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Beginninginthe first trimester, fetally derived extravillous trophoblasts (EVTs) invade
the uterus and remodelits spiral arteries, transforming them into large, dilated blood
vessels. Several mechanisms have been proposed to explain how EVTs coordinate
with the maternal decidua to promote a tissue microenvironment conducive to spiral
artery remodelling (SAR)' 3. However, it remains a matter of debate regarding which
immune and stromal cells participate in these interactions and how this evolves with
respect to gestational age. Here we used a multiomics approach, combining the
strengths of spatial proteomics and transcriptomics, to construct a spatiotemporal
atlas of the human maternal-fetal interface in the first half of pregnancy. We used
multiplexed ion beam imaging by time-of-flight and a 37-plex antibody panel to analyse
around 500,000 cells and 588 arteries within intact decidua from 66 individuals
between 6 and 20 weeks of gestation, integrating this dataset with co-registered
transcriptomics profiles. Gestational age substantially influenced the frequency

of maternalimmune and stromal cells, with tolerogenic subsets expressing CD206,
CD163, TIM-3, galectin-9 and IDO-1becoming increasingly enriched and colocalized
atlater time points. By contrast, SAR progression preferentially correlated withEVT
invasion and was transcriptionally defined by 78 gene ontology pathways exhibiting

distinct monotonic and biphasic trends. Last, we developed an integrated model
of SAR whereby invasion is accompanied by the upregulation of pro-angiogenic,
immunoregulatory EVT programmes that promote interactions with the vascular
endothelium while avoiding the activation of maternal immune cells.

Normal development during healthy pregnancy depends on a com-
plexinterplay between maternal cells and placental trophoblasts that
ultimately transforms the womb into a specialized niche capable of
meeting the metabolic demands of a growing semi-allogeneic fetus
while maintaining maternal tolerance* After implantation, the decidua
isinvaded by EVTs. EVTs and maternal cells remodel uterine spiral
arteriesinto highly dilated vessels with minimal smooth muscle where
EVTs have partially replaced the maternal endothelium®. In healthy
pregnancies, SAR results in low-resistance vessels that deliver blood
totheintervillous space at low flow velocities that prevent damage to
the placental architecture®*. Conversely, impaired SAR, low numbers
oftolerogenic maternal cells and abnormal decidual invasion of EVTs
have each been implicated in placenta-related obstetric complica-
tions, including preeclampsia, intrauterine growth restriction and
pretermbirth’. Therefore, a detailed investigation of the cell population

dynamics at the maternal-fetal interface is key to understanding the
biology of normal pregnancy and obstetric complications.

Owing to the poor feasibility of controlled studies in pregnant
humans, much of what is known about maternal-fetal tolerance
and SAR is based on small-animal models®. Although some similari-
ties exist, key facets of haemochorial placentation in humans are
primate-specific’. For example, EVT giant cells in mice do not replace
the vascular endothelium and are thought to play aminor partin SAR
compared to maternal uterine natural killer (NK) cells®. The extensive
degree of EVT invasionin humans s thought to be an evolutionary adap-
tation that permitted upright, bipedal locomotion while maintaining
adequate blood flow in the third trimester when brain development
accounts for 60% of fetal metabolic needs’.

The study of human decidual remodelling is further complicated by
additional inherent challenges. First, cell composition and structure
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are temporally dynamic. Therefore, aggregating data across differ-
ent gestational ages (GAs) or observing a single time point may be
misleading. Second, these dynamics are spatially coordinated in the
local tissue microenvironment. For example, periarterial decidual NK
cells are thought to contribute to SAR by initiating smooth muscle
breakdown and by secreting chemokines that attract invading EVTs,
whereas phagocytic macrophages are thought to facilitate clearance
of the resultant apoptotic debris'®. Overall, the formation of the human
maternal-fetal interface involves sophisticated spatiotemporal coor-
dinationsuch that tissue composition, structure and function are inex-
tricably coupled.

Withthisin mind, we constructed amultimodal spatiotemporal atlas
of the human maternal-fetal interface. We leveraged archival tissue
banks to assemble a cohort of maternal decidua from 66 women who
underwent elective terminations of otherwise healthy pregnancies
at 6-20 weeks of gestation, constituting a large single-cell study of
the maternal-fetal interface. We performed subcellularimaging with
multiplexed ion beam imaging by time-of-flight (MIBI-TOF)" using a
37-plex antibody panel designed to identify the location, lineage and
function of all major maternal and fetal cells.

Wealso profiled the transcriptome of arteries, deciduaand EVTs. To
understand how SAR relates to local decidual composition, we devel-
oped new algorithms to quantify vascular morphology that enabled us
to assign aremodelling score to each individual artery. We discerned
which changes in decidual composition, transcriptome and structure
were preferentially driven by GA, SAR or both. Overall, the frequencies
and spatial distribution of maternal immune cells exhibited a strong
temporal dependence thatenabled us to predict GA exclusively onthe
basis of these features.

By contrast, EVT invasion and perivascular localization were the
dominant drivers of SAR in the tissue microenvironment, and these
processes correlated with extensive shifts in arterial transcription.
Given these findings, we used our atlas to characterize the temporal
nature of intravascular EVT invasion in the decidua basalis. The accu-
mulation of perivascular EVTs around arteries preceded smooth muscle
loss and the appearance of intravascular EVTs, whichis consistent with
amodel whereby perivascular EVTsintravasateintotheartery lumen.
Taken together, these investigations support a cooperative interplay
inthe first half of pregnancy in which temporally dependent changes
in decidual function permit placental EVTs to extensively alter the
maternal uterine vasculature.

Multiplexed imaging of the decidua

As part ofthe Human BioMolecular Atlas Programinitiative, we created
aspatiotemporaltissue atlas of the human maternal-fetal interfacein
the first 20 weeks of pregnancy (Fig. 1a). The goal of this study was to
comprehensively define the structure and composition of deciduaand
tounderstand howit evolvesinthe first two trimesters with respect to
two axes: GA and maternal SAR. We first assembled a large retrospec-
tive cohort of archival formalin-fixed, paraffin-embedded placenta
and decidua tissue from 66 individuals who underwent elective ter-
mination of pregnancies with no known fetal abnormalities. Archival
tissue blocks were manually screened by a perinatal pathologist. Tissue
sections stained with haematoxylin and eosin (H&E) were analysed to
determine which samples contained decidua, and mostly regions that
contained anchoring villiwere selected. Then, regions of decidua that
contained spiral arteries were demarcated, cored and assembled into
two tissue microarrays (TMAs) of 1l mmand 1.5 mmcores. The final data-
set included samples for 6-20 weeks of gestation (13.72 + 4.8 weeks,
mean +SD) from 66 women of varying parity (1.45 +1.72), age (28.17 £ 5.9
years), body-mass index (28.19 + 7.3 kg m) and ethnicity (Fig. 1b-e
and Supplementary Table1). Owing toinherentlimitationsin how the
tissue was procured, precise anatomical locations could not be deter-
mined. However, 61 out of 66 tissue blocks contained placental villi,
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whichsuggested that the majority of this cohort was sampled from the
deciduabasalis (Supplementary Table 1and Methods).

Previous studies of intact tissue that examined only one or afew cell
populations atatime reported shiftsin maternalimmune cells towards
tolerogenic states that are permissive to invasion by fetal EVTs™. To
gain amore complete picture of the complex cell-cell interactions
that establish maternal tolerance in the first half of pregnancy, we
combined the strengths of targeted subcellular imaging with anti-
bodies and spatial transcriptomics on serial co-registered sections
to construct a comprehensive composite model of SAR and decidual
remodelling (Fig. 1f).

For MIBI-TOF, we designed and validated a 37-plex antibody panelto
map the functional state and location of all major maternal and fetal
cell populations (Fig. 1f and Methods). This panel included canoni-
cal lineage-defining markers and ten functional markers previously
implicated in maternalimmune tolerance®® (Fig. If).

For spatial transcriptomics, we used the NanoString GeoMx Digital
Spatial Profiler (DSP) for whole transcriptome analysis of arteries,
EVTs and decidua. Immunofluorescence imaging of TMAs stained
with antibodies for HLA-G, vimentin (VIM) and smooth muscle actin
(SMA) were used to define regions of interest (ROIs) specific for each
of these histological features (Methods). In total, we collected whole
transcriptome datafrom13individual arteries, their adjacent decidua,
5samples of interstitial and 3 samples of intravascular EVTs (19 cores
from17 individuals; Methods).

For cell segmentation, we used an optimized version of our previously
validated deep-learning pipeline that was refined for decidua-specific
cell types using 93,000 manual annotations (Methods). In total, we
identified 495,349 segmented cells across 211 images and classified
them into 25 cell populations (Fig. 2a,b, Methods and Extended Data
Fig.1). Functional marker expression in these populations was deter-
mined using per-marker thresholds (Methods). Noteworthy histo-
logicalfeatures—suchasarteries, vessels, glands, the cell columns and
decidual tissue boundaries—were manually annotated in collaboration
with a perinatal pathologist.

Non-immune maternal (structural) cells accounted for the majority
(56.3%) of all segmented eventsin the decidua and were predominantly
composed of decidual fibroblasts (60.5%) and myofibroblasts (24.8%),
with smaller contributions from vascular endothelial cells (7.6%) and
glandular epithelial cells (7.1%; Fig. 2b). Notably, we observed a new,
rare subset of TIGIT" glandular cells (0.34% of glandular cells; Supple-
mentary Information). Consistent with previous work' that quantified
maternal populations in situ, maternal immune cells (31% of all cells)
were dominated by macrophages (47.6% ofimmune cells) and NK cells
(42.6% of immune cells), with minor contributions from T cells (8% of
immune cells), dendritic cells (1.3% of immune cells) and mast cells
(0.5% of immune cells).

Decidual macrophages ubiquitously expressed both CD163 and
CD206, whichis consistent witha M2-polarized, tolerogenic phenotype
(Fig. 2g). In line with previous work" that showed pregnancy-specific
recruitment, 77% of these cells expressed DC-SIGN (Fig. 2a). We further
classified DC-SIGN" macrophages into three subsets on the basis of
CD11c and HLA-DR expression: Mac2a, Mac2b and Mac2c. DC-SIGN™
macrophages (Macla and Maclb) were subclustered on the basis of
CDé68 expression (Fig. 2a,b).

Four subsets of NK cells (NK1, NK2, NK3 and NK4) were classified on
the basis of the combinatorial expression of CD57, CD11cand CD8. NK1
cells (CD57°CD16'*) constituted the largest NK cell population pre-
sent, making up 59.7% of NK cells (Fig. 2a,b). Anew CD57* population of
decidual NK cells (NK2,25.8% of NK cells) that had only been previously
identified in peripheral blood during pregnancy'® was also identified.
Moreover, most of this population expressed the tissue-residency
marker CD49a (94.2%; Extended Data Fig. 2a,b). As described below,
the frequency and spatial distribution of NK2 cells suggests that they
play adistinct role in SAR (Extended Data Fig. 2c).
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Fig.1|Study design and workflow. a, Diagram of ahuman embryoin utero at

6 weeks of gestation. Left, the maternal-fetal interface consisting of decidua
basalis (purple) with maternal spiral arteries (light pink) and fetal chorionic villi
intheintervillousspace (bottomright corner). Middle and right, early-stage

(6 weeks) unremodelled spiralartery and progression to late-stage (20 weeks)
remodelled artery and anchoring fetal villi. b, Cohort parity distribution.

