR7A5, 
the expression of which outside the olfactory bulb has been thought 
to regulate blood pressure and angiogenesis40,41.

CD24–SELP was the second most significant interaction and had 
several targets related to blood vessel function and formation (Fig. 6h 
and Extended Data Fig. 10b). Notably, reduced CD24 mRNA levels in 
bulk placental samples has been associated with higher preterm preec-
lampsia risk35; however, EVT-specific CD24 expression has not been 
previously reported. Given that abnormal decidual and SAR are thought 
to play a major part in preeclampsia42, we sought to determine whether 
other genes involved in EVT invasion and vascular remodelling had 
previously been implicated. To do this, we first compared our list of 
EVT DEGs with genes found previously to be differentially expressed 
in decidua samples from women diagnosed with preeclampsia43. We 
found that 31% of EVT DEGs (12 genes) are differentially expressed in 
preeclamptic decidua (Fig. 6f and Supplementary Table 6). Notably, 
FN1 and FLT1, which have been proposed as biomarkers for early pre-
diction of preeclampsia44,45, were markedly downregulated in intra-
vascular EVTs.

Half of the NichNet interactions and 19 downstream targets over-
lapped with this list of preeclampsia DEGs43 (Fig. 6h and Extended Data 
Fig. 10b). These included WNT10B, a newly identified accelerator of EVT 
invasion46, and OR51E2, a target of CD24–SELP signalling that also exhib-
ited the highest regulatory potential. With respect to the latter, SELP is 
notable for being differentially expressed in peripheral blood-cell-free 
RNA from patients with preeclampsia47. Taken together, our transcrip-
tomics approach validated and complemented the stepwise changes 
in EVT phenotype seen in our spatial atlas while revealing pathways 
that are perturbed in pregnancy-related disorders.

Discussion
Decidualization is a fascinating process with no other normative 
precedent in human biology. In this process, the structure and func-
tion of the maternal endometrium transforms to promote the regu-
lated invasion of genetically dissimilar fetal cells. The decidua plays 
a dual role by permitting EVT invasion in the first trimester and later 
limiting it by inducing EVT apoptosis48. EVT invasion can also be lim-
ited by morphological changes such as EVT fusion, which leads to 
polyploidization that limits invasion owing to nuclear size49. Given 
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the lack of tractable and relevant animal models and the inability 
to study decidualization prospectively, our understanding of it is 
immature relative to other areas of human physiology. Therefore, 
our study aimed to understand how global, temporally dependent 
changes in decidual composition are coupled to local regulation of 
vascular remodelling in pregnancy. Initial invasion of placental EVTs 
is prompted by a shift towards a permissive milieu, whereas progres-
sion of SAR depends on the subsequent migration and perivascular 
accumulation of EVTs, where they are thought to participate in coop-
erative cell–cell interactions with maternal fibroblasts, NK cells and 
macrophages2. Thus, the formation of the maternal–fetal interface 
is mediated by global, temporally dependent cues that serve as a 
gating function for remodelling processes that are regulated in the 
local tissue microenvironment.

With this paradigm in mind, we set out to delineate which aspects of 
the first half of pregnancy are driven globally by GA and how this relates 
to SAR. In the study of placentation and SAR, an ideal sampling strategy 
might use elective caesarean hysterectomies from normal pregnan-
cies performed across GA in an ethnically diverse patient population.  
As ethical considerations prohibit this approach, previous work has 
used a range of sample types that each have their own strengths and 
weaknesses. Here we utilized archival tissue from elective termina-
tions with no known pregnancy complications. This enabled us to 
examine these questions in a large, ethnically diverse cohort that is 
well-distributed with respect to GA. As tissue procured during termina-
tions is fragmented, anatomical registration for determining whether 
these tissue blocks were sampled from central or peripheral regions 
of the decidua basalis was not feasible.

Using LDA, image morphometrics and expert annotations, we 
assigned quantitative remodelling scores to every spiral artery in these 
images. These targeted multiplexed imaging data were complemented 
by spatially co-registered tissue transcriptomics. This multimodal 
dataset enabled us to reveal how cell frequency and function, tissue 
organization and transcriptional programmes in maternal decidua, 
arteries and EVTs change with SAR and GA.

Our analyses of these changes determined that GA is the predominant 
driver of maternal immune cell recruitment. Progressive decreases in 
the numbers of NK cells and T cells drive a transition at 12–14 weeks GA 
from a lymphoid-dominant to myeloid-dominant decidua enriched 
for iNOS+ NK cells, IDO-1+ vascular endothelium and DC-SIGN+ macro
phages that express both TIM-3 and GAL-9. Notably, this relationship 
between immune composition and GA was strong enough to allow 
us to predict GA within 19 days exclusively on the basis of immune 
population frequencies.

By contrast, all EVT subsets and only two maternal cell populations 
(NK1 and NK2) preferentially correlated with SAR. Higher remodelling 
scores were correlated with more EVTs, more NK1 cells and fewer NK2 
cells. A sharp accumulation in NK2 cells around arteries was observed 
early in the remodelling process around the time smooth muscle disrup-
tion had been initiated. NK1 and NK2 cells primarily differed in that the 
latter express CD57, a marker associated with a cytotoxic phenotype. 
Higher proportions of presumptively more reactive NK2 cells early in 
SAR around arteries aligns well with previous results50 that have sug-
gested that decidual NKs initiate early disruption of arterial smooth 
muscle through the secretion of GrB, MMP2 and MMP9. Likewise, the 
proportional gains seen here as SAR progresses of less reactive NK1 cells 
and invasive EVTs are consistent with the tolerizing effects of HLA-G, 
which has previously been shown51,52 to decrease NK cell cytotoxicity 
and induce the production of interleukin-6 and interleukin-8 through 
the binding of HLA-G to KIR2DL4, LILRB1 and LILRB2. Taken together, 
these data suggest that maternal and fetal cells have cooperative, inter-
dependent roles with SAR, transitioning through NK-dependent and 
EVT-dependent phases.

We also examined a lingering question3 in the field: the path of migra-
tion taken by intravascular EVTs in the decidua basalis. In line with early 

work based on studies of 8–18 week hysterectomy specimens processed 
in toto3, we found that perivascular EVTs accumulated before intravas-
cular EVTs. By comparing the cellular composition within cytotropho-
blast cell columns of anchoring villi, decidua and arteries, we observed 
a sequential and coordinated shift in EVT frequency and phenotype, 
which provided support for a model in which EVTs enter spiral arteries 
from nearby decidua by crossing the arterial wall.

Notably, previous studies of samples from caesarean hysterecto-
mies identified morphological evidence of arterial extravasation3. 
Given the observational nature of this study and the limited preser-
vation of tissue structure at the intravillous space, an extravasation 
model in which EVTs migrate in a retrograde manner after entering 
spiral arteries directly at the basal plate cannot be excluded. We 
also note the possibility that following intravasating arteries in the 
decidua, EVTs could migrate upstream to reach the upper third of 
the myometrium. This idea would be consistent with previous studies  
in which perivascular trophoblasts become increasingly scarce as 
a function of myometrial depth53. Therefore, it is conceivable that 
both processes may be at play in different regions of the decidua as 
pregnancy progresses.

Previous single-cell and bulk sequencing studies of decidua have 
characterized the transcriptome of decidual cells; however, they were 
performed using dissociated tissue, agnostic to spatial context and 
the local extent of SAR2,12. Correlating spatial morphology and tis-
sue composition with targeted tissue transcriptomics enabled us 
to observe how the transcriptome evolves with respect to SAR. In 
arteries, our analysis revealed a downregulation of Notch signalling, 
tissue organization and cohesion with SAR, which was accompanied 
by a burst of translation-related activity around stage 2 of remod-
elling. By comparing interstitial EVTs with intravascular EVTs, our 
analyses revealed genes upregulated in the interstitial populations 
that shed light on how EVTs facilitate immune tolerance. Almost 
one-third of DEGs between interstitial and intravascular EVTs over-
lapped with DEGs in preeclamptic decidua samples. Given the sig-
nificant contribution that abnormal vascular remodelling and EVT 
invasion are thought to play in preeclampsia, this work serves as a  
valuable resource for contextualizing preeclampsia-related changes 
in future studies.