T cells consisted of CD8" cells (53.2% of T cells), NK T (NKT) cells
(28.8% of T cells), CD4" cells (17.1% of T cells) and sparse numbers of
regulatory T (T,,,) cells (Fig. 2a,b). We identified a PD-1"-activated popu-
lation of T, cells with a TIM-3"LCK" subset that accounted for >50%
of this population (Fig. 2a,b). Notably, both T, cells and NKT cells
were the most proliferative cell populations. Together with CD8" NK
cells, T,., cells and NKT cells expressed granzyme B more frequently
than any other cell type. TIGIT was most frequently expressed by T,.,
cells—arare subset that has been suggested to bind PVR (also known
as CD155) on EVTs* This interaction has been observed in the tumour
microenvironment'® and may serve asimilar role in driving maternal-
fetal tolerance.

Fetal cells (12.6% of all cells) were primarily composed of four sub-
sets of EVTs that were delineated on the basis of the combinatorial
expression of HLA-G, CK7, CD57 and CD56 (Fig. 2a). HLA-G" EVTs were
CK7"(EVTI1a), CK7 (EVTIb) or CD56" (EVTIc) (Fig. 2c-f). EVT2 lacked
HLA-G and were CD57 CK7"°" and were located predominantly at the
base of attaching cell columns. Taken together, these data provide
spatial context to previous work that used dissociated samples™?’;
thatis, an ensemble of functional states in fetal and maternal cells are
collectively aligned to maintain a tolerogenic niche.

c,Cohortagedistribution.d, Cohortdistribution of body-massindex. e, Cohort
ethnicity distribution. f, TMA construction and serial sections for multiomics
workflow. Top, antibody panel, MIBl acquisition and spatial proteomics data
extraction. Bottom, morphology marker paneland probe diagram, NanoString
DSPROIlselection and spatial transcriptomics dataextraction. The schematics
infwere created using BioRender (https://biorender.com).

SAR correlates with local composition

Perfusion of the intervillous space by uterine spiral arteries is the sole
source of oxygen and nutrients to the growing fetus after the establish-
ment of arterial flow. During the first half of pregnancy, these vessels
undergo an extensive remodelling process that culminatesin dilated,
non-contractile vessels depleted of smooth muscle where the maternal
endotheliumhasbeen partially replaced by EVTs. Abnormal SAR is asso-
ciated with obstetric complications such asintrauterine growth restric-
tion and preeclampsia’. However, it is still not fully understood which
cell populations directly participate in SAR, how this process is locally
regulated and to what extent these changes are synchronized with GA.

We therefore used our spatiotemporal atlas to construct a SAR tra-
jectory tounderstand how this relates to temporal changesin decidua
composition andstructure?. Using artery size, smooth muscle disrup-
tion, endothelial continuity and EVT infiltration, we manually assigned
eachartery toone of five sequential remodelling stages on the basis of
previously published criteria (Methods and Fig. 3a). To ensure that scor-
ing was not biased by demographics of the individuals or the composi-
tion of neighbouring arteries and stroma, scoring was performed by
blinded experts on cropped imagesinwhich only the artery of interest
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was visible. Out of 588 arteries, 186 were unremodelled and assigned
to stage 1 (Fig. 3b,c). Stage 2 arteries (300 arteries) were character-
ized by moderate smooth muscle disruption and endothelial swelling
(Fig.3d,e). Stage 3 arteries (43 arteries) exhibited more dilation, smooth
muscle loss and early endothelial disruption (Fig. 3f,g). Progression
tostage 4 (34 arteries) was marked by the presence of EVTs within the
arterial lumen (Fig. 3h,i). Fully remodelled stage 5arteries (25 arteries)
were identified on the basis of their very large size, near-complete
smooth muscleloss and EVT endothelization (Fig. 3j,k, Extended Data
Fig.3aand Supplementary Table 2).

Although SAR correlated to some extent with GA (Spearman’s
p=0.28, P=1.5x107"), in many cases these were discordant. For
example, at least one late-stage artery (stage 4-5) was present in 40%
of week 8 samples, whereas minimally remodelled arteries were pre-
sent throughout (Fig. 31). Moreover, SAR staging of arteries from the
same individual often varied significantly between tissue cores (32%
of individuals had arteries that differed by at least two stages), which
suggested that aspects of SAR are locally regulated by the tissue micro-
environment (Fig. 31 and Extended Data Fig. 3b).
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We exploited this discordance between SAR and GA to identify
changes in decidual composition that were predominantly driven by
one or the other. We first developed a quantitative scheme to assigna
continuous remodelling score. For each artery, we extracted 35 param-
eters that described the same aspects of arterial morphology used
for manual scoring (Fig. 3m, Methods and Extended Data Fig. 3¢c,d).
Together withmanual staging, we used this profile to construct a highly
resolved pseudotime trajectory of SAR using linear discriminant analy-
sis (LDA). This trajectory assigned a continuous remodelling score to
eachartery () (Fig. 3mand Methods). Thus, each artery in our dataset
couldbe mapped along atemporal or remodelling trajectory using GA
or ¢, respectively (Extended Data Fig. 4a-c).

Applying linear regression to these values per image, we deter-
mined which aspects of decidual remodelling were preferentially cor-
related with GA or SAR (Methods and Extended Data Fig. 4d,e). The
frequency of decidual EVTs was better correlated with SAR, whereas
changes in the proportion of maternal immune cells were mostly
driven by GA (Fig. 3n). A notable exception to the latter correlation
was observed within the NK cell compartment, in which the ratio of



Stage 1

Stage 2

Swollen endothelium and
disrupted smooth muscle layer

Stage 3

Substantial loss of
smooth muscle

m SARmanual
staging

Stage 4 Stage 5

Endothelialized EVTs line lumen

Intravascular EVTs .
of spiral artery

Continuous SAR score ¢

>
9
c
o
3
T
o
fing
Endothelial and smooth Endothelial and smooth
6 8 10 12 14 16 18 20 muscle thickness muscle continuity
GA (weeks)
n GA-driven SAR (3)-driven ° . !
— ‘ Gene expression (Z-score)
40 Macrophages 1 1 Trend size A Macrophage
' '
Immune ceIIsA ' [ AR P . <> NK cell 100 1
3 ] ] g [ Structural w 08k
' ' | Y Teel e c Translational initiation
30 [ ] i = £ Mast cell £ SAR % 0.4
an];:lfe"s ] i > Other immune £ ©) £ o0
L ' timmune cells 3 L x
= | Al cells OFetal g 08 S -04
g | I EVT Cell frequency > & -08
3 1 { =
S 20 Fibroblasts , _Eviia | Al cells Out of category £ S q2fn= 39 genes
a “Structural ] Fetal cellss NK2 P value cutoff = 0.05 & 5 20 25 3.0 35 4.0
& Myofibroblasts ' NK cells = 041 z ;
9 15 Structural | EVT2 2
Mac2a NK3 ] Fetal cells % GA é Notch signalling
10 [~ Macrophages ANK cells | g 2 1.0
A £ o2t 8
| o 2 05
: . Structural EVTic ) 0
5T costyy Teeld 1 AA Nk cells Alggts @ Fetal cells S i
| __Tcells_______immunecells________ Q ___________________________ 5 051 210 genes
0 1 1 L " 1 1 ] 0 E T e —
-6 -4 -2 0 4 6 12 2 2.0 25 3.0 35 4.0

2
10g,(5/GA)

Fig.3|SAR progressionsignificantly influences maternal-fetal interface
composition. a, Characteristics of SAR stages 1-5 manually assessed. b, MIBI
colouroverlay of manually assessed stage 1 arteries. Representative image of
n=70FO0Vs.c,Inset of bshowing stage 1arteries. d, MIBI colour overlay of
manually assessed stage 2 arteries. Representative image of n =98 FOVs.

e, Insetofd. Arrowheadindicates swollen endothelial cells. f, MIBI colour overlay
of manually assessed stage 3 arteries. Representative image of n=29 FOVs.
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NK2 cells (CD57%) to NK1 cells (CD57°) decreased with SAR progression
(Fig.3n).

Tofurtherinvestigate this finding, we examined how the spatial distri-
bution of NK cells near arteries changed as SAR progressed (Methods).
Notably, NK2 cells were the only subset of maternal immune cells to
preferentially localize around arteries (Supplementary Table 3). NK2

)

GAindaysis binned to weeks for visualization. m, Schematic of calculating the
continuous SARremodelling score (§). n, Volcano plot distinguishing GA-driven
from SAR (6)-driven cell-type frequencies. x axis, log, ratio of R derived from
linear regressionagainst SAR (6) and GA. y axis, -log,, of the Pvalue for the
better-fitting regression model. Points are colour-coded by the trend size
observedinthebetter-fitting regression model. o, Left, proportion of genesin
artery (2,932 intotal) tissue where expression changes significantly correlate
with SAR (6) (1,785), GA (517) or both (Sync; 633). Centre, SAR (6)-correlated
genesinartery tissue showing mean normalized expression (Z-score) by SAR
(6) stage. Right, two SAR (6)-trending gene ontology pathways showing
normalized expression of genes in the GO pathway by SAR (6). Dataare
presented as the mean gene expression +s.e.m.

cellaccumulation around arteries spiked specifically at stage 2 of SAR,
when smooth muscle swelling and disruption are maximal (P=2 x107%;
Extended DataFig. 2c). Notably, CD57 expressionin human NK cellsis
associated with a cytotoxic phenotype in tumours'®, which suggests
that this subset could serve a similar role in mediating early smooth
muscle disruption during SAR.
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To createatranscriptional trajectory thatintegrated with our spatial
proteomics data, we used NanoString DSP on serial sections of the TMA
imaged by MIBI-TOF. We collected whole transcriptome profiles of 13
individual arteries at various stages of remodelling and their adjacent
decidua (a total of 26 ROIs; Methods). Matching these samples with
their respective MIBI-TOF images enabled us to assign a remodelling
score and GA to each transcriptome profile (Methods). We then used
amethodology similar to that presented in Fig. 3n to categorize genes
that displayed temporal expression trends as correlated with either
SAR, GA or both (Methods).

For arteries, 2,935 out 0f 18,695 genes exhibited significant trends,
with most genes preferentially correlating with SAR (Fig. 30). Within
this group of genes, we identified 78 temporally synchronized gene
ontology pathways, including modules related to vessel remodelling
and translation (Methods and Supplementary Table 4). These path-
ways exhibited both monotonic and biphasic trends (Fig. 30), which
showed that SAR is a composite of interrelated processes that occur
continuously and episodically. We identified 185 genes that peaked at
stage 2 of remodelling before subsequently declining. This expression
pattern correlated with perivascular enrichment of NK2 cells as indi-
cated by our MIBI data (Extended Data Fig. 2c). Inaddition, this group
of genes was enriched for genes related to collagen fibril organization
andresponses to bone morphogenic protein (Fig. 30 and Extended Data
Fig.5). Consistent with cell growth and subsequent apoptosis of arterial
smooth muscle, translation-related genes followed a biphasic trend,
peaking at around stage 3 of remodelling (Fig. 30 and Extended Data
Fig.5). We also observed continual downregulation of genes involved
inNotch signalling as SAR progressed (Fig. 30). Taken together, these
multimodal data provide a fully integrated atlas of decidual remodel-
ling that describes tissue structure, single-cell function and changes
intranscriptional programmes.
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Immune feature

indecidual tissueinalate (16 weeks GA) sample. Grey, other cell types. g, Inset
of fshowing a MIBI colour overlay of EVTs (EVT1aand EVT1b) with PD-L1
expression. Representative image of n =131 FOVs. h, Inset of f showing a MIBI
colour overlay of macrophages with TIM-3 expression. Representative image
of n=202FO0Vs.i, Predicted versus actual GAin days for aridge regression
model trained on GA-associated immune features for awithheld test set (30%).
Line, best fit; shaded region, one standard deviation. RMSE, root mean square
error.j, Ridge regression model coefficient loadings for GA-associated
immune features.

Immune composition correlates with GA

We next interrogated these data to identify GA-dependent, temporal
changes in decidual composition. This analysis revealed a substan-
tial shift from a lymphoid-dominant to myeloid-dominantlandscape.
Images at weeks 6-8 (Fig. 4c,e) showed NK cells and T cells exhibiting
cytotoxic (Fig. 4d) and immunosuppressive (Fig. 4e) phenotypes and
greatly outnumbering macrophages (Fig. 4b,c). By contrast, images
fromweeks 16 to 20 were dominated by interstitial EVTs (Fig. 4a,f,g) and
tolerogenic macrophages (Fig. 4h). To further evaluate thisrelationship,
we asked whetherimmune cell compositioninthe deciduaalone could
beusedto predict GA. Usingimmune features that were preferentially
associated with GA (Fig. 3n), we trained and validated a ridge regres-
sionmodel on a per-image basis using arandom 70/30 test-train split
(Extended DataFig. 6a). Notably, the model predicted GA in the withheld
testset within19 days of the true value (R* = 0.7; Fig. 4i). Oninspecting
the model weights, the relative contribution of decidualimmune cells
was consistent with the observed shift in the proportion of myeloid
and lymphoid cells. Relative frequencies of T cells and NK cells were
negatively correlated with GA, whereas total macrophage frequency
was positively correlated with GA (Fig. 4j). Notably, aregression model
for predicting SAR (§) based on the same immune cell frequencies per-
formed poorly (R? = 0.05; Extended Data Fig. 6b), which reinforced our
hypothesis that these changes are driven by GA and not SAR.

Using computational approaches validated in previous work to iden-
tify significant spatial enrichment of two cell types??* (Methods), we
observed that the majority of significant pairwise enrichments involved
EVT, NK cells and macrophages (Extended Data Fig. 6c and Supplemen-
tary Table 3). Again, by examining these relationships on a per-image
basis, we were able to distinguish spatial relationships that evolved
dynamically withrespect to GA (Methods). Of these relationships, the
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pregnancy-specific Mac2a populationwasinvolved in thelargest num-
ber of pairwise enrichments, becoming more enriched around several
NK cell and EVT subsets, even though NK cells were in decline.

Upregulation of tolerogenic markers with GA

Having examined the influence of GA and SAR in driving changesin the
frequency of cell populations in the decidua, we next used a similar
approach to understand how these two time axes correlate with shifts
infunctional marker expression. These datarevealed three overarching
trends. First, both SARand GA were associated with dynamic changesin
IDO-1expression. We identified a GA-driven declinein IDO-1" glandular
cells,inline with previous observations of IDO-1" glandular cellsin the
first trimester but not at term®. We also observed a SAR-driven decline
inIDO-1" dendritic cells and an increase in IDO-1" vascular endothe-
liumthat was comparably correlated with both GA and SAR (Fig. 5b,d).
Second, consistent with the cell frequency analysis (Fig.3n) inwhich NK1
cellsexhibited a preferential increase with SAR, NK1 cells also exhibited
asimilar increase in Ki67" frequency, becoming more proliferative as
SAR progressed (Fig. 5a). Third, functional shifts in innate immunity
were preferentially correlated with GA. All five macrophage popula-
tions upregulated either TIM-3 and/or its cognate ligand galectin-9
(GAL-9) with GA (Fig. 5a,b). This trend was most prominentin the Mac2a
and Mac2b populations, in which a tightly correlated upregulation of
both TIM-3 and GAL-9 was observed (Fig. Se,g,h and Supplementary
Information).
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Notably, GAL-9 upregulation was also detected in fibroblasts at
12-20 weeks GA (Fig. 5b,g-i). In previous work, interactions between
maternalimmune and stromal cell populations have been implicated
in the promotion of fetal tolerance?. With this in mind, we next sought
to determine whether the GAL-9" fibroblasts subset was biased to
colocalize within specific spatial niches. To answer this question, we
quantified their frequency within ten tissue microenvironments that
wereidentified by clustering the cell-type compositions of the closest
neighbours of each cell (Methods). GAL-9 fibroblasts were strongly
biased to colocalize with CD57* NK cells (NK2, microenvironment G;
Fig. 5f). Notably, this trend was accompanied by a GA-dependent
increase in the expression of inducible nitric oxide synthase (iNOS)
in NK2 cells (Fig. 5a). Both TIM-3 and GAL-9 have been implicated in
the suppression of antitumour surveillance by impairing the activity
of cytotoxic NK cells and T cells in various human cancers”. Together
with the transient perivascular enrichment of NK2 cells observed in
early SAR, these findings suggest that expression of these proteins
by macrophages and fibroblasts could have a concerted tolerizing
role with fetal EVTs to attenuate immune cytotoxicity subsequent to
NK-cell-dependent disruption of arterial smooth muscle.

Spatiotemporal EVT phenotype

Althoughiitis accepted that EVT plugs formed during early gesta-
tion near the intervillous space are derived from the cell columns, it
is unclear whether intravascular EVTs found deeper in the decidua
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basalis share this origin. These cells could also arrive at this location
through intravasation—a migratory route by which interstitial EVTs
within the deciduainvade the vascular lumen by transiting across the
arterial wall® (Extended Data Fig. 7a).

To examine this possibility, we used our spatiotemporal atlas to
quantify how the phenotype and spatial distribution of EVTs evolve
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with respect to SAR. First, we manually defined feature masks in our
images to demarcate cell columns and three decidual compartments:
interstitial, perivascular and intravascular (Fig. 6a-c and Extended
Data Fig. 7b). We then quantified EVT frequency in each. Together
with our SAR temporal trajectory, we first used these data to answer
a question that has been qualitatively explored in previous work?.



Thatis, whether the initial accumulation of EVTs s in the perivascular
compartment (adjacent to arteries) or within the intravascular com-
partment. Perivascular EVTs were consistently present earlier in SAR
thanintravascular EVTs (Fig. 6d). Furthermore, out of all arteries with
intravascular EVTs, 75% also had perivascular EVTs, which is a higher
percentage than would be expected if retrograde migration was the
primary source of intravascular EVTs (Extended DataFig. 7c). In arter-
ieswhere bothtypes of EVTs were present, the ratio of intravascular to
perivascular EVTs followed a smooth trend with respect to SAR, such
thatintravascular EVTsincreased at the expense of perivascular EVTs
(R?*=0.5,P=9 x107%; Extended Data Fig. 7d).

Loss of smooth muscle and endothelium have defining roles in
determiningthe extent of SAR. Using morphometrics to quantify these
cell types, we examined how the integrity of these concentric layers
relates to EVT enrichment (Methods). Perivascular EVTs were consist-
ently presentatan earlier stage, whereas intravascular EVTs appeared
only after 80% of smooth muscle was lost (Extended Data Fig. 7e).
Notably, intravascular EVTs increased proportionally with endothe-
lial loss, whereas perivascular EVTs were present irrespective of this
process (Extended Data Fig. 7f). Together, these findings align with a
process whereby near-complete loss of smooth muscle permits perivas-
cular EVTs to invade the artery lumen through discontinuities in the
vascular endothelium?®.

To further evaluate this model, we next examined whether the EVT
phenotype shifts progressively in a manner consistent with a migra-
toryroute that passes through the deciduainto the artery lumen. The
proportion of EVT subsets in cell column, interstitial, perivascular and
intravascular compartments shifted systematically in a manner con-
sistent with this proposed path of migration (Extended DataFig. 8a,b).
Examining functional marker expression within each compartment
again revealed a progressive shift in EVT phenotype. Cell columns
were distinctly enriched for proliferative (Ki67°) and CD57" EVTs.
Aprogressive decreasein these markers across interstitial, perivascular
andintravascular EVTs was accompanied by aconcomitantincreasein
PD-L1that peakedinthe intravascular compartment (Fig. 6e, Extended
DataFig. 8c and Methods).

These analyses collectively align with a spatial trajectory whereby
decidualinvasion of cell column EVTsis synchronized with adownregu-
lation of CD57 and Ki67 and an upregulation of HLA-G. Perivascular
accumulation of EVTs occurs early in SAR before the appearance of
intravascular EVTs and any loss in endothelium. In this model, as the
endothelial barrierislost, perivascular EVTsinvading the artery lumen
upregulate CD56 and PD-L1 (Extended Data Fig. 8d—h and Methods).
Notably, owing to its observational nature, this study cannot rule out
alternative mechanisms by which detaching EVTs arising from EVT
plugs at the intervillous space undergo retrograde migration.

Irrespective of the migration route, the distinct changes in pheno-
typic markers measured by MIBI-TOF suggest that arterial invasion is
accompanied by ashiftin EVT transcriptional programmes. With thisin
mind, we used NanoString DSP to measure the transcriptomes of inter-
stitial and intravascular EVTs. We found 274 differentially expressed
genes (DEGs) (Extended Data Figs. 9 and10a and Methods). In addition
to confirming previous work noting an upregulation of NCAM1, JAG1
and LAIR? specifically inintravascular EVTs** 2 we identified transcrip-
tional changesingenesimportant for extracellular matrix remodelling
and angiogenesis (Fig. 6f). For example, MMP12, MMP15 and ADAMTS4
were specifically upregulated in intravascular EVTs (mean log(fold
change) of 11.67 for MMP12, 9.74 for MMP15, and 7.88 for ADAMTS4),
whichsuggested that these proteins play asignificant rolein late-stage
SAR. In addition, arterial invasion was accompanied by a shift from
VEGFRI (also known as FLT1) to VEGFR3 (also known as FLT4) (Fig. 6f).

Intravascular EVTs also upregulated DKK3, C5orf30 (also known as
MACIR) and CD24 (Fig. 6f), which have each been shown in previous
work to haveroles in fetal viability, tumour invasion orimmune toler-
ance® >, Similarly, we observed an accompanying downregulation of

genes associated with invasion in intravascular EVTs, such as MGATS.
With respect toimmune modulation, C50rf30is a potentimmunometa-
bolicregulator that has been shown to inhibit macrophage-mediated
tissue damage in rheumatoid arthritis®. Similarly, CD24 binding to
Siglec-10 was recently found in many cancers to promote immune
evasion by serving as ananti-phagocytic, ‘don’t eat me’ signal*®. Taken
together, our multimodal approach paints a picture of a highly regu-
lated and controlled process. We observe a transcriptional shift away
from amore invasive phenotype (SERPINEI and CORO6) ininterstitial
EVTstowards genesimplicatedin vascular remodellinginintravascular
EVTs. Notably, this was accompanied by anincrease inimmunoregula-
tory modulesthatallow EVTs to bein continuous contact with maternal
blood while avoiding immune activation (Fig. 6e,f).

To understand how these changes promote SAR, we investigated
potential cell-cellinteractions between intravascular EVTs and arterial
cells using NicheNet*” (Methods). We identified ten protein-protein
interactions between EVTs and arteries that were predicted to affect
121 downstream targets (Fig. 6g,h, Extended Data Fig. 10b and Sup-
plementary Table5). For example, interactions between EVT JAGl and
arterial Notch were predicted to drive downstream changesin arterial
MEOX1and MT2A, which have beenimplicated in endothelial dysfunc-
tionand apoptosis®*. Similarly, CGA-FSHR and LEP-LEPR interactions
correlated with changes in arterial hormone receptors (LHCGR) and
several cell adhesion targets, respectively (Fig. 6h and Extended Data
Fig.10b). Notably, among the most prominent downstream targets
were the olfactory receptors OR51E2 and the human-specific OR7AS,
the expression of which outside the olfactory bulb has been thought
to regulate blood pressure and angiogenesis***,

CD24-SELP was the second most significant interaction and had
several targets related to blood vessel function and formation (Fig. 6h
and Extended Data Fig. 10b). Notably, reduced CD24 mRNA levels in
bulk placental samples has beenassociated with higher preterm preec-
lampsia risk®; however, EVT-specific CD24 expression has not been
previously reported. Given that abnormal decidual and SAR are thought
to play amajor partin preeclampsia*?, we sought to determine whether
other genesinvolved in EVT invasion and vascular remodelling had
previously been implicated. To do this, we first compared our list of
EVT DEGs with genes found previously to be differentially expressed
in decidua samples from women diagnosed with preeclampsia*®. We
found that 31% of EVT DEGs (12 genes) are differentially expressed in
preeclamptic decidua (Fig. 6f and Supplementary Table 6). Notably,
FNIand FLT1, which have been proposed as biomarkers for early pre-
diction of preeclampsia***’, were markedly downregulated in intra-
vascular EVTs.