Notably, many of these pathways are also associated with cancer 
progression. Formation of the maternal–fetal interface is an organized 
and controlled invasive process that is sometimes viewed as a template 
for understanding invasive and immunosuppressive properties of 
tumours54. Both processes involve a genetically dissimilar invasive 
cell type (haploidentical EVTs versus clonal, mutated cancer cells), 
extracellular matrix remodelling and recruitment of a wide variety 
of tolerogenic immune cells, including M2-polarized macrophages 
and proliferating Treg cells. The intersection of anchoring placental 
villi and maternal decidua morphologically resembles the invasive 
margin of carcinomas and contains trophoblast cells that express high 
levels of immunomodulatory proteins and growth factors implicated 
in tumour severity, including PD-L1, IDO-1, TIM3, HER2 and EGFR27,55,56. 
In addition to these phenotypic and structural similarities, recent work 
that revealed mosaicism and clonal mutations in normal-term placen-
tas demonstrated that this phenotypic overlap is even manifest at a 
genomic level57.

Overall, we anticipate that this spatiotemporal atlas of the early 
human maternal–fetal interface will provide a normative framework 
for elucidating aetiological perturbations in maternal–fetal tolerance 
and SAR in pregnancy complications. Likewise, this work may also 
serve as a template for understanding how immune tolerance, tissue 
remodelling and angiogenesis are aberrantly recruited and synergized 
during tumour progression. With this in mind, we plan in future studies 
to extend this comparative approach to archival tissue in the context 
of obstetric complications to further elucidate cellular interactions 
involved in the regulation of SAR and EVT invasion.
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Methods

Retrospective cohort design
The study cohort comprised decidua tissue from archival formalin-fixed, 
paraffin embedded (FFPE) blocks, sampled after elective pregnancy 
terminations from an outpatient clinic located within a large public 
hospital affiliated with an academic medical centre. Patients at this 
clinic reflect a diverse population. Although the patient population is 
predominantly low-income, women of all economic backgrounds are 
cared for at the clinic.

In the clinic, an ultrasound examination is performed to esti-
mate GA, and a medical history is taken and logged as an electronic 
medical record (electronic clinical works) or handwritten forms.  
A board-certified gynaecologist reviewed medical records and specifi-
cally extracted the following details: age, ethnicity, body–mass index, 
gravidity, parity, previous terminations, smoking status, medications, 
HIV status, history of preeclampsia, chronic hypertension, diabetes 
mellitus, renal disease, autoimmune disease, multifetal pregnancy, 
and congenital anomalies (Supplementary Table 1). For procedures 
occurring at <14 weeks GA, suction aspiration is routinely used. For 
procedures at >14 weeks GA, a combination of suction aspiration 
and grasping forceps is used. After the procedure, tissue samples are  
routinely sent to pathology.

TMA construction
Whole tissue sections from individuals who underwent elective termi-
nation at 6–20 weeks of gestation were first reviewed by H&E staining to 
identify samples containing decidual tissue and spiral arteries. These 
regions were manually demarcated and assessed for suitability. Blocks 
containing decidua with vessels were selected, cored with a bore needle 
and assembled into the TMA used in this study. Archival tissue blocks 
from 74 individuals were initially selected by a board-certified perinatal 
pathologist (G.R.) to be included in the TMAs. The first TMA consisted 
of 205 cores (including 3 tonsil cores, 1 endometrium core and 1 myo-
metrium core) of 1 mm in diameter and the second contained 86 cores 
of 1.5 mm in diameter). Unfortunately, cores from eight individuals did 
not end up containing decidua, and there was not sufficient tissue in 
the block for additional re-coring. We therefore had to exclude these 
samples from the analysis. The final cohort included 66 individuals, an 
exhaustive list of which is provided in Supplementary Table 1. Images 
from samples from six individuals did not have arteries and therefore 
were not included in analyses related to spiral arteries. Information on 
the histological characteristics of the blocks retrieved, including the 
presence of cell column anchoring villi, is in Supplementary Table 1. 
High-resolution scans of each core were uploaded to the Stanford Tis-
sue Microarray Database (http://tma.im/cgi-bin/home.pl), a collabora-
tive internal platform for designing, viewing, scoring and analysing 
TMAs. Sequential recuts of the main experiment were stained with H&E 
to aid in choosing the imaging ROIs and analysing data.

Antibody preparation
Antibody staining was validated as previously described11,58. In brief, 
each reagent was first tested using single-plex chromogenic immu-
nohistochemistry (IHC) using multiple positive and negative FFPE 
tissue controls before metal conjugation. Antibodies were then con-
jugated to isotopic metal reporters as previously described11,22–24,58 
with the exception of biotin-conjugated anti-PD-L1, for which a 
metal-conjugated secondary antibody was used. The performance 
of metal-conjugated antibody reagents were then tested within the 
complete MIBI-TOF staining panel under conditions identical to 
those in the main study and compared with representative single-plex 
chromogenic IHC to confirm equivalent performance. Representa-
tive stains and information for each marker is provided in the Sup-
plementary Information and in Supplementary Table 7, respectively. 
After conjugation, antibodies were diluted in Candor PBS Antibody 

Stabilization solution (Candor Bioscience). Antibodies were either 
stored at 4 °C or lyophilized in 100 mM d-(+)-trehalose dehydrate 
(Sigma Aldrich) with ultrapure distilled H2O for storage at −20 °C. 
Before staining, lyophilized antibodies were reconstituted in a buffer 
of Tris (Thermo Fisher Scientific), sodium azide (Sigma Aldrich), 
ultrapure water (Thermo Fisher Scientific) and antibody stabilizer 
(Candor Bioscience) to a concentration of 0.05 mg ml–1. Information 
on the antibodies, metal reporters and staining concentrations is in  
Supplementary Table 7.

Tissue staining
Tissues were sectioned (4 μm in thickness) from tissue blocks on gold 
and tantalum-sputtered microscope slides. Slides were baked at 70 °C 
for 20 min followed by deparaffinization and rehydration with washes in 
xylene (3 times), 100% ethanol (2 times), 95% ethanol (2 times), 80% eth-
anol (once), 70% ethanol (once) and ddH2O with a Leica ST4020 Linear 
Stainer (Leica Biosystems). Tissues next underwent antigen retrieval, 
which was carried out by submerging sides in 3-in-1 Target Retrieval 
solution (pH 9, Dako Agilent) and incubating them at 97 °C for 40 min 
in a Lab Vision PT Module (Thermo Fisher Scientific). After cooling to 
room temperature, slides were washed in 1× PBS IHC washer buffer 
with Tween 20 (Cell Marque) with 0.1% (w/v) BSA (Thermo Fisher). 
Next, all tissue samples underwent two rounds of blocking, the first to 
block endogenous biotin and avidin with an Avidin/Biotin Blocking kit 
(BioLegend). Tissue samples were then washed with wash buffer and 
blocked for 1 h at room temperature with 1× TBS IHC wash buffer with 
Tween 20 and 3% (v/v) normal donkey serum (Sigma-Aldrich), 0.1% 
(v/v) cold fish skin gelatin (Sigma Aldrich), 0.1% (v/v) Triton X-100 and 
0.05% (v/v) sodium azide. The first antibody cocktail was prepared in 
1× TBS IHC wash buffer with Tween 20 and 3% (v/v) normal donkey 
serum (Sigma-Aldrich) and filtered through a 0.1 μm centrifugal filter 
(Millipore) before incubation with tissue overnight at 4 °C in a humid-
ity chamber. After overnight incubation, slides were washed for 2 min 
in wash buffer. The next day, the antibody cocktail was prepared as 
described (Supplementary Table 7) and incubated with the tissues for 
1 h at 4 °C in a humidity chamber. After staining, slides were washed 
twice for 5 min in wash buffer and fixed in a solution of 2% glutaral-
dehyde (Electron Microscopy Sciences) solution in low-barium PBS 
for 5 min. Slides were washed in low-barium PBS for 20 s then, using a 
linear stainer, through 0.1 M Tris at pH 8.5 (3 times), ddH2O (2 times) 
and then dehydrated by washing in 70% ethanol (once), 80% ethanol 
(once), 95% ethanol (2 times) and 100% ethanol (2 times). Slides were 
dried under vacuum before imaging.

MIBI-TOF imaging
Imaging was performed using a custom MIBI-TOF instrument with 
a Xe+ primary ion source, as previously described22,58. In total, 222 
808 × 808 µm FOVs were acquired at approximately 600 nm resolu-
tion using an ion dose of 7 nA × h mm–2. After excluding 11 FOVs that 
contained necrotic or non-decidual tissue, or consisted of duplicate tis-
sue regions, the final dataset consisted of 211 FOVs from 66 individuals.