Half of the NichNet interactions and 19 downstream targets over-
lapped with thislist of preeclampsia DEGs*® (Fig. 6h and Extended Data
Fig.10b). Theseincluded WNTIOB, anewly identified accelerator of EVT
invasion*®, and ORSIE2, atarget of CD24-SELP signalling that also exhib-
ited the highest regulatory potential. With respect to the latter, SELPis
notable for being differentially expressed in peripheral blood-cell-free
RNA from patients with preeclampsia®’. Taken together, our transcrip-
tomics approach validated and complemented the stepwise changes
in EVT phenotype seen in our spatial atlas while revealing pathways
that are perturbed in pregnancy-related disorders.

Discussion

Decidualization is a fascinating process with no other normative
precedent in human biology. In this process, the structure and func-
tion of the maternal endometrium transforms to promote the regu-
lated invasion of genetically dissimilar fetal cells. The decidua plays
adualrole by permitting EVT invasionin the first trimester and later
limiting it by inducing EVT apoptosis*®. EVT invasion can also be lim-
ited by morphological changes such as EVT fusion, which leads to
polyploidization that limits invasion owing to nuclear size*. Given
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the lack of tractable and relevant animal models and the inability
to study decidualization prospectively, our understanding of it is
immature relative to other areas of human physiology. Therefore,
our study aimed to understand how global, temporally dependent
changes in decidual composition are coupled to local regulation of
vascular remodelling in pregnancy. Initial invasion of placental EVTs
is prompted by a shift towards a permissive milieu, whereas progres-
sion of SAR depends on the subsequent migration and perivascular
accumulation of EVTs, where they are thought to participate in coop-
erative cell-cell interactions with maternal fibroblasts, NK cells and
macrophages®. Thus, the formation of the maternal-fetal interface
is mediated by global, temporally dependent cues that serve as a
gating function for remodelling processes that are regulated in the
local tissue microenvironment.

With this paradigmin mind, we set out to delineate which aspects of
thefirst half of pregnancy are driven globally by GA and how this relates
toSAR. Inthe study of placentationand SAR, anideal sampling strategy
might use elective caesarean hysterectomies from normal pregnan-
cies performed across GAin an ethnically diverse patient population.
As ethical considerations prohibit this approach, previous work has
used a range of sample types that each have their own strengths and
weaknesses. Here we utilized archival tissue from elective termina-
tions with no known pregnancy complications. This enabled us to
examine these questions in a large, ethnically diverse cohort that is
well-distributed with respect to GA. As tissue procured during termina-
tionsis fragmented, anatomical registration for determining whether
these tissue blocks were sampled from central or peripheral regions
of the decidua basalis was not feasible.

Using LDA, image morphometrics and expert annotations, we
assigned quantitative remodelling scores to every spiral artery in these
images. These targeted multiplexed imaging data were complemented
by spatially co-registered tissue transcriptomics. This multimodal
dataset enabled us to reveal how cell frequency and function, tissue
organization and transcriptional programmes in maternal decidua,
arteries and EVTs change with SAR and GA.

Our analyses of these changes determined that GA is the predominant
driver of maternalimmune cell recruitment. Progressive decreasesin
the numbers of NK cellsand T cells drive a transition at 12-14 weeks GA
from a lymphoid-dominant to myeloid-dominant decidua enriched
foriNOS*NK cells, IDO-1" vascular endothelium and DC-SIGN* macro-
phages that express both TIM-3 and GAL-9. Notably, this relationship
between immune composition and GA was strong enough to allow
us to predict GA within 19 days exclusively on the basis of immune
population frequencies.

By contrast, all EVT subsets and only two maternal cell populations
(NK1and NK2) preferentially correlated with SAR. Higher remodelling
scores were correlated with more EVTs, more NK1 cells and fewer NK2
cells. Asharp accumulationin NK2 cells around arteries was observed
earlyintheremodelling process around the time smooth muscle disrup-
tionhad beeninitiated. NK1and NK2 cells primarily differed in that the
latter express CD57, a marker associated with a cytotoxic phenotype.
Higher proportions of presumptively more reactive NK2 cells early in
SAR around arteries aligns well with previous results® that have sug-
gested that decidual NKs initiate early disruption of arterial smooth
muscle through the secretion of GrB, MMP2 and MMP9. Likewise, the
proportional gains seen here as SAR progresses of less reactive NK1 cells
and invasive EVTs are consistent with the tolerizing effects of HLA-G,
which has previously been shown®*? to decrease NK cell cytotoxicity
andinduce the production of interleukin-6 and interleukin-8 through
thebinding of HLA-G to KIR2DL4, LILRB1 and LILRB2. Taken together,
these data suggest that maternal and fetal cells have cooperative, inter-
dependent roles with SAR, transitioning through NK-dependent and
EVT-dependent phases.

Wealso examined alingering question®in the field: the path of migra-
tiontaken by intravascular EVTsin the deciduabasalis. Inline with early
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workbased on studies of 8-18 week hysterectomy specimens processed
intoto®, we found that perivascular EVTs accumulated before intravas-
cular EVTs. By comparing the cellular composition within cytotropho-
blast cell columns of anchoring villi, decidua and arteries, we observed
asequential and coordinated shift in EVT frequency and phenotype,
whichprovided support foramodelinwhich EVTs enter spiral arteries
from nearby decidua by crossing the arterial wall.

Notably, previous studies of samples from caesarean hysterecto-
mies identified morphological evidence of arterial extravasation®.
Given the observational nature of this study and the limited preser-
vation of tissue structure at the intravillous space, an extravasation
model in which EVTs migrate in a retrograde manner after entering
spiral arteries directly at the basal plate cannot be excluded. We
also note the possibility that following intravasating arteries in the
decidua, EVTs could migrate upstream to reach the upper third of
the myometrium. Thisideawould be consistent with previous studies
in which perivascular trophoblasts become increasingly scarce as
afunction of myometrial depth®’. Therefore, it is conceivable that
both processes may be at play in different regions of the decidua as
pregnancy progresses.

Previous single-cell and bulk sequencing studies of decidua have
characterized the transcriptome of decidual cells; however, they were
performed using dissociated tissue, agnostic to spatial context and
the local extent of SAR*™, Correlating spatial morphology and tis-
sue composition with targeted tissue transcriptomics enabled us
to observe how the transcriptome evolves with respect to SAR. In
arteries, our analysis revealed adownregulation of Notch signalling,
tissue organization and cohesion with SAR, which was accompanied
by aburst of translation-related activity around stage 2 of remod-
elling. By comparing interstitial EVTs with intravascular EVTs, our
analyses revealed genes upregulated in the interstitial populations
that shed light on how EVTs facilitate immune tolerance. Almost
one-third of DEGs between interstitial and intravascular EVTs over-
lapped with DEGs in preeclamptic decidua samples. Given the sig-
nificant contribution that abnormal vascular remodelling and EVT
invasion are thought to play in preeclampsia, this work serves as a
valuable resource for contextualizing preeclampsia-related changes
in future studies.

Notably, many of these pathways are also associated with cancer
progression. Formation of the maternal-fetal interface is an organized
and controlled invasive process that is sometimes viewed as atemplate
for understanding invasive and immunosuppressive properties of
tumours®*. Both processes involve a genetically dissimilar invasive
cell type (haploidentical EVTs versus clonal, mutated cancer cells),
extracellular matrix remodelling and recruitment of a wide variety
of tolerogenic immune cells, including M2-polarized macrophages
and proliferating T, cells. The intersection of anchoring placental
villi and maternal decidua morphologically resembles the invasive
margin of carcinomas and contains trophoblast cells that express high
levels ofimmunomodulatory proteins and growth factors implicated
in tumour severity, including PD-L1, IDO-1, TIM3, HER2 and EGFR*"%5%¢,
Inadditionto these phenotypic and structural similarities, recent work
that revealed mosaicism and clonal mutationsin normal-term placen-
tas demonstrated that this phenotypic overlap is even manifest at a
genomic level”.

Overall, we anticipate that this spatiotemporal atlas of the early
human maternal-fetal interface will provide a normative framework
for elucidating aetiological perturbations in maternal-fetal tolerance
and SAR in pregnancy complications. Likewise, this work may also
serve as a template for understanding how immune tolerance, tissue
remodelling and angiogenesis are aberrantly recruited and synergized
during tumour progression. With this inmind, we planin future studies
to extend this comparative approach to archival tissue in the context
of obstetric complications to further elucidate cellular interactions
involved in the regulation of SAR and EVT invasion.
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Methods

Retrospective cohort design

Thestudy cohortcomprised deciduatissue fromarchivalformalin-fixed,
paraffin embedded (FFPE) blocks, sampled after elective pregnancy
terminations from an outpatient clinic located within a large public
hospital affiliated with an academic medical centre. Patients at this
clinicreflect adiverse population. Although the patient populationis
predominantly low-income, women of alleconomic backgrounds are
cared for at the clinic.

In the clinic, an ultrasound examination is performed to esti-
mate GA, and a medical history is taken and logged as an electronic
medical record (electronic clinical works) or handwritten forms.
Aboard-certified gynaecologist reviewed medical records and specifi-
cally extracted the following details: age, ethnicity, body-massindex,
gravidity, parity, previous terminations, smoking status, medications,
HIV status, history of preeclampsia, chronic hypertension, diabetes
mellitus, renal disease, autoimmune disease, multifetal pregnancy,
and congenital anomalies (Supplementary Table 1). For procedures
occurring at <14 weeks GA, suction aspiration is routinely used. For
procedures at >14 weeks GA, a combination of suction aspiration
and grasping forceps is used. After the procedure, tissue samples are
routinely sent to pathology.

TMA construction

Whole tissue sections fromindividuals who underwent elective termi-
nationat 6-20 weeks of gestation were first reviewed by H&E staining to
identify samples containing decidual tissue and spiral arteries. These
regions were manually demarcated and assessed for suitability. Blocks
containing decidua with vessels were selected, cored with abore needle
and assembled into the TMA used in this study. Archival tissue blocks
from 74 individuals wereinitially selected by aboard-certified perinatal
pathologist (G.R.) tobeincluded inthe TMAs. The first TMA consisted
of 205 cores (including 3 tonsil cores, 1 endometrium core and 1 myo-
metrium core) of1 mmindiameter and the second contained 86 cores
of .5 mmin diameter). Unfortunately, cores from eight individuals did
not end up containing decidua, and there was not sufficient tissue in
the block for additional re-coring. We therefore had to exclude these
samples from the analysis. The final cohortincluded 66 individuals, an
exhaustive list of which is provided in Supplementary Table 1. Images
fromsamples fromsix individuals did not have arteries and therefore
were notincludedinanalyses related to spiral arteries. Information on
the histological characteristics of the blocks retrieved, including the
presence of cell column anchoring villi, is in Supplementary Table 1.
High-resolution scans of each core were uploaded to the Stanford Tis-
sue Microarray Database (http://tma.im/cgi-bin/home.pl), a collabora-
tive internal platform for designing, viewing, scoring and analysing
TMAs. Sequential recuts of the main experiment were stained with H&E
toaidin choosing the imaging ROls and analysing data.

Antibody preparation

Antibody staining was validated as previously described"*®. In brief,
each reagent was first tested using single-plex chromogenic immu-
nohistochemistry (IHC) using multiple positive and negative FFPE
tissue controls before metal conjugation. Antibodies were then con-
jugated to isotopic metal reporters as previously described!?>2+%8
with the exception of biotin-conjugated anti-PD-L1, for which a
metal-conjugated secondary antibody was used. The performance
of metal-conjugated antibody reagents were then tested within the
complete MIBI-TOF staining panel under conditions identical to
thoseinthe main study and compared with representative single-plex
chromogenic IHC to confirm equivalent performance. Representa-
tive stains and information for each marker is provided in the Sup-
plementary Information and in Supplementary Table 7, respectively.
After conjugation, antibodies were diluted in Candor PBS Antibody

Stabilization solution (Candor Bioscience). Antibodies were either
stored at 4 °C or lyophilized in 100 mM D-(+)-trehalose dehydrate
(Sigma Aldrich) with ultrapure distilled H,O for storage at —20 °C.
Before staining, lyophilized antibodies were reconstituted in a buffer
of Tris (Thermo Fisher Scientific), sodium azide (Sigma Aldrich),
ultrapure water (Thermo Fisher Scientific) and antibody stabilizer
(Candor Bioscience) to a concentration of 0.05 mg ml™. Information
on the antibodies, metal reporters and staining concentrations is in
Supplementary Table 7.

Tissue staining

Tissues were sectioned (4 pum inthickness) from tissue blocks on gold
and tantalum-sputtered microscope slides. Slides were baked at 70 °C
for 20 minfollowed by deparaffinization and rehydration with washesin
xylene (3 times), 100% ethanol (2 times), 95% ethanol (2 times), 80% eth-
anol (once), 70% ethanol (once) and ddH,0 with a LeicaST4020 Linear
Stainer (Leica Biosystems). Tissues next underwent antigen retrieval,
which was carried out by submerging sides in 3-in-1 Target Retrieval
solution (pH 9, Dako Agilent) and incubating them at 97 °C for 40 min
inaLab Vision PT Module (Thermo Fisher Scientific). After cooling to
room temperature, slides were washed in 1x PBS IHC washer buffer
with Tween 20 (Cell Marque) with 0.1% (w/v) BSA (Thermo Fisher).
Next, all tissue samples underwent two rounds of blocking, the first to
block endogenous biotin and avidin with an Avidin/Biotin Blocking kit
(BioLegend). Tissue samples were then washed with wash buffer and
blocked for1hatroomtemperature with1x TBS IHC wash buffer with
Tween 20 and 3% (v/v) normal donkey serum (Sigma-Aldrich), 0.1%
(v/v) coldfish skingelatin (Sigma Aldrich), 0.1% (v/v) Triton X-100 and
0.05% (v/v) sodium azide. The first antibody cocktail was prepared in
1x TBS IHC wash buffer with Tween 20 and 3% (v/v) normal donkey
serum (Sigma-Aldrich) and filtered through a 0.1 um centrifugal filter
(Millipore) beforeincubation with tissue overnight at4 °Cinahumid-
ity chamber. After overnightincubation, slides were washed for 2 min
in wash buffer. The next day, the antibody cocktail was prepared as
described (Supplementary Table 7) and incubated with the tissues for
1hat4°Cinahumidity chamber. After staining, slides were washed
twice for 5 min in wash buffer and fixed in a solution of 2% glutaral-
dehyde (Electron Microscopy Sciences) solution in low-barium PBS
for 5 min. Slides were washed in low-barium PBS for 20 s then, using a
linear stainer, through 0.1 M Tris at pH 8.5 (3 times), ddH,O (2 times)
and then dehydrated by washing in 70% ethanol (once), 80% ethanol
(once), 95% ethanol (2 times) and 100% ethanol (2 times). Slides were
dried under vacuum before imaging.

MIBI-TOF imaging

Imaging was performed using a custom MIBI-TOF instrument with
a Xe' primary ion source, as previously described?*®, In total, 222
808 x 808 um FOVs were acquired at approximately 600 nm resolu-
tion using an ion dose of 7 nA x h mm2 After excluding 11 FOVs that
contained necrotic or non-decidual tissue, or consisted of duplicate tis-
sueregions, the final dataset consisted of 211 FOVs from 66 individuals.

Low-level image processing

Multiplexed image sets were extracted, slide background-subtracted,
denoised and aggregate filtered as previously described* 2%, For
several markers, a background channel consisting of signal from the
mass 128 channel was used. All parameters used as inputs for low-level
processing are listed in Supplementary Table 7.

Feature annotation

Large tissue features were manually annotated in collaboration witha
perinatal pathologist. Pseudo-coloured MIBlimages stained with H3 to
identify cell nuclei, VIM for decidual stromal cells, SMA and CD31 for
vessels, cytokeratin 7 (CK7) for glands and the fetal cell columns, and
HLA-G for EVTs were used to guide annotation. Serial H&E sections, and
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aH&E recut of the entire block, if necessary, were additionally used to
supplement annotation. Labelling was performed in ImageJ and the
annotated features were exported as binary TIF masks.

Single-cell segmentation

The Mesmer segmentation algorithm® was adapted specifically to
segment the cells in our dataset. First, training data were generated
using a subset of 15 images out of 211 in our cohort, in addition to 10
decidua MIBI-TOF images from titration data. In total, 1,024 x 1,024
pixel crops were selected to encompass the range of different cell mor-
phologies present. The markers H3, VIM, HLA-G, CD3, CD14 and CD56
were used to capture the major cell lineages present. Subsequently,
ateam of annotators parsed these images to identify the location of
each unique cell using DeepCell Label, custom annotation software
specifically developed for this task® (https://github.com/vanvalenlab/
deepcell-label). The manually annotated images were used to gener-
ate partially overlapping crops of 256 x 256 pixels from each image.
Intotal, training dataincluded 1,600 distinct crops with 93,000 cells.
This dataset was used to retrain the Mesmer segmentation model,
modifying the architecture to acceptsix distinct channels of input. The
output from the network was then post-processed using the default
model settings (Supplementary Information).

Segmentation post-processing

Examination of theimages revealed that glandular cells and chorionic
villus trophoblasts did not express any markers included in the train-
ing data; namely these cells were predominantly CK7*. This resulted
in effectively nuclear-only segmentation being predicted by the con-
volutional neural network within these features. To account for this,
segmented cells that overlapped with the gland mask were expanded
radially by 5 pixels, and those in the cell column mask by 2 pixels. The
number of pixels used for expansion was optimized to approximate
the observed cell size, which was based on a systematic inspection of
three images per GA. Objects <100 pixels in area were deemed non-
cellular and excluded from subsequent analyses. The final number
of segmented events per FOV is provided in Supplementary Table 8.

Single-cell phenotyping and composition

Single-cell expression data were extracted for all cell objects and
area-normalized. Single-cell data were linearly scaled with a scaling
factor of 100 and ArcSinh-transformed with a co-factor of 5. All mass
channels were normalized to the 99th percentile. To assign decidual
cell populations (=70% cell area in decidua) to a lineage, the cluster-
ing algorithm FlowSOM (Bioconductor FlowSOM package in R)* was
used, which separated cells into 100 clusters based on the expression
of 19 canonical lineage-defining markers (Supplementary Informa-
tion). Clusters were further classified into 21 cell populations, with
proper lineage assignments ensured by manual examination of over-
layed FlowSOM cluster identity with lineage-specific markers. Clus-
ters containing non-biologically meaningful or distinct signals were
assigned the label ‘other’. T, cells were identified by thresholding
T cells (FlowSOM clusters 43, 53 and 63) with the CD3 signal > the mean
CD3 expression of CD4" T cells and >0.5 the normalized expression
of FOXP3. Mast cells were identified as cells for which normalized
expression of tryptase was >0.9. Mac2b (CD11c") cells were identified
as macrophages with >0.5 normalized expression of CD11c. Placental
macrophages (Hofbauer cells) were defined as CD14*>0.5 cells located
within the cell column. Cells from FlowSOM clusters 4, 5and 15 ubiqui-
tously and predominantly expressed CK7 and were reassigned to the
EVT2 subset if located within the cell column feature mask or as glan-
dular cells otherwise (Supplementary Information). These thresholds
were selected based on the distribution of lineage marker expression
(Supplementary Information) and on systematic examination of the
images by eye as expression patterns varied significantly between
markers. Foracomprehensive list of all single cells, their morphological

features, markers expression, lineage classification,among others, see
the Data availability section.

Definition of thresholds for functional marker positivity

Cells were considered positive for a functional marker if their scaled
expression level was greater than or equal to aset threshold, as previ-
ously described?. Thresholds for individual functional markers were
determined onthe basis of examining the images by eye, as expression
patterns varied significantly between markers (Supplementary Table 9
and Supplementary Information). To set the per-marker thresholds,
five images for each functional marker were reviewed, and increas-
ing threshold values were examined using custom software. Subse-
quently, cells defined as negative for amarker based onthe determined
threshold value were re-examined to ensure that the thresholds were
representative. For Ki67 positivity, only cells that had anucleusin the
image were considered. Ki67 values were not normalized to the cell
size because the Ki67 signal is exclusive to nuclei.

Two-colour IHC

Before staining, FFPE sections were incubated at 70 °C for 1 h. After
deparaffination and antigen retrieval (Dako, S2367) was performed,
endogenous horseradish peroxidase and alkaline phosphatase were
blocked using BLOXALL (Vector Laboratories, SP-6000-100) for 30 min,
followed by blocking buffer solution (95% 1x TBS IHC wash buffer with
Tween 20,1% Triton10%, 1% gelatin 10%, 2% horse serum and 1% sodium
azide 20 mg ml™) for 1 h at room temperature. Double staining was
performed using CD57 (mouse IgG) paired with CD49a (rabbit IgG).
Sections were incubated at 4 °C overnight with the antibodies CD57
(clone NK/804, Abcam, ab269771; titre, 0.5 pg ml™) and CD49a (clone
E9K2J, CST, 15574T; titre, 1:1,500). The following day, secondary anti-
body (ImmPRESS Duet reagent; HRP anti-rabbit IgG and AP anti-mouse
IgG; Vector Laboratories) was applied for 10 min at room temperature.
Antibodies wererevealed with Vector Blue AP substrate (Vector Labo-
ratories, SK-5300) for 10 minin the dark followed by DABHRP substrate
(Vector Laboratories, SK-4105) for 40 s. For subsequent analyses and
colour deconvolution, single-plex staining for CD57 and CD49a were
performed on one slide each. For details on the method, buffers and
solutions, refer to ref. 61.

ThelHCslides were scanned using aNanoZoomer Digital Pathology
Scanner 2.0RS (Hamamatsu) and analysed using QuPath (v.0.4.0).
To score CD57" NK cells (NK2) for expression of the tissue-residency
marker CD49a, the two colours in the IHC slides were deconvolved
with QuPath using single-plex staining as colour references. CD57*
NK cells were then manually annotated, in decidual regions only, by
aboard-certified pathologist. These cells were than manually scored
for CD49a expression and counted.

Blinded manual artery staging

Arteries were categorized into five remodelling stages based on cri-
teria adapted from a previously proposed four-stage model®. These
criteria were used to describe spiral arteries observed in H&E and
single-channel IHC images and were adapted to suit multiplexed MIBI
data (Fig.3a, detailsin Extended DataFig. 3a).In total, 600 arteries were
categorized according to these criteria by a single reviewer using only
crops of MIBI pseudocolour overlays (SMA, VIM, CD31, H3 and HLA-G),
includingonly the artery (as defined by afeature mask) and any EVTsin
thelumen. Thereviewer was blinded to the rest of the image, serial H&E
sections, GA and any clinical data. Twelve partially captured arteries
were excluded from the final dataset of 588 arteries.