Low-level image processing
Multiplexed image sets were extracted, slide background-subtracted, 
denoised and aggregate filtered as previously described22–24,58,59. For 
several markers, a background channel consisting of signal from the 
mass 128 channel was used. All parameters used as inputs for low-level 
processing are listed in Supplementary Table 7.

Feature annotation
Large tissue features were manually annotated in collaboration with a 
perinatal pathologist. Pseudo-coloured MIBI images stained with H3 to 
identify cell nuclei, VIM for decidual stromal cells, SMA and CD31 for 
vessels, cytokeratin 7 (CK7) for glands and the fetal cell columns, and 
HLA-G for EVTs were used to guide annotation. Serial H&E sections, and 
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a H&E recut of the entire block, if necessary, were additionally used to 
supplement annotation. Labelling was performed in ImageJ and the 
annotated features were exported as binary TIF masks.

Single-cell segmentation
The Mesmer segmentation algorithm60 was adapted specifically to 
segment the cells in our dataset. First, training data were generated 
using a subset of 15 images out of 211 in our cohort, in addition to 10 
decidua MIBI-TOF images from titration data. In total, 1,024 × 1,024 
pixel crops were selected to encompass the range of different cell mor-
phologies present. The markers H3, VIM, HLA-G, CD3, CD14 and CD56 
were used to capture the major cell lineages present. Subsequently, 
a team of annotators parsed these images to identify the location of 
each unique cell using DeepCell Label, custom annotation software 
specifically developed for this task60 (https://github.com/vanvalenlab/
deepcell-label). The manually annotated images were used to gener-
ate partially overlapping crops of 256 × 256 pixels from each image. 
In total, training data included 1,600 distinct crops with 93,000 cells. 
This dataset was used to retrain the Mesmer segmentation model, 
modifying the architecture to accept six distinct channels of input. The 
output from the network was then post-processed using the default 
model settings (Supplementary Information).

Segmentation post-processing
Examination of the images revealed that glandular cells and chorionic 
villus trophoblasts did not express any markers included in the train-
ing data; namely these cells were predominantly CK7+. This resulted 
in effectively nuclear-only segmentation being predicted by the con-
volutional neural network within these features. To account for this, 
segmented cells that overlapped with the gland mask were expanded 
radially by 5 pixels, and those in the cell column mask by 2 pixels. The 
number of pixels used for expansion was optimized to approximate  
the observed cell size, which was based on a systematic inspection of 
three images per GA. Objects <100 pixels in area were deemed non-
cellular and excluded from subsequent analyses. The final number 
of segmented events per FOV is provided in Supplementary Table 8.

Single-cell phenotyping and composition
Single-cell expression data were extracted for all cell objects and 
area-normalized. Single-cell data were linearly scaled with a scaling 
factor of 100 and ArcSinh-transformed with a co-factor of 5. All mass 
channels were normalized to the 99th percentile. To assign decidual 
cell populations (≥70% cell area in decidua) to a lineage, the cluster-
ing algorithm FlowSOM (Bioconductor FlowSOM package in R)29 was 
used, which separated cells into 100 clusters based on the expression 
of 19 canonical lineage-defining markers (Supplementary Informa-
tion). Clusters were further classified into 21 cell populations, with 
proper lineage assignments ensured by manual examination of over-
layed FlowSOM cluster identity with lineage-specific markers. Clus-
ters containing non-biologically meaningful or distinct signals were 
assigned the label ‘other’. Treg cells were identified by thresholding 
T cells (FlowSOM clusters 43, 53 and 63) with the CD3 signal ≥ the mean 
CD3 expression of CD4+ T cells and >0.5 the normalized expression 
of FOXP3. Mast cells were identified as cells for which normalized 
expression of tryptase was >0.9. Mac2b (CD11c+) cells were identified 
as macrophages with >0.5 normalized expression of CD11c. Placental 
macrophages (Hofbauer cells) were defined as CD14+ >0.5 cells located 
within the cell column. Cells from FlowSOM clusters 4, 5 and 15 ubiqui-
tously and predominantly expressed CK7 and were reassigned to the 
EVT2 subset if located within the cell column feature mask or as glan-
dular cells otherwise (Supplementary Information). These thresholds 
were selected based on the distribution of lineage marker expression 
(Supplementary Information) and on systematic examination of the 
images by eye as expression patterns varied significantly between 
markers. For a comprehensive list of all single cells, their morphological 

features, markers expression, lineage classification, among others, see 
the Data availability section.

Definition of thresholds for functional marker positivity
Cells were considered positive for a functional marker if their scaled 
expression level was greater than or equal to a set threshold, as previ-
ously described22. Thresholds for individual functional markers were 
determined on the basis of examining the images by eye, as expression 
patterns varied significantly between markers (Supplementary Table 9 
and Supplementary Information). To set the per-marker thresholds, 
five images for each functional marker were reviewed, and increas-
ing threshold values were examined using custom software. Subse-
quently, cells defined as negative for a marker based on the determined 
threshold value were re-examined to ensure that the thresholds were 
representative. For Ki67 positivity, only cells that had a nucleus in the 
image were considered. Ki67 values were not normalized to the cell 
size because the Ki67 signal is exclusive to nuclei.

Two-colour IHC
Before staining, FFPE sections were incubated at 70 °C for 1 h. After 
deparaffination and antigen retrieval (Dako, S2367) was performed, 
endogenous horseradish peroxidase and alkaline phosphatase were 
blocked using BLOXALL (Vector Laboratories, SP-6000-100) for 30 min, 
followed by blocking buffer solution (95% 1× TBS IHC wash buffer with 
Tween 20, 1% Triton 10%, 1% gelatin 10%, 2% horse serum and 1% sodium 
azide 20 mg ml–1) for 1 h at room temperature. Double staining was 
performed using CD57 (mouse IgG) paired with CD49a (rabbit IgG). 
Sections were incubated at 4 °C overnight with the antibodies CD57 
(clone NK/804, Abcam, ab269771; titre, 0.5 µg ml–1) and CD49a (clone 
E9K2J, CST, 15574T; titre, 1:1,500). The following day, secondary anti-
body (ImmPRESS Duet reagent; HRP anti-rabbit IgG and AP anti-mouse 
IgG; Vector Laboratories) was applied for 10 min at room temperature. 
Antibodies were revealed with Vector Blue AP substrate (Vector Labo-
ratories, SK-5300) for 10 min in the dark followed by DAB HRP substrate 
(Vector Laboratories, SK-4105) for 40 s. For subsequent analyses and 
colour deconvolution, single-plex staining for CD57 and CD49a were 
performed on one slide each. For details on the method, buffers and 
solutions, refer to ref. 61.

The IHC slides were scanned using a NanoZoomer Digital Pathology 
Scanner 2.0RS (Hamamatsu) and analysed using QuPath (v.0.4.0). 
To score CD57+ NK cells (NK2) for expression of the tissue-residency 
marker CD49a, the two colours in the IHC slides were deconvolved 
with QuPath using single-plex staining as colour references. CD57+ 
NK cells were then manually annotated, in decidual regions only, by 
a board-certified pathologist. These cells were than manually scored 
for CD49a expression and counted.

Blinded manual artery staging
Arteries were categorized into five remodelling stages based on cri-
teria adapted from a previously proposed four-stage model21. These 
criteria were used to describe spiral arteries observed in H&E and 
single-channel IHC images and were adapted to suit multiplexed MIBI 
data (Fig. 3a, details in Extended Data Fig. 3a). In total, 600 arteries were 
categorized according to these criteria by a single reviewer using only 
crops of MIBI pseudocolour overlays (SMA, VIM, CD31, H3 and HLA-G), 
including only the artery (as defined by a feature mask) and any EVTs in 
the lumen. The reviewer was blinded to the rest of the image, serial H&E 
sections, GA and any clinical data. Twelve partially captured arteries 
were excluded from the final dataset of 588 arteries.

Automated digitization of artery morphological features
The same format of cropped artery MIBI images that were manu-
ally scored by the reviewer were used to calculate a set of geometric 
parameters for several selected features. These features described 
the organization and structure of the vessel wall, the continuity of 
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the endothelium and its thickness, and the presence and structure of 
intravascular EVTs. To capture these features, a structure of concentric 
circles we termed the ‘onion’ structure was defined, with the outer circle 
of this structure enclosing the artery and the inner circles dividing it 
into layers. This structure is described below using the two-dimensional 
cylindrical coordinate system, with the radial axis r, azimuthal (angular) 
axis ø, and origin of the axis at point (x,y). Point (x,y) is the user-defined 
artery centre. For an artery in the binary mask M, the following algo-
rithm was used to create the onion structure (Extended Data Fig. 3c).
First, define a circle enclosing the artery, centred at point (x,y) with 
radius a as follows: (x,y) was taken as the user-defined artery centre 
point; a, the radius is defined as the maximum distance between (x,y) 
and the edge of M, rounded up to the nearest integer multiple of n, such 
that a = I × n for an integer I. n is a user-defined thickness parameter 
for the onion layers

Second, define the inner circles comprising the onion layers by divid-
ing the radius a of the outer circle into I equal sections of length n, 
creating layers along the radial r axis. The radii of the inner circles are 
then defined as 0,1 × n,2 × n,…(I – 1) × n.

Third, divide the onion into k equal sectors along the ø axis. k is a 
user-defined integer.

Fourth, subdivide each sector into segments. The sectors are inter-
nally divided by the circles, creating parts with four corners and four 
sides, with the two sides being straight (sector dividers), and the two 
sides being arcs (parts of circle circumferences). The arcs are replaced 
with secants (straight line connecting the ends of the arc), turning the 
segment into a trapezoid. The parameters n = 10 pixels and k = 100 
were used to allow for segments large enough to contain a sufficient 
number of pixels to average the expression over.

Geometrical and protein morphology features were then extracted 
for each artery onion. For geometrical features, the following param-
eters were defined: (1) radius, the maximum distance between any 
pixel within the mask and the closest pixel on the edge of the mask; 
(2) perimeter, the Euclidean distance between all adjacent pixels on 
the edge of the artery mask; and (3) area, the total number of pixels 
within the artery mask.

For the protein morphology features, for the markers CD31, CK7, H3, 
HLA-G, SMA and VIM, the following parameters were defined. (1) Aver-
age signal: the weighted average over segments of marker expression, 
in which the weight of a segment corresponds to the number of pixels 
it contains. The weighted average was used to avoid smaller inner seg-
ments having a disproportionate effect on the average.(2) Thickness: 
for each sector, we calculated the distance d between the inner-most 
segment positive for the marker and the outer-most positive segment. 
Positivity was measured by comparing the mean signal over pixels the 
segment to a user-defined threshold.The mean and standard deviation 
of thickness were calculated as the mean and standard deviation of d 
over all sectors. (3) Radial coverage: the percentage of sectors positive 
for marker signal. A sector was considered positive if the mean signal 
over sector pixels acceded a user-defined threshold. (4) Jaggedness: 
this feature measures the extent jaggedness of an artery outline. To do 
so, first, a previously described skeletonization function62 is applied 
to the artery mask, and this function returns a ‘skeleton’ of the artery 
outline. This skeleton also assigns values to the outline pixels based 
on their distance from the core shape. Then, two different binariza-
tion thresholds are chosen: a non-branch threshold (a high value = 60 
pixels, which indicates a greater topological distance) and a ‘branch’ 
threshold (a low value = 5 pixels, which indicates a smaller topologi-
cal distance). The ratio between the total number of non-branch and 
branch pixels is the jaggedness.

Calculation of continuous SAR remodelling score δ
A supervised dimensionality reduction technique based on LDA63 
(https://github.com/davidrglass) was applied using the per-artery 
digitized morphological features and manually assigned remodelling 

stage labels as inputs. All artery morphology feature values were stand-
ardized (mean subtracted and divided by the standard deviation) and 
all arteries were used as the training data. The LDA output was as follows 
(Supplementary Table 3): the optimal linear combination of a subset 
of features that maximized the separation by manual stage between 
arteries in LDA space; and the coordinates of each artery in LDA space.

To define the SAR trajectory, a fourth-degree polynomial was fit-
ted to the artery coordinates in LDA space. To determine the optimal 
degree of the polynomial, polynomials with degrees 1–6 were fitted, 
and the degree that minimized the P value for separating δ distribu-
tions between arteries grouped using the manual remodelling stage 
(Extended Data Fig. 4c) was selected. The polynomial fit was imple-
mented using the MATLAB function fit and resulted in the following 
polynomial: f(x) = 0.0005 × x4 – 0.01227 × x3 + 0.1363 × x2 – 0.4354 × x 
– 0.7425. The polynomial was then numerically interpolated on a dense 
104-point grid, and the distance from each artery point in LDA space to 
the polynomial was calculated using this grid and the MATLAB exchange 
function distance2curve64. δ per artery was then calculated as the line 
integral from the curve origin to closest point to the artery on the curve 
(Extended Data Fig. 4a, inset). This integral was numerically calculated 
using a custom MATLAB script. δ values were linearly rescaled to the 
range 1–5 using the MATLAB function rescale.

Cell-type frequency as a function of GA and SAR
To examine cell-type frequencies within the decidua as a function of 
GA and SAR (Figs. 3 and 4), per-image cell frequency tables were con-
structed in which cell-type frequencies were calculated as the propor-
tion of cells in the decidua feature mask of that image. Cells located in 
other feature masks (artery, gland, vessel or cell column masks) were 
not counted, nor were cells of an unassigned type (‘other’). To focus 
these analyses on cell populations strictly found in the decidua, mus-
cle and glandular cells were also excluded; these cell types occasionally 
extended outside their artery and gland feature masks, respectively. 
Cell frequency as a function of GA for a cell type was defined as the 
per-image proportion values for that cell type, as a function of the GAs 
associated with the images. Similarly, cell frequency as a function of 
SAR for a cell type was defined as the per-image proportions of that 
cell type, as a function of the mean δ values per image. For the volcano 
plot in Fig.  3n, we fitted a linear regression model to the two 
above-described functions. All linear regression models were imple-
mented using the MATLAB function fitlm and the volcano plot only 
shows points for which regression R2 ≥ 0.05. R2 and P values for all 
δ-based and GA-based regressions are provided in Supplementary 
Table 13. The ratio between R2 in the two regression models was used 
to classify trends as GA-driven, SAR-driven or synchronized. For exam-
ple, the increase in EVTs out of all cells, R_EVT, was classified as 
GA-driven because R2 for R_EVT as a function of δ was 0.3 but only 0.1 
for R_EVT as a function of GA (Extended Data Fig. 4d and Supplementary 
Table 10). Another example is the increase in macrophages out of 
immune cells, I_sumMac: it was classified as GA-driven because R2 for 
I_sumMac as a function of GA was 0.6 but only 0.1 for I_sumMac as a 
function of δ (Extended Data Fig. 4e and Supplementary Table 10). To 
determine the trend sizes depicted in Fig. 3n, the following calculation 
was used: denote the per-image frequencies of a cell type as V, and the 
corresponding per image temporal stamps (either GA or mean image 
δ) as X. Trend size is then calculated as the difference between the first 
and last time point in units of the mean: V X V X

V
(max( )) − (min( ))

mean( )
.

NanoString GeoMx DSP
The experiment was performed using NanoString Technologies accord-
ing to company manuals, details are below.

Slide preparation. Serial sections of the TMAs were cut into 5 µm 
FFPE sections and were mounted on SuperFrost Plus slides (Fisher 
Scientific, 12-550-15), air dried and baked overnight at 60 °C. Slides 
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were then processed as specified by the NanoString GeoMx DSP Slide 
Preparation User Manual (NanoString Technologies, MAN-100 7). In 
brief, slides were dewaxed, underwent antigen retrieval and treated 
with proteinase K (Ambion, 2546) at 1 µg ml–1 concentration. Slides 
were then post-fixed. For RNA probe hybridization, slides were placed 
in a slide rack with Kimwipes damped with 2× SSC lining the bottom. 
Each slide was treated with 200 µl of NanoString Technologies whole 
transcriptome RNA probe mix at a concentration of 4 nM per probe in 
1× buffer R (NanoString Technologies). A Hybridslip (Grace Biolabs, 
714022) was applied over each slide. Slides were incubated at 37 °C 
overnight. After hybridization, slides were dipped in a 2× SSC with 0.1% 
Tween 20 (Teknova, T0710) to remove the coverslips. They were then 
washed twice in 2× SSC and 50% formamide (ThermoFisher AM9342) 
at 37 °C for 25 min followed by two washes in 2× SSC for 5 min each at 
room temperature. Slides were blocked in buffer W (NanoString Tech-
nologies) at room temperature for 30 min, followed by the application 
of 200 µl morphology marker mix for 1 h. Details of the morphology 
markers are provided in Supplementary Table 7.