Automated digitization of artery morphological features

The same format of cropped artery MIBI images that were manu-
ally scored by the reviewer were used to calculate a set of geometric
parameters for several selected features. These features described
the organization and structure of the vessel wall, the continuity of
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the endothelium and its thickness, and the presence and structure of
intravascular EVTs. To capture these features, a structure of concentric
circles we termed the ‘onion’structure was defined, with the outer circle
of this structure enclosing the artery and the inner circles dividing it
intolayers. Thisstructure is described below using the two-dimensional
cylindrical coordinate system, with the radial axis r, azimuthal (angular)
axis g, and origin of the axis at point (x,y). Point (x,y) is the user-defined
artery centre. For an artery in the binary mask M, the following algo-
rithm was used to create the onion structure (Extended Data Fig. 3¢).
First, define a circle enclosing the artery, centred at point (x,y) with
radius a as follows: (x,y) was taken as the user-defined artery centre
point; a, the radius is defined as the maximum distance between (x,y)
andthe edge of M, rounded up to the nearest integer multiple of n, such
thata=/xnforaninteger /. nis auser-defined thickness parameter
for the onion layers

Second, define the inner circles comprising the onion layers by divid-
ing the radius a of the outer circle into / equal sections of length n,
creating layers along the radial r axis. The radii of the inner circles are
thendefinedas0,1xn,2xn,...(I-1) xn.

Third, divide the onion into k equal sectors along the g axis. kis a
user-defined integer.

Fourth, subdivide each sector into segments. The sectors are inter-
nally divided by the circles, creating parts with four corners and four
sides, with the two sides being straight (sector dividers), and the two
sides being arcs (parts of circle circumferences). The arcs are replaced
with secants (straightline connecting the ends of the arc), turning the
segment into a trapezoid. The parameters n =10 pixels and k=100
were used to allow for segments large enough to contain a sufficient
number of pixels to average the expression over.

Geometrical and protein morphology features were then extracted
for each artery onion. For geometrical features, the following param-
eters were defined: (1) radius, the maximum distance between any
pixel within the mask and the closest pixel on the edge of the mask;
(2) perimeter, the Euclidean distance between all adjacent pixels on
the edge of the artery mask; and (3) area, the total number of pixels
within the artery mask.

For the protein morphology features, for the markers CD31, CK7, H3,
HLA-G,SMA and VIM, the following parameters were defined. (1) Aver-
age signal: the weighted average over segments of marker expression,
inwhichthe weight of asegment corresponds to the number of pixels
itcontains. The weighted average was used to avoid smaller inner seg-
ments having a disproportionate effect on the average.(2) Thickness:
for each sector, we calculated the distance d between the inner-most
segment positive for the marker and the outer-most positive segment.
Positivity was measured by comparing the mean signal over pixels the
segment toauser-defined threshold.The mean and standard deviation
of thickness were calculated as the mean and standard deviation of d
over allsectors. (3) Radial coverage: the percentage of sectors positive
for marker signal. A sector was considered positive if the mean signal
over sector pixels acceded a user-defined threshold. (4) Jaggedness:
this feature measures the extent jaggedness of an artery outline. To do
so, first, a previously described skeletonization function® is applied
to the artery mask, and this function returns a ‘skeleton’ of the artery
outline. This skeleton also assigns values to the outline pixels based
on their distance from the core shape. Then, two different binariza-
tionthresholds are chosen: anon-branch threshold (a high value = 60
pixels, which indicates a greater topological distance) and a ‘branch’
threshold (alow value =5 pixels, which indicates a smaller topologi-
cal distance). The ratio between the total number of non-branch and
branch pixelsis the jaggedness.

Calculation of continuous SAR remodelling score 6

A supervised dimensionality reduction technique based on LDA%
(https://github.com/davidrglass) was applied using the per-artery
digitized morphological features and manually assigned remodelling

stagelabels asinputs. Allartery morphology feature values were stand-
ardized (mean subtracted and divided by the standard deviation) and
allarteries were used as the training data. The LDA output was as follows
(Supplementary Table 3): the optimal linear combination of a subset
of features that maximized the separation by manual stage between
arteriesin LDA space; and the coordinates of each artery in LDA space.

To define the SAR trajectory, a fourth-degree polynomial was fit-
ted to the artery coordinates in LDA space. To determine the optimal
degree of the polynomial, polynomials with degrees 1-6 were fitted,
and the degree that minimized the P value for separating 6 distribu-
tions between arteries grouped using the manual remodelling stage
(Extended Data Fig. 4c) was selected. The polynomial fit was imple-
mented using the MATLAB function fit and resulted in the following
polynomial: f{x) = 0.0005 x x* - 0.01227 x x*+ 0.1363 x x>~ 0.4354 x x
- 0.7425. The polynomial was then numerically interpolated onadense
10*-pointgrid, and the distance fromeach artery pointin LDA space to
the polynomial was calculated using this grid and the MATLAB exchange
function distance2curve®. § per artery was then calculated as the line
integral from the curve origin to closest point to the artery on the curve
(Extended DataFig.4a, inset). This integral was numerically calculated
using a custom MATLAB script. 6 values were linearly rescaled to the
range 1-5 using the MATLAB function rescale.

Cell-type frequency as afunction of GA and SAR

To examine cell-type frequencies within the decidua as a function of
GA and SAR (Figs. 3 and 4), per-image cell frequency tables were con-
structed in which cell-type frequencies were calculated as the propor-
tion of cellsin the decidua feature mask of thatimage. Cellslocatedin
other feature masks (artery, gland, vessel or cell column masks) were
not counted, nor were cells of an unassigned type (‘other’). To focus
these analyses on cell populations strictly found in the decidua, mus-
cleandglandular cells were also excluded; these cell types occasionally
extended outside their artery and gland feature masks, respectively.
Cell frequency as a function of GA for a cell type was defined as the
per-image proportion values for that cell type, as afunction of the GAs
associated with the images. Similarly, cell frequency as a function of
SAR for a cell type was defined as the per-image proportions of that
celltype, asafunction of the mean § values perimage. For the volcano
plot in Fig. 3n, we fitted a linear regression model to the two
above-described functions. All linear regression models were imple-
mented using the MATLAB function fitlm and the volcano plot only
shows points for which regression R* > 0.05. R* and P values for all
6-based and GA-based regressions are provided in Supplementary
Table 13. The ratio between R? in the two regression models was used
to classify trends as GA-driven, SAR-driven or synchronized. For exam-
ple, the increase in EVTs out of all cells, R_EVT, was classified as
GA-driven because R*for R_EVT as a function of 6 was 0.3 but only 0.1
forR_EVT asafunction of GA (Extended Data Fig.4d and Supplementary
Table 10). Another example is the increase in macrophages out of
immune cells, | sumMac: it was classified as GA-driven because R* for
I_sumMac as a function of GA was 0.6 but only 0.1 for [_sumMacas a
function of 6 (Extended Data Fig. 4e and Supplementary Table 10). To
determine the trend sizes depicted in Fig. 3n, the following calculation
was used: denote the per-image frequencies of acell typeas V,and the
corresponding per image temporal stamps (either GA or mean image
6) as X. Trend sizeis then calculated as the difference between the first

and last time point in units of the mean:%{i’;)’mm

NanoString GeoMx DSP
The experiment was performed using NanoString Technologies accord-
ing to company manuals, details are below.

Slide preparation. Serial sections of the TMAs were cut into 5 um
FFPE sections and were mounted on SuperFrost Plus slides (Fisher
Scientific, 12-550-15), air dried and baked overnight at 60 °C. Slides
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were then processed as specified by the NanoString GeoMx DSP Slide
Preparation User Manual (NanoString Technologies, MAN-100 7). In
brief, slides were dewaxed, underwent antigen retrieval and treated
with proteinase K (Ambion, 2546) at 1 ug ml™ concentration. Slides
were then post-fixed. For RNA probe hybridization, slides were placed
inaslide rack with Kimwipes damped with 2x SSC lining the bottom.
Eachsslide was treated with 200 pl of NanoString Technologies whole
transcriptome RNA probe mix ata concentration of 4 nM per probein
1x buffer R (NanoString Technologies). A Hybridslip (Grace Biolabs,
714022) was applied over each slide. Slides were incubated at 37 °C
overnight. After hybridization, slides were dipped in a2x SSC with 0.1%
Tween 20 (Teknova, TO710) to remove the coverslips. They were then
washed twice in 2x SSC and 50% formamide (ThermoFisher AM9342)
at 37 °C for 25 min followed by two washes in 2x SSC for 5 min each at
room temperature. Slides were blocked in buffer W (NanoString Tech-
nologies) at room temperature for 30 min, followed by the application
of 200 pl morphology marker mix for 1 h. Details of the morphology
markers are provided in Supplementary Table 7.

Sample collection. Sample collection was performed as indicated
in the GeoMx DSP instrument user manual (MAN-10088-03). Slides
were loaded into the GeoMx DSP instrument and scanned. For each
tissue sample, we selected ROIs corresponding to one of the following
categories: artery (13), decidua (13), interstitial EVT (5), intravascular
EVT (3);intotal, 34 ROIs were selected (Supplementary Table 11). Mor-
phology markers for SMA and VIM were used in conjunction with a
serial H&E section to provide tissue context and to locate arteries and
decidua on the platform. Artery, decidua and intravascular EVT ROIs
were selected using the geometric selectiontool, and interstitial EVTs
were selected using a HLA-G* mask. Intravascular EVTs were identified
as HLA-G" cells located within arteries. Each ROl was collected into a
single wellina 96-well plate.

GeoMx DSP NGS library preparation and sequencing. Each GeoMx
sample or well was uniquely indexed using an i5 x i7 dual-indexing
system from Illumina. Intotal, 4 pl of a GeoMx DSP sample was used in
aPCRreactionwith1 pM of i5 primer,1 uMi7 primer and 1x NSTG PCR
master mix. For the PCR amplification reaction, each 96-well plate
was placed in a thermocycler programmed with the following pro-
tocol: 37 °C for 30 min, 50 °C for 10 min, 95 °C for 3 min, 18 cycles of
95°Cfor15s,65°Cfor60s,68 °Cfor30 s, and final extension of 68 °C
for 5 min. PCR assays were purified with two rounds of AMPure XP
beads (Beckman Coulter) at 1.2x bead-to-sample ratio. Libraries were
paired-end sequenced (2 x 75) on aNextSeq550 with up to 400 million
total aligned reads.

Normalization and scaling of GeoMx counts data. Raw counts from
eachgeneineachsample were extracted from the NanoString GeoMx
NGS processing pipeline (Supplementary Table 11). Quality control was
done according to the NanoString data analysis manual (MAN-10154-
01) with default parameters as indicated in the manual. For each EVT
sample, the counts were normalized using one of the manufacturer’s
recommended approaches for normalizing GeoMx data: dividing all
genesineachsampleby the 75th percentile of expressionin that sample,
followed by multiplication by anidentical scaling factor for all samples:
the geometric mean of all 75th percentiles. This approach eliminates
differences in counts between samples due to ROI-specific proper-
ties such as size and RNA-binding efficiency. The background due to
nonspecific binding per sample was approximated with the geometric
mean of the 100 negative control probes included in the probe mix,
asrecommended by NanoString Technologies. The above-described
normalization step eliminated the correlation between background
and ROl size for EVT samples. For artery and decidua samples, nor-
malization was complicated by the fact that the ROl size was tightly
correlated with SAR stage and therefore biologically meaningful trends

inthedata. Thisled to the correlation between ROl size and background
not being entirely eliminated by normalization. We therefore used a
background subtraction correction technique before normalization
as recommended in the NanoString Technologies manual for such
cases. The correction was performed by subtracting the geometric
mean of negative probes from gene counts on a per-sample basis and
proceeding with normalization as previously described.