Sample collection. Sample collection was performed as indicated 
in the GeoMx DSP instrument user manual (MAN-10088-03). Slides 
were loaded into the GeoMx DSP instrument and scanned. For each 
tissue sample, we selected ROIs corresponding to one of the following 
categories: artery (13), decidua (13), interstitial EVT (5), intravascular 
EVT (3); in total, 34 ROIs were selected (Supplementary Table 11). Mor-
phology markers for SMA and VIM were used in conjunction with a 
serial H&E section to provide tissue context and to locate arteries and 
decidua on the platform. Artery, decidua and intravascular EVT ROIs 
were selected using the geometric selection tool, and interstitial EVTs 
were selected using a HLA-G+ mask. Intravascular EVTs were identified 
as HLA-G+ cells located within arteries. Each ROI was collected into a 
single well in a 96-well plate.

GeoMx DSP NGS library preparation and sequencing. Each GeoMx 
sample or well was uniquely indexed using an i5 × i7 dual-indexing 
system from Illumina. In total, 4 µl of a GeoMx DSP sample was used in 
a PCR reaction with 1 µM of i5 primer, 1 µM i7 primer and 1× NSTG PCR 
master mix. For the PCR amplification reaction, each 96-well plate 
was placed in a thermocycler programmed with the following pro-
tocol: 37 °C for 30 min, 50 °C for 10 min, 95 °C for 3 min, 18 cycles of 
95 °C for 15 s, 65 °C for 60 s, 68 °C for 30 s, and final extension of 68 °C 
for 5 min. PCR assays were purified with two rounds of AMPure XP 
beads (Beckman Coulter) at 1.2× bead-to-sample ratio. Libraries were 
paired-end sequenced (2 × 75) on a NextSeq550 with up to 400 million 
total aligned reads.

Normalization and scaling of GeoMx counts data. Raw counts from 
each gene in each sample were extracted from the NanoString GeoMx 
NGS processing pipeline (Supplementary Table 11). Quality control was 
done according to the NanoString data analysis manual (MAN-10154-
01) with default parameters as indicated in the manual. For each EVT 
sample, the counts were normalized using one of the manufacturer’s 
recommended approaches for normalizing GeoMx data: dividing all 
genes in each sample by the 75th percentile of expression in that sample, 
followed by multiplication by an identical scaling factor for all samples: 
the geometric mean of all 75th percentiles. This approach eliminates 
differences in counts between samples due to ROI-specific proper-
ties such as size and RNA-binding efficiency. The background due to 
nonspecific binding per sample was approximated with the geometric 
mean of the 100 negative control probes included in the probe mix, 
as recommended by NanoString Technologies. The above-described 
normalization step eliminated the correlation between background 
and ROI size for EVT samples. For artery and decidua samples, nor-
malization was complicated by the fact that the ROI size was tightly 
correlated with SAR stage and therefore biologically meaningful trends 

in the data. This led to the correlation between ROI size and background 
not being entirely eliminated by normalization. We therefore used a 
background subtraction correction technique before normalization 
as recommended in the NanoString Technologies manual for such 
cases. The correction was performed by subtracting the geometric 
mean of negative probes from gene counts on a per-sample basis and 
proceeding with normalization as previously described.

Gene expression in artery as a function of GA and SAR
In brief, for each gene, we performed polynomial regressions of gene 
expression with δ and GA as the independent variables and used regres-
sion P values to determine which genes were trending and the ratio of 
regression R2 values to classify the trends as detailed below.

The NanoString Technologies RNA probes panel contains probes 
for 18,696 transcripts. For this analysis on artery samples, only genes 
with background-subtracted, normalized counts ≥10 in at least two 
arteries were considered. This resulted in 14,471 expressed genes. Each 
artery sample was assigned a remodelling score δ based on the δ of the 
sampled artery in the MIBI data. If several arteries were sampled, the 
assigned δ was the average δ values of the sampled arteries. Endothelial 
loss and SMA loss per sample were calculated similarly based on the 
corresponding MIBI values (Supplementary Table 11). The following 
steps were then performed on artery samples.

For all expressed genes, gene expression as a function of GA was 
defined as the background-subtracted and normalized counts for that 
gene, as a function of the GAs associated with the samples. Similarly, 
expression as a function of SAR for a gene was defined as the per-sample 
background-subtracted and normalized counts of that gene, as a func-
tion of the δ values per sample. A second-degree polynomial regression 
model was then fitted to the two above-described functions. The reason 
for using a second-degree polynomial instead of linear regression was 
to allow the regression models to capture non-monotonic trends in 
gene expression. All regression models were implemented using the 
MATLAB function fitnlm. Expression fold change was defined as the 
ratio between the maximum and the minimum of expression values. 
The centre of mass (COM) of the expression trajectory of a gene as a 
function of t (t being either GA or δ) was defined as the weighted mean of 
t values, where the weights are the expression values at the respective t.

Genes with a P value ≤ 0.05 and fold change ≥2 for either GA or δ 
regression were classified as trending genes. The ratio between R2  
in the two regression models was used to classify trending genes  
as GA-driven, SAR-driven or synchronized. Trending genes with 

R Rlog ( / ) ≥ 1δ2
2

GA
2  and R ≥ 0.05δ

2  were classified as SAR-driven, whereas 
genes with R Rlog ( / ) ≤ 1δ2

2
GA
2  and R ≥ 0.05GA

2  were classified as GA-driven. 
Other trending genes were classified as synchronized (Supplementary 
Table 4).

For visualization only, two fitted expression trajectories (one as a 
function of GA and another as a function of δ) were calculated per gene. 
These fitted expression trajectories were calculated as the values of the 
fitted second-degree polynomial model at five evenly spaced values 
of GA and δ, respectively. To compare fitted expression trajectories 
between genes, they were normalized by Z-scoring their value per gene 
(Fig. 3o).

See Supplementary Information for further details about analysis 
of NanoString data in decidua ROIs.

Coordinated gene expression by pathways in the artery
We set out to find gene pathways with coordinated expression trends 
among our genes of interest: genes trending with δ in arteries. To find 
these coordinated pathways, we first defined the pathways and then 
defined temporal coordination.

To define pathways, we used the R package msigdbr to obtain the 
lists of genes per pathway for the Gene Ontology by Biological Process 
database (7,481 pathways). We then cross-referenced the list of genes for 
each pathway with the genes of interest and discarded pathways with 
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an intersection of fewer than ten genes. For the remaining pathways, 
we examined whether the pathway genes that appeared in the gene set 
of interest exhibited coordination in their expression as function of δ.

A group of coordinated genes was defined as a group of genes for 
which the COMs were significantly closer to each other than one would 
expect at random (see previous section for the definition of COM). 
Using the spread of COMs as a measure for coordination allowed us to 
leverage the raw data rather than fitted gene expression trajectories 
while still maintaining robustness against noise.

To calculate the extent of coordination between a group of N genes, 
we first calculated their median COM, denoted COMmed. Then, their 
COM dispersal was defined as the median of the absolute deviations 
from COMmed for the N genes, denoted CD. To determine whether the 
CD for the gene group, CDgroup, is significantly smaller than expected 
at random, we calculated the randomly expected CD, denoted CDrand. 
This was done by selecting N random genes without replacement and 
calculating their CD, 105 times to estimate the null distribution. The 
random CDrand was then calculated as the median over the CDs for ran-
domized gene sets. The coordination score for our N genes group was 
then defined as log2(CDrand/CDgroup). The P value for the coordination 
score was defined as the number of times a randomized CD was smaller 
than CDgroup, divided by the number of randomizations (105). (1/number 
of randomizations) was then added to all P values to account for the 
finite number of randomizations. q values were calculated using the  
Benjamini and Hochberg method on P values, implemented using  
the MATLAB function mafdr.

The CD, coordination scores, P values and q values were calculated 
as described above for all 7,481 pathways. Pathways with coordina-
tion score ≥ 1.5 and P value ≤ 0.05 were considered to be coordinated  
(Supplementary Table 4).

Ridge regression for predicting GA from immune composition
Ridge regression was implemented using the sklearn Python pack-
age (sklearn.linear_model.Ridge, RidgeCV). Per-image immune fre-
quencies were rescaled to the range 0–1 before model fitting using 
the sklearn scaling function. Images with fewer than ten immune cells 
were excluded (n = 8). A randomly derived test–train split of 30/70 was 
used, and GA distribution was verified to be equally represented in the 
test and train sets (Extended Data Fig. 6a). Ridge regression adds a 
regularization penalty to the loss function to prevent over or under rep-
resentation of correlated variables, such as immune cell populations. 
The penalty used for the test set (0.81) was selected using leave-one-out 
cross-validation on the training set.

Cell–cell and cell–artery spatial enrichment analysis
To identify preferential colocalization of maternal immune cells in 
decidua, we measured the spatial proximity enrichment for all cell-type 
pairs, which evaluates the spatial organization of cell types relative to 
each other, as previously described22–24. Cells located in non-decidual 
feature masks (artery, gland, vessel or cell column masks) were not 
included in this analysis. The distances in pixels between all pairs of 
cells were calculated in each image. The resulting per-image distance 
matrices were binarized with a distance threshold (100 pixels or 39 μm 
in our case), and pairs of cells closer than 100 pixels from each other 
were considered a close interaction. To evaluate the number of close 
interactions between two cell types, this proximity matrix was subset 
column-wise by cell type A and subset row-wise by cell type B. The sum 
of the resulting submatrix quantified the number of close interactions 
between the cells of types A and B. To evaluate the significance of the 
number of close interactions, given the total number of cells in the 
image, tissue architecture and composition across the cohort, and total 
number of cells of types A and B in the image, a bootstrapping approach 
was used. For each of 100 bootstrapping iterations, the location of cells 
of type A was randomized across all cell locations (of any type) in the 
image while their total number was preserved. The number of close 

interactions with cells of type B was calculated for each randomized 
iteration. Repetitions of this process approached a null distribution for 
the number of close interactions between cells A and B. The enrichment 
score for cells A around cells B in the image was then calculated as the 
Z-score of the measured number of close interactions between A and B 
when Z-scored together with the random bootstraps. This analysis was 
extended to incorporate enrichment of cell types around spiral arteries. 
For each cell, the distance to the nearest spiral artery was considered. An 
additional column was added to the proximity matrix described above, 
which thresholded distances between cells and arteries with the same 
100 pixel threshold. The above-described bootstrapping approach 
also provided a null distribution for artery proximity. Tools for this 
analysis were written in Python, with the bootstrapping accelerated 
using Cython. An intuitive, easy-to-use Jupyter Notebook interface 
was created to allow for easy implementation of this algorithm. For 
per-image spatial enrichment scores, see the Data availability state-
ment. The code for this analysis is available at GitHub (https://github.
com/angelolab/ark-analysis).

Cell–cell and cell–artery enrichment temporal trends and 
trending with GA or SAR or constant
For examining cell–cell and cell–artery enrichment within the decidua 
as a function of GA and SAR (Extended Data Figs. 6c and 2c), per-image 
enrichment score matrices E were calculated as described in the previ-
ous section, in which Ei,j is the enrichment score of cell type i around 
cell type j in the image. Enrichment as a function of GA was defined as 
the per-image enrichment, as a function of the GAs associated with the 
images. Similarly, enrichment as a function of SAR was defined as the 
per-image enrichment, as a function of the mean δ values per image.  
We fitted a linear regression model to the two above-described func-
tions. All linear regression models were implemented using the MATLAB 
function fitlm. R2 and P values for all δ-based and GA-based regressions 
are provided in Supplementary Table 3. The ratio between R2 in the two 
regression models was used to classify trends as GA-driven, SAR-driven 
or synchronized like in Fig. 3n. Extended Data Fig. 6c only shows points 
for which regression R2 ≥ 0.05, P value ≤ 0.05, maximal absolute value of 
linear fit ≥ 2. Trends including muscle, fibroblast, myofibroblast, glan-
dular, other and endothelial cells were not considered in this analysis. 
For determining trend sizes, the following calculation was used: denote 
the linear fit to per-image enrichment scores as V, and the correspond-
ing per-image temporal stamps (either GA or mean image δ) as X. Trend 
size is then calculated as (V(max(X)) – V(min(X))).

To determine whether two cell types were significantly enriched 
around each other throughout the cohort, we averaged their pairwise 
enrichment over all images. The pair was considered enriched if the 
absolute value of mean enrichment was ≥2 (Supplementary Table 3).

In Extended Data Fig. 6c, the following cell–cell enrichments were not 
plotted for clarity: enrichment of a cell type around itself (for example, 
Treg cells around Treg cells); enrichments including muscle, fibroblast, 
myofibroblast, glandular, other and endothelial cell types; enrichment 
trends that are SAR-driven.

Functional marker positivity rate per cell type as a function of 
GA and SAR
For examining cell-type-specific temporal trends in the expression of 
functional markers (Fig. 5a), 48 combinations of cell-type functional 
marker were selected. The selected combinations were those for which 
the positivity frequency Z-score exceeded 0.5 (Fig. 2a, right). For each 
of these combinations, the frequency of cells positive for the functional 
marker was calculated as the number of cells positive for the marker 
(see the methods section ‘Definition of thresholds for functional marker 
positivity’) out of the total number of cells of the same cell type in the 
image. All cells except those located within the cell column mask were 
included to focus the analysis on functional marker trends of maternal 
cells and EVTs that had infiltrated the decidua. For glandular cells, the 
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location was further restricted to the glands mask. The frequency of 
cells positive for a functional marker as a function of GA, for a cell type, 
was defined as the per-image positivity proportion values as a function 
of the GAs associated with the images. Similarly, marker positivity 
frequency as a function of SAR for a cell type was defined as the per- 
image proportions of that cell type positive for the marker, as a func-
tion of the mean δ values per image. For the volcano plot in Fig. 5a, we 
fitted a linear regression model to the two above-described functions. 
All linear regression models were implemented using the MATLAB  
function fitlm, and the volcano plot only shows points for which regres-
sion R2 > 0.05. R2 and P values for all δ-based and GA-based regressions 
are provided in Supplementary Table 10. For determining trend  
sizes depicted in Fig. 5a, the following calculation was used: denote 
the linear fit to the per-image marker positivity proportion of a  
cell type as V, and the corresponding per-image temporal stamps  
(either GA or mean image δ) as X. Trend size is then calculated as the  
difference between the first and last time point in units of the mean: 
V V X

V
(max(X)) − (min( ))

mean( )
.

Cellular microenvironments
For each cell in the dataset, we defined a ‘neighbourhood’ consisting 
of its 25 closest neighbouring cells, as measured by Euclidean distance 
between x/y centroids, excluding cells that were not in the decidua (that 
is, cells that overlapped with any artery, gland, anchoring villous or ves-
sel feature masks). We clustered these cellular neighbourhoods on the 
basis of their composition of the 26 cell populations as identified previ-
ously using FlowSOM. For clustering, we used the scikit-learn imple-
mentation of k-means algorithm with k = 20 to identify neighbourhoods 
characterized by the presence of rare cell populations. Selected clusters 
were merged on the basis of similarity when hierarchically clustered, a 
threshold of 0.5 when comparing Euclidean distances between k-means 
cluster centroids and manual inspection of the cluster assignment 
when overlaid on the images. Based on these approaches, we defined 
12 distinct decidual cellular microenvironments, 10 of which are shown 
in Fig. 5f (microenvironments characterized by predominantly stromal 
cell populations, fibroblasts (3 in Supplementary Table 12) and myofi-
broblasts (6 in Supplementary Table 12) are not shown in the heatmap).

Definition of anatomical EVT location and associated arteries
Cell column EVTs were defined as EVTs located within cell column 
masks, intravascular EVTs were located within artery masks, and 
interstitial EVTs were located in the decidua. Perivascular EVTs were 
defined as interstitial EVTs located within 50 pixels of the edge of an 
artery, as defined by the radial expansion of the artery masks (Extended 
Data Fig. 7b). Arteries were said to have perivascular or intravascular 
EVTs (Fig. 6d and Extended Data Fig. 7e,f) if the number of EVTs in the 
appropriate artery compartment was >5.

SMA and endothelium-loss scores
The loss scores presented in Extended Data Fig. 7e,f were based on 
digitized morphological features. For SMA, the average feature was 
used, whereas for endothelium, the radial coverage of CD31 was used 
(see methods section ‘Automated digitization of artery morphological 
features’). The values for each of the two features were then divided by 
their maximum across arteries and subtracted from 1 to obtain a loss 
score. The resulting values were then linearly rescaled to the range 0–1 
using the MATLAB function rescale.