Gene expressioninartery as afunction of GA and SAR

In brief, for each gene, we performed polynomial regressions of gene
expressionwith §and GA astheindependent variables and used regres-
sion Pvalues to determine which genes were trending and the ratio of
regression R?values to classify the trends as detailed below.

The NanoString Technologies RNA probes panel contains probes
for 18,696 transcripts. For this analysis on artery samples, only genes
with background-subtracted, normalized counts >10 in at least two
arteries were considered. This resulted in 14,471 expressed genes. Each
artery sample was assigned aremodelling score § based onthe § of the
sampled artery in the MIBI data. If several arteries were sampled, the
assigned 6 was the average 6 values of the sampled arteries. Endothelial
loss and SMA loss per sample were calculated similarly based on the
corresponding MIBI values (Supplementary Table 11). The following
steps were then performed on artery samples.

For all expressed genes, gene expression as a function of GA was
defined as the background-subtracted and normalized counts for that
gene, as a function of the GAs associated with the samples. Similarly,
expressionasafunction of SAR for agene was defined as the per-sample
background-subtracted and normalized counts of that gene, asafunc-
tion of the § values per sample. A second-degree polynomial regression
modelwas then fitted to the two above-described functions. The reason
forusing asecond-degree polynomial instead of linear regression was
to allow the regression models to capture non-monotonic trends in
gene expression. All regression models were implemented using the
MATLAB function fitnlm. Expression fold change was defined as the
ratio between the maximum and the minimum of expression values.
The centre of mass (COM) of the expression trajectory of agene as a
functionof ¢ (¢beingeither GA or §) was defined as the weighted mean of
tvalues, where the weights are the expression values at the respective t.

Genes with a Pvalue < 0.05 and fold change >2 for either GA or §
regression were classified as trending genes. The ratio between R?
in the two regression models was used to classify trending genes
as GA-driven, SAR-driven or synchronized. Trending genes with
log,(R3/RZ4) >1and R} > 0.05 were classified as SAR-driven, whereas
geneswithlog,(R}/R%,) <1and RG, = 0.05 were classified as GA-driven.
Other trending genes were classified as synchronized (Supplementary
Table 4).

For visualization only, two fitted expression trajectories (oneasa
function of GA and another as afunction of §) were calculated per gene.
Thesefitted expression trajectories were calculated as the values of the
fitted second-degree polynomial model at five evenly spaced values
of GA and 6, respectively. To compare fitted expression trajectories
between genes, they were normalized by Z-scoring their value per gene
(Fig.30).

See Supplementary Information for further details about analysis
of NanoString data in decidua ROls.

Coordinated gene expression by pathways in the artery

We set out to find gene pathways with coordinated expression trends
among our genes of interest: genes trending with § in arteries. To find
these coordinated pathways, we first defined the pathways and then
defined temporal coordination.

To define pathways, we used the R package msigdbr to obtain the
lists of genes per pathway for the Gene Ontology by Biological Process
database (7,481 pathways). We then cross-referenced the list of genes for
each pathway with the genes of interest and discarded pathways with
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anintersection of fewer than ten genes. For the remaining pathways,
we examined whether the pathway genes that appeared in the gene set
of interest exhibited coordination in their expression as function of §.

A group of coordinated genes was defined as a group of genes for
which the COMs were significantly closer to each other than one would
expect at random (see previous section for the definition of COM).
Using the spread of COMs as ameasure for coordination allowed us to
leverage the raw data rather than fitted gene expression trajectories
while still maintaining robustness against noise.

To calculate the extent of coordination between agroup of Ngenes,
we first calculated their median COM, denoted COM,,... Then, their
COM dispersal was defined as the median of the absolute deviations
from COM,,., for the Ngenes, denoted CD. To determine whether the
CD for the gene group, CDg,,, is significantly smaller than expected
atrandom, we calculated the randomly expected CD, denoted CD,q.
This was done by selecting Nrandom genes without replacement and
calculating their CD, 10° times to estimate the null distribution. The
random CD,,,y was then calculated as the median over the CDs for ran-
domized gene sets. The coordination score for our Ngenes group was
then defined as 10g,(CD,,,4/CDy;oyp). The P value for the coordination
score was defined as the number of times arandomized CD was smaller
than CDy,,,, divided by the number of randomizations (10%). (1/number
of randomizations) was then added to all P values to account for the
finite number of randomizations. g values were calculated using the
Benjamini and Hochberg method on P values, implemented using
the MATLAB function mafdr.

The CD, coordination scores, P values and g values were calculated
as described above for all 7,481 pathways. Pathways with coordina-
tion score > 1.5 and P value < 0.05 were considered to be coordinated
(Supplementary Table 4).

Ridge regression for predicting GA from immune composition
Ridge regression was implemented using the sklearn Python pack-
age (sklearn.linear_model.Ridge, RidgeCV). Per-image immune fre-
quencies were rescaled to the range 0-1before model fitting using
the sklearnscaling function. Images with fewer than tenimmune cells
were excluded (n = 8). Arandomly derived test-train split of 30/70 was
used, and GA distribution was verified to be equally represented in the
test and train sets (Extended Data Fig. 6a). Ridge regression adds a
regularization penalty to theloss function to prevent over or under rep-
resentation of correlated variables, such asimmune cell populations.
The penalty used for the test set (0.81) was selected using leave-one-out
cross-validation on the training set.

Cell-cell and cell-artery spatial enrichment analysis

To identify preferential colocalization of maternal immune cells in
decidua, we measured the spatial proximity enrichment for all cell-type
pairs, which evaluates the spatial organization of cell types relative to
each other, as previously described®**. Cells located in non-decidual
feature masks (artery, gland, vessel or cell column masks) were not
included in this analysis. The distances in pixels between all pairs of
cells were calculated in each image. The resulting per-image distance
matrices were binarized withadistance threshold (100 pixels or 39 pm
in our case), and pairs of cells closer than 100 pixels from each other
were considered a close interaction. To evaluate the number of close
interactions between two cell types, this proximity matrix was subset
column-wise by cell type A and subset row-wise by cell type B. The sum
oftheresulting submatrix quantified the number of close interactions
between the cells of types A and B. To evaluate the significance of the
number of close interactions, given the total number of cells in the
image, tissue architecture and composition across the cohort, and total
number of cells of types Aand Bin theimage, abootstrapping approach
was used. For each of 100 bootstrappingiterations, thelocation of cells
of type A was randomized across all cell locations (of any type) in the
image while their total number was preserved. The number of close

interactions with cells of type B was calculated for each randomized
iteration. Repetitions of this process approached a null distribution for
the number of close interactions between cells Aand B. The enrichment
score for cells Aaround cells Bin the image was then calculated as the
Z-score of the measured number of close interactions between Aand B
when Z-scored together with the random bootstraps. This analysis was
extended toincorporate enrichment of cell types around spiral arteries.
Foreach cell, the distanceto the nearest spiral artery was considered. An
additional column was added to the proximity matrix described above,
whichthresholded distancesbetween cells and arteries with the same
100 pixel threshold. The above-described bootstrapping approach
also provided a null distribution for artery proximity. Tools for this
analysis were written in Python, with the bootstrapping accelerated
using Cython. Anintuitive, easy-to-use Jupyter Notebook interface
was created to allow for easy implementation of this algorithm. For
per-image spatial enrichment scores, see the Data availability state-
ment. The code for this analysis is available at GitHub (https://github.
com/angelolab/ark-analysis).

Cell-cell and cell-artery enrichment temporal trends and
trending with GA or SAR or constant

For examining cell-cell and cell-artery enrichment within the decidua
asafunctionof GA and SAR (Extended Data Figs. 6¢c and 2c), per-image
enrichment score matrices £ were calculated as described in the previ-
ous section, in which £ is the enrichment score of cell type i around
celltypejintheimage. Enrichment as a function of GA was defined as
the per-image enrichment, asafunction of the GAs associated with the
images. Similarly, enrichment as a function of SAR was defined as the
per-image enrichment, as a function of the mean ¢ values per image.
We fitted a linear regression model to the two above-described func-
tions. All linear regression models were implemented using the MATLAB
function fitlm. R?and P values for all 5-based and GA-based regressions
areprovided in Supplementary Table 3. The ratio between R?in the two
regression models was used to classify trends as GA-driven, SAR-driven
orsynchronized likein Fig. 3n. Extended DataFig. 6¢c only shows points
for which regression R? > 0.05, P value < 0.05, maximal absolute value of
linear fit > 2. Trends including muscle, fibroblast, myofibroblast, glan-
dular, other and endothelial cells were not considered in this analysis.
For determining trend sizes, the following calculation was used: denote
thelinear fit to per-image enrichment scores as V, and the correspond-
ing per-image temporal stamps (either GA or meanimage 6) as X. Trend
sizeis then calculated as (V(max(X)) - V(min(X))).

To determine whether two cell types were significantly enriched
around each other throughout the cohort, we averaged their pairwise
enrichment over all images. The pair was considered enriched if the
absolute value of mean enrichment was >2 (Supplementary Table 3).

InExtended DataFig. 6¢, the following cell-cell enrichments were not
plotted for clarity: enrichment of acell type arounditself (for example,
T, cells around T, cells); enrichments including muscle, fibroblast,
myofibroblast, glandular, other and endothelial cell types; enrichment
trends that are SAR-driven.

Functional marker positivity rate per cell type as a function of
GAand SAR

For examining cell-type-specific temporal trends in the expression of
functional markers (Fig. 5a), 48 combinations of cell-type functional
marker were selected. The selected combinations were those for which
the positivity frequency Z-score exceeded 0.5 (Fig. 2a, right). For each
ofthese combinations, the frequency of cells positive for the functional
marker was calculated as the number of cells positive for the marker
(seethe methods section ‘Definition of thresholds for functional marker
positivity’) out of the total number of cells of the same cell type in the
image. All cells except those located within the cell column mask were
included to focus the analysis on functional marker trends of maternal
cellsand EVTs that had infiltrated the decidua. For glandular cells, the
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location was further restricted to the glands mask. The frequency of
cells positive for afunctional marker as afunction of GA, for a cell type,
was defined as the per-image positivity proportion values as afunction
of the GAs associated with the images. Similarly, marker positivity
frequency as a function of SAR for a cell type was defined as the per-
image proportions of that cell type positive for the marker, as a func-
tion of the mean 6 values per image. For the volcano plotin Fig. 5a, we
fitted alinear regression model to the two above-described functions.
All linear regression models were implemented using the MATLAB
function fitlm, and the volcano plot only shows points for which regres-
sionR?> 0.05. R?and P values for all 5-based and GA-based regressions
are provided in Supplementary Table 10. For determining trend
sizes depicted in Fig. 5a, the following calculation was used: denote
the linear fit to the per-image marker positivity proportion of a
cell type as V, and the corresponding per-image temporal stamps
(either GA or mean image 6) as X. Trend size is then calculated as the
difference between the first and last time point in units of the mean:
V (max(X)) = V (min(X))
mean(V)

Cellular microenvironments

For each cell in the dataset, we defined a ‘neighbourhood’ consisting
ofits 25 closest neighbouring cells, as measured by Euclidean distance
betweenx/y centroids, excluding cells that were not in the decidua (that
is, cellsthat overlapped with any artery, gland, anchoring villous or ves-
sel feature masks). We clustered these cellular neighbourhoods on the
basis of their composition of the 26 cell populations as identified previ-
ously using FlowSOM. For clustering, we used the scikit-learn imple-
mentation of k-means algorithmwith k=20 toidentify neighbourhoods
characterized by the presence of rare cell populations. Selected clusters
were merged on the basis of similarity when hierarchically clustered, a
threshold of 0.5 when comparing Euclidean distances between k-means
cluster centroids and manual inspection of the cluster assignment
when overlaid on the images. Based on these approaches, we defined
12 distinct decidual cellular microenvironments, 10 of which are shown
inFig. 5f (microenvironments characterized by predominantly stromal
cell populations, fibroblasts (3 in Supplementary Table 12) and myofi-
broblasts (6 inSupplementary Table12) are not showninthe heatmap).