Characterization of EVTs by compartment
To further characterize EVT composition per spatial compartment (cell 
column, interstitial, perivascular or intravascular), we first quantified 
EVT-subtype frequency per compartment. One image was excluded 
(16_31762_20_8) owing to abnormal tissue morphology (Extended 
Data Fig. 8a). We then compared the distance from the nearest artery 
between EVT subtypes (Extended Data Fig. 8b). For this analysis, only 

images that contained all four EVT types were considered, and the 
cell-to-artery distance was measured from the cell centroid as detected 
by segmentation to the closest point on the border of the artery mask.

We then set out to assess the extent of similarity between EVTs by 
compartment in terms of expression of functional markers. For this 
analysis we used a LDA based method, similarly to our calculation of the 
continuous SAR remodelling score δ for compartment-wise analysis of 
EVT types. The input table for LDA consisted of MIBI-measured marker 
expression values per EVT. The following lineage and functional mark-
ers expressed by EVTs were included: CD56, CD57, HLA-G, CK7, PD-L1 
and Ki67. EVTs were labelled by spatial compartment as cell column, 
interstitial, perivascular or intravascular. Marker expression values 
were standardized (mean subtracted and divided by the standard devia-
tion), and cell column, interstitial and intravascular location labels 
per EVT were used for training the LDA model. Perivascular EVTs were 
withheld as a test set. Owing to the small number or features (markers), 
a one-dimensional LDA was calculated to produce a single coordinate, 
LD1. LD1 was the optimal linear combination of a subset of markers 
to maximize the separation by compartment between EVTs (Supple-
mentary Table 14). LD1 values were subsequently calculated for the 
withheld test set of perivascular EVTs (Supplementary Table 14). The 
distributions of LD1 values per compartment indicated that perivascu-
lar EVTs are similar to interstitial and intravascular EVTs, with a median 
value between the two (Extended Data Fig. 8c). This result implies that 
perivascular EVTs could be an intermediate state between interstitial 
and intravascular, in line with the intravasation model whereby inter-
stitial EVTs invade the artery lumen.

Origin of CD56+ EVTs in the intravascular compartment
The frequency of CD56+ EVTs was highest in the intravascular compart-
ment (Extended Data Fig. 8a). Furthermore, the frequency of CD56+ 
EVTs increased with SAR both in the perivascular and intravascular 
compartment (Extended Data Fig. 8d,e). However, the increase in 
the intravascular compartment was steeper (Extended Data Fig. 8f). 
We set out to test whether this was compatible with intravasation 
whereby the source for intravascular EVTs is perivascular EVTs or 
whether additional sources of intravascular CD56+ EVTs were needed 
to account for their increase. These alternative sources could be cell 
proliferation or extravasation, whereby EVTs migrate in a retrograde 
manner after entering spiral arteries directly at the basal plate. Under 
the intravasation model, the steep increase in CD56+ EVTs between 
the perivascular and intravascular compartments would be explained 
by CD56 upregulation upon arterial invasion. We proposed that this 
should involve an intermediate state of perivascular EVTs defined by 
moderate levels of CD56. To test this hypothesis, we compared the 
average CD56 intensity of perivascular and intravascular EVT1a and 
EVT1b cells for each artery (for arteries that initiated remodelling: 
δ ≥ 2). This analysis detected a significant increase in CD56 expression 
between the perivascular and intravascular compartment by EVT1a 
and EVT1b cells (sided Wilcoxon signed rank test P value = 5 × 10−3; 
Extended Data Fig. 8g). An alternative explanation for the increasing 
frequency of CD56+ EVT1c cells within arteries could be proliferation. 
However, only 0.5% of intravascular EVT1c cells were Ki67+, a lower 
frequency than 9.6% and 1.8% for intravascular EVT1a and EVT1b cells, 
respectively, which suggested that proliferation is not a primary con-
tributor (Extended Data Fig. 8h).

DEGs in EVTs
DEGs between intravascular and interstitial EVTs were identified using 
the Bioconductor package limma65 (linear models for microarray 
data) after consulting with the NanoString statistics team. Using the 
default parameters in limma on 75th percentile normalized counts, 
131 upregulated genes and 143 downregulated genes were found 
(false-discovery rate cutoff = 0.1, log fold change cutoff = 2). Genes 
with log fold change ≥ 2.3 or ≤ 2.3 and adjusted P value ≤ 0.05 are 
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shown in the heatmap in Fig. 6f. A complete list of DEGs is shown 
in Extended Data Fig. 9 and Supplementary Table 11. For IHC vali-
dation of differential expression for selected genes, see Extended 
Data Fig. 10a.

NicheNet analysis
We used the NicheNet R package to predict ligand–receptor interactions 
between intravascular EVTs and arteries. The analysis was performed 
by following the vignette available at GitHub (https://github.com/saey-
slab/nichenetr/blob/master/vignettes/ligand_activity_geneset.md).

NicheNet requires three input gene lists to predict ligands in sender 
cells that are likely to interact with receptors in receiver cells and by 
doing so affect the expression of a set of genes of interest. These three 
gene lists are: genes of interest, genes expressed in sender cells and 
genes expressed in receiver cells.

For our analysis, we wanted to check which ligands expressed in 
intravascular EVTs are likely to be causing temporal gene expression 
trends with remodelling in arteries. To do so, we defined the genes of 
interest as all genes trending with remodelling in arteries (Fig. 3o). The 
genes expressed in receiver cells were defined as all genes expressed 
in arteries (see previous sections for the definition of ‘expressed’), and 
genes expressed in sender cells were defined as genes differentially 
expressed between interstitial and intravascular EVTs and higher in 
intravascular EVTs (Supplementary Table 11). NicheNet analysis was 
performed as described in the vignette to prioritize ligands and to 
infer corresponding receptors and downstream targets (Extended 
Data Fig. 10b). The inferred targets were manually classified according 
to their known function using the Gene Cards database (https://www.
genecards.org) and survey of the literature. A list of references for all 
classifications are provided in Supplementary Table 5.

Statistical analyses
Throughout the paper, unless indicated otherwise, the Kruskal– 
Wallis test was used. It was implemented using the MATLAB function 
KruskalWallis. All linear regression models were implemented using 
the MATLAB function fitlm unless stated otherwise. The sided Wilcoxon 
signed-rank test for paired analysis was implemented using the MATLAB 
function signrank. MATLAB v.2020b was used throughout the article 
for statistical analysis.

Ethics statement
All human samples were acquired and all experiments were approved by 
Institutional Review Board protocol number 46646 “Assessing normal 
expression patterns of immune and non-immune markers across tissue 
types with multiplexed ion beam imaging” at Stanford University. Per 
this protocol from the Institutional Review Board at Stanford University, 
the consent to use archival deidentified tissue was not required. All 
experiments followed all relevant guidelines and regulations.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
MIBI data are available at the Human BioMolecular Atlas Program 
(https://doi.org/10.35079/hbm585.qpdv.454). The same MIBI data 
in a browsable format, along with segmentation masks, extracted 
features, cell phenotype masks (CPMs), cell–cell and cell–artery 
spatial-enrichment scores per image, a table enumerating all single 
cells in this study and provides their location, morphological charac-
teristics (such as size and shape), marker expression, FlowSOM clus-
ter assignment and cell-type assignment, are available at FigShare 
(https://doi.org/10.6084/m9.figshare.16663465). H&E images of 

tissue blocks from the cohort with annotations are available at Dryad  
(https://doi.org/10.5061/dryad.v15dv41zp). The following public 
databases were used in this study (see Methods for details): the Gene 
Ontology Biological Process database (http://geneontology.org/) and 
the Gene Cards database (https://www.genecards.org/). Source data 
are provided with this paper.

Code availability
The following software were used for analysis in the article: ImageJ, 
MAUI (https://github.com/angelolab/MAUI) for low-level image pro-
cessing; DeepCell v.0.5.0 (https://deepcell.readthedocs.io/en/master/
index.html) for cell segmentation; Ark Analysis for cell–cell spatial 
enrichment (https://github.com/angelolab/ark-analysis); and QuPath 
(v.0.4.0) for two-colour IHC analysis. Custom code for this study is 
available at FigShare (https://doi.org/10.6084/m9.figshare.16663465).
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Extended Data Fig. 1 | Representative H&E and MIBI images for cell 
phenotyping. a. Serial sections with cell phenotype maps. Each cell colored by 
its phenotype assignment for GAs: 6, 12, 20 weeks. VIM, vimentin; SMA, smooth 

muscle actin; Placental Mac, Placental Macrophage; MyoFib, Myofibroblast. 
Representative images of n = 55 FOVs (6 weeks), n = 12 FOVs (12 weeks), n = 33 
FOVs (20 weeks). Scale bar, 100 µm.
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Extended Data Fig. 2 | Validation of CD57+ NK2 population. a. Bar plot of 
double positive cells (CD57+CD49a+) percent out of CD57+ cells per patient.  
b. Representative examples of double positive (CD57+CD49a+, left) and single 
positive (CD57+CD49a-, right) staining using dual color IHC for CD57 and CD49a 
on decidua samples, 595 cells in total. Representative images of n = 574 double 
positive cells and n = 21 single positive cells. Scale bar, 20 µm. c. Pairwise 

enrichment between NK2 cells and arteries. Left: mean enrichment per image 
by δ, n = 209 images. Red line – fitted linear regression, regression p-value. 
Right: Violin plot of NK2-artery enrichment scores by early (1 ≤ δ < 3) and late  
(3 ≤ δ < 5) remodeling stage. p-value Kruskal-Wallis. Early: n = 108, min = −3.6, 
max= 7.07, center = 0.13; Late: n = 15, min = −1.77, max=0.41, center = −0.45.
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Extended Data Fig. 4 | SAR trajectory. a. Scatter of arteries in LDA space 
colored by manually-assigned stage. Polynomial fit: remodeling trajectory. 
Inset: matching each artery point ai to the SAR trajectory by finding the nearest 
point along trajectory bi. The continuous SAR score δ was then defined as the 
distance from origin x0 to bi along the trajectory curve. b. Scatter plot of arteries 

in LDA space colored by δ. c. Violins of artery δs by manual stage d,e. Scatter 
plots by δ (left) and GA (right) of EVT frequency out of all cells (d), macrophage 
frequency out of immune cells (e) Red lines, fitted linear regression, regression 
p-values on top.
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Extended Data Fig. 5 | SAR-trending GO pathways. a. 3 SAR (δ)-trending GO pathways, showing normalized expression of genes in the pathway by SAR (δ): mean 
over genes +/− SEM.
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Extended Data Fig. 6 | Ridge regression for predicting GA. a. Distribution  
of GA (in days) across the whole dataset, training (70%) set, and test (30%) set.  
b. Predicted versus actual δ for ridge regression trained on GA-associated 
immune features, for the withheld test set (30%). Line; best fit, shaded region;  
1 SD. c. Pairwise spatial enrichment relationships, including: temporally 

coordinated with GA and GA/SAR synchronized. Trend size color coded: red 
indicates increasing spatial pairwise enrichment, blue indicates decreasing 
enrichment. Arrow length represents mean spatial enrichment (Z-score) across 
the entire dataset. Node size represents its number of pairwise relationships.



Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | EVT distribution. a. Two hypotheses for intravascular 
EVT invasion. (Left) Intravasation: orange arrows indicate movements of EVTs 
from the cell column of the anchoring villi into the decidua and through the  
wall of the artery into the lumen. (Right) Extravasation: red arrows indicate 
movement of EVTs from the fetal villi through the intervillous space into the 
artery. b. Anatomical locations of EVT populations in the decidua. c. Distribution 
of artery δs, based on the presence of perivascular and/or intravascular EVTs. 
[Violins left to right] min = 1, max = 2.65, center = 1.7; min = 1.19, max = 3, 
center = 1.84; min = 1.77, max = 5, center = 3.2; min = 1.6, max = 4.5, center = 2.4. 

d. Scatter plot of log2(Intravascular/Perivascular) ratio by δ, for arteries with 
both perivascular and intravascular EVTs present. Black line, fitted linear 
regression. Regression p-value on top. e. Percentage of arteries with ≤ a given 
SMA loss (s) threshold, by perivascular or intravascular EVTs present. Arteries 
were considered to have perivascular or intravascular EVT if the number of  
EVT in the appropriate compartment was ≥ 5. f. Percentage of arteries with 
scores ≤ a given endothelial loss (e) threshold, by perivascular or intravascular 
EVTs present. Arteries were considered to have perivascular or intravascular 
EVT if the number of EVT in the appropriate artery compartment was ≥ 5.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | EVT Phenotype by Location. a. Frequency of EVT 
populations by anatomical location. b. Violin plot of distance from artery  
(in pixels) by EVT type. EVT1c: N = 209, min = 12.8, max = 1536.7, center (median) = 
173.9; EVT1a: N = 7123, min = 10, max = 2028.7, center = 363.6; EVT1b: N = 5908, 
min = 7.2, max = 1989.5, center = 376.45; EVT1c: N = 185, min= 9.4, max. = 1818.1, 
center = 475.6. c. Violin plot of the distribution of LD1 for EVTs, by anatomical 
location. Center lines inside violins indicate mean. Anchoring: N = 8906,  
min = −3.6, max = 3.9, center = −1; Interstitial: N = 38395, min = −3.4, max = 4.4, 
center = 0; Perivascular: N = 1097, min = −3.14, max = 4, center = 0.08; 

Intravascular: N=4040, min = −3.15, max = 4.6, center = 2. d-h: d,e Scatter plots 
of perivascular (d) and intravascular (e) EVT1c (CD56+) frequency by δ. Red 
lines, fitted linear regression, regression p-values on top. f. Bar plot of the 
EVT1c frequency increase rates (regression slopes from d,e). Error bars, 95% 
confidence interval for regression slopes. g. Paired-by-artery CD56 expression 
in EVT1a&b, between perivascular and intravascular compartments. Arteries 
with δ ≥ 2 included. p = 5e-03, one sided paired Wilcoxon signed rank test, 
z-statistic = 2.5 h. Proportion of Ki67+ intravascular EVT by type.
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Extended Data Fig. 9 | Differential gene in EVT. a. Full heatmap for differentially expressed genes between intravascular and interstitial EVTs showing gene 
expression (Z-score), (logFC > 2, adj p-value <0.05 using Limma).
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Extended Data Fig. 10 | EVT- artery interactions. a. IHC validation on decidua 
serial sections for protein counterparts for 3 differentially expressed genes 
(JAG1, C5ORF30, and EBI3) with controls: HLA-G, CD56, and H&E. 1 section  
per marker. Scale bar, 100 µm. b. Full NicheNet output: 10 EVT-ligands best 

predicting receivers expressed in arteries, ranked by Pearson correlation 
coefficient or the EVT ligand activity ranking metric. Genes differentially 
expressed in Preeclamptic decidua samples indicated in red.
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were used in this study (see Methods for details): Biological Process (GO-BP) database (http://geneontology.org/), “Gene Cards” database (https://
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Sample size Cohort consisted of archival tissue from the decidua of 71 patients. While no statistical methods were used to determine cohort size, this is 
the largest to date cohort used for the study of the human maternal-fetal interface and is therefore sufficient.

Data exclusions Patient samples were screened by a pathologist and samples not containing decidua were excluded. Exclusion criteria of not including non 
decidual samples were pre-established and 66 patients remained after exclusion. 

Replication Experimental findings were based on 66 patients, several images were generated per patient.
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Antibodies
Antibodies used Study used 38 primary antibodies. See Supplemental data table 9 for all requested information about each reagent including the 

precise working concentration used (called "Titer"). 

Validation All reagents were validated in-house with chromogenic immunohistochemistry on FFPE human control tissue. Following this stage of 
validation all antobodies were metal-labeled and further tested with MIBI-TOF. Imaging data for all antibodies in control tissues can 
be found in Extended Data Figure 1. 

Human research participants
Policy information about studies involving human research participants

Population characteristics Study did not directly involve human participants, but used archival cloinical specimens from the decudua of 66 patients who 
underwent elective pregnancy termination between 6-20 weeks gestation at San Francisco General Hospital. Patients were 
aged  20-39, with parity of 0-4, racially diverse (While, Hispanic, Asian, Black) and with BMI ranging 19-48. Additional 
information about the patients appears in Supplementary table 1. 

Recruitment No participants were recruited, archival tissue was used. Per protocol #46646 from Stanford IRB board, consent to use 
archival deidentified tissue was not required

Ethics oversight All human samples were acquired in accordance with Institutional Review Board (IRB) protocol #46646 "Assessing Normal 
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