Definition of anatomical EVT location and associated arteries
Cell column EVTs were defined as EVTs located within cell column
masks, intravascular EVTs were located within artery masks, and
interstitial EVTs were located in the decidua. Perivascular EVTs were
defined as interstitial EVTs located within 50 pixels of the edge of an
artery, as defined by the radial expansion of the artery masks (Extended
Data Fig. 7b). Arteries were said to have perivascular or intravascular
EVTs (Fig. 6d and Extended Data Fig. 7e,f) if the number of EVTs in the
appropriate artery compartment was >5.

SMA and endothelium-loss scores

The loss scores presented in Extended Data Fig. 7e,f were based on
digitized morphological features. For SMA, the average feature was
used, whereas for endothelium, the radial coverage of CD31was used
(see methods section ‘Automated digitization of artery morphological
features’). The values for each of the two features were then divided by
their maximum across arteries and subtracted from 1to obtain aloss
score. Theresulting values were then linearly rescaled to the range 0-1
using the MATLAB function rescale.

Characterization of EVTs by compartment

Tofurther characterize EVT composition per spatial compartment (cell
column, interstitial, perivascular or intravascular), we first quantified
EVT-subtype frequency per compartment. One image was excluded
(16_31762_20_8) owing to abnormal tissue morphology (Extended
Data Fig. 8a). We then compared the distance from the nearest artery
between EVT subtypes (Extended Data Fig. 8b). For this analysis, only

images that contained all four EVT types were considered, and the
cell-to-artery distance was measured from the cell centroid as detected
by segmentation to the closest pointonthe border of the artery mask.

We then set out to assess the extent of similarity between EVTs by
compartment in terms of expression of functional markers. For this
analysis we used a LDA based method, similarly to our calculation of the
continuous SAR remodelling score § for compartment-wise analysis of
EVT types. Theinput table for LDA consisted of MIBI-measured marker
expression values per EVT. The following lineage and functional mark-
ers expressed by EVTs were included: CD56, CD57, HLA-G, CK7, PD-L1
and Ki67. EVTs were labelled by spatial compartment as cell column,
interstitial, perivascular or intravascular. Marker expression values
were standardized (meansubtracted and divided by the standard devia-
tion), and cell column, interstitial and intravascular location labels
per EVT were used for training the LDA model. Perivascular EVTs were
withheld as a test set. Owing to the small number or features (markers),
aone-dimensional LDA was calculated to produce asingle coordinate,
LD1. LD1was the optimal linear combination of a subset of markers
to maximize the separation by compartment between EVTs (Supple-
mentary Table 14). LD1 values were subsequently calculated for the
withheld test set of perivascular EVTs (Supplementary Table 14). The
distributions of LD1values per compartmentindicated that perivascu-
lar EVTs are similar to interstitial and intravascular EVTs, withamedian
value between the two (Extended Data Fig. 8c). This resultimplies that
perivascular EVTs could be anintermediate state between interstitial
and intravascular, in line with the intravasation model whereby inter-
stitial EVTsinvade the artery lumen.

Origin of CD56" EVTs in the intravascular compartment

The frequency of CD56* EVTs was highestin the intravascular compart-
ment (Extended Data Fig. 8a). Furthermore, the frequency of CD56"
EVTsincreased with SAR both in the perivascular and intravascular
compartment (Extended Data Fig. 8d,e). However, the increase in
the intravascular compartment was steeper (Extended Data Fig. 8f).
We set out to test whether this was compatible with intravasation
whereby the source for intravascular EVTs is perivascular EVTs or
whether additional sources of intravascular CD56*EVTs were needed
to account for their increase. These alternative sources could be cell
proliferation or extravasation, whereby EVTs migrateinaretrograde
manner after entering spiral arteries directly at the basal plate. Under
the intravasation model, the steep increase in CD56" EVTs between
the perivascular and intravascular compartments would be explained
by CD56 upregulation upon arterial invasion. We proposed that this
should involve anintermediate state of perivascular EVTs defined by
moderate levels of CD56. To test this hypothesis, we compared the
average CD56 intensity of perivascular and intravascular EVT1a and
EVTIb cells for each artery (for arteries that initiated remodelling:
6 >2).Thisanalysis detected asignificantincreasein CD56 expression
between the perivascular and intravascular compartment by EVT1a
and EVTIDb cells (sided Wilcoxon signed rank test Pvalue =5 x1073;
Extended DataFig. 8g). An alternative explanation for the increasing
frequency of CD56"EVTIc cells within arteries could be proliferation.
However, only 0.5% of intravascular EVT1c cells were Ki67*, a lower
frequency than9.6% and 1.8% for intravascular EVTlaand EVT1b cells,
respectively, which suggested that proliferationis notaprimary con-
tributor (Extended Data Fig. 8h).

DEGsinEVTs

DEGsbetweenintravascular andinterstitial EVTs wereidentified using
the Bioconductor package limma® (linear models for microarray
data) after consulting with the NanoString statistics team. Using the
default parameters in limma on 75th percentile normalized counts,
131 upregulated genes and 143 downregulated genes were found
(false-discovery rate cutoff = 0.1, log fold change cutoff = 2). Genes
with log fold change > 2.3 or < 2.3 and adjusted P value < 0.05 are
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shown in the heatmap in Fig. 6f. A complete list of DEGs is shown
in Extended Data Fig. 9 and Supplementary Table 11. For IHC vali-
dation of differential expression for selected genes, see Extended
Data Fig.10a.

NicheNet analysis

Weused the NicheNet R package to predictligand-receptorinteractions
betweenintravascular EVTs and arteries. The analysis was performed
by following the vignette available at GitHub (https://github.com/saey-
slab/nichenetr/blob/master/vignettes/ligand_activity_geneset.md).

NicheNet requires three input gene lists to predict ligandsin sender
cells that are likely to interact with receptors in receiver cells and by
doing so affect the expression of aset of genes of interest. These three
gene lists are: genes of interest, genes expressed in sender cells and
genes expressed in receiver cells.

For our analysis, we wanted to check which ligands expressed in
intravascular EVTs are likely to be causing temporal gene expression
trends with remodelling in arteries. To do so, we defined the genes of
interestasall genes trending with remodellinginarteries (Fig.30). The
genes expressed in receiver cells were defined as all genes expressed
inarteries (see previous sections for the definition of ‘expressed’), and
genes expressed in sender cells were defined as genes differentially
expressed between interstitial and intravascular EVTs and higher in
intravascular EVTs (Supplementary Table 11). NicheNet analysis was
performed as described in the vignette to prioritize ligands and to
infer corresponding receptors and downstream targets (Extended
DataFig.10b). Theinferred targets were manually classified according
to their known function using the Gene Cards database (https://www.
genecards.org) and survey of the literature. A list of references for all
classifications are provided in Supplementary Table 5.

Statistical analyses

Throughout the paper, unless indicated otherwise, the Kruskal-
Wallis test was used. It was implemented using the MATLAB function
KruskalWallis. All linear regression models were implemented using
the MATLAB function fitlm unless stated otherwise. The sided Wilcoxon
signed-rank test for paired analysis wasimplemented using the MATLAB
function signrank. MATLAB v.2020b was used throughout the article
for statistical analysis.

Ethics statement

Allhuman samples were acquired and all experiments were approved by
Institutional Review Board protocol number 46646 “Assessing normal
expression patterns ofimmune and non-immune markers across tissue
types with multiplexed ionbeamimaging” at Stanford University. Per
this protocol fromthe Institutional Review Board at Stanford University,
the consent to use archival deidentified tissue was not required. All
experiments followed all relevant guidelines and regulations.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

MIBI data are available at the Human BioMolecular Atlas Program
(https://doi.org/10.35079/hbm585.qpdv.454). The same MIBI data
in a browsable format, along with segmentation masks, extracted
features, cell phenotype masks (CPMs), cell-cell and cell-artery
spatial-enrichment scores per image, a table enumerating all single
cellsin this study and provides their location, morphological charac-
teristics (such as size and shape), marker expression, FlowSOM clus-
ter assignment and cell-type assignment, are available at FigShare
(https://doi.org/10.6084/m9.figshare.16663465). H&E images of
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Extended DataFig.7|EVT distribution. a. Two hypotheses forintravascular
EVTinvasion. (Left) Intravasation: orange arrows indicate movements of EVTs
fromthe cell columnofthe anchoringvilliinto the decidua and through the
wallof the artery into the lumen. (Right) Extravasation: red arrows indicate
movement of EVTs from the fetal villi through the intervillous space into the
artery.b. Anatomicallocations of EVT populationsin the decidua. c. Distribution
ofartery &8s, based on the presence of perivascular and/orintravascular EVTs.
[Violinsleft to right] min=1, max =2.65, center=1.7; min =1.19, max=3,
center=1.84; min=1.77, max =5, center =3.2; min=1.6, max =4.5, center =2.4.

d.Scatter plot of log,(Intravascular/Perivascular) ratio by 6, for arteries with
both perivascularandintravascular EVTs present. Black line, fitted linear
regression. Regression p-value ontop. e. Percentage of arteries with <agiven
SMA loss (s) threshold, by perivascular orintravascular EVTs present. Arteries
were considered to have perivascular orintravascular EVT if the number of
EVTintheappropriate compartmentwas >5.f. Percentage of arteries with
scores<agivenendothelialloss (e) threshold, by perivascular or intravascular
EVTs present. Arteries were considered to have perivascular or intravascular
EVTifthenumberof EVTinthe appropriate artery compartment was > 5.
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Extended DataFig.8|EVT PhenotypebyLocation.a.Frequency of EVT
populations by anatomical location.b. Violin plot of distance from artery

(in pixels) by EVT type.EVT1c:N =209, min =12.8, max = 1536.7, center (median) =
173.9;EVT1a:N =7123, min =10, max =2028.7, center=363.6; EVT1b:N = 5908,
min=7.2,max=1989.5, center=376.45; EVT1c: N =185, min=9.4, max.=1818.1,
center=475.6.c.Violin plot of the distribution of LD1for EVTs, by anatomical
location. Center linesinside violinsindicate mean. Anchoring: N =8906,
min=-3.6, max=3.9, center =-1; Interstitial: N=38395, min = -3.4, max=4.4,
center = 0; Perivascular:N=1097, min = -3.14, max = 4, center = 0.08;

Intravascular:N=4040, min = -3.15, max = 4.6, center = 2.d-h: d,e Scatter plots
of perivascular (d) and intravascular (e) EVT1c (CD56+) frequency by 6. Red
lines, fitted linear regression, regression p-values on top. f. Bar plot of the
EVTlcfrequencyincreaserates (regressionslopesfromd,e). Error bars, 95%
confidenceinterval for regressionslopes. g. Paired-by-artery CD56 expression
inEVT1a&b, between perivascular and intravascular compartments. Arteries
with 8 >2included. p = 5e-03, one sided paired Wilcoxon signed rank test,
z-statistic=2.5h. Proportion of Ki67+intravascular EVT by type.
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Extended DataFig. 9| Differential genein EVT. a. Full heatmap for differentially expressed genes between intravascular and interstitial EVTs showing gene
expression (Z-score), (logFC>2, adj p-value <0.05 using Limma).
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serial sections for protein counterparts for 3 differentially expressed genes
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Sample size Cohort consisted of archival tissue from the decidua of 71 patients. While no statistical methods were used to determine cohort size, this is
the largest to date cohort used for the study of the human maternal-fetal interface and is therefore sufficient.

Data exclusions  Patient samples were screened by a pathologist and samples not containing decidua were excluded. Exclusion criteria of not including non
decidual samples were pre-established and 66 patients remained after exclusion.

Replication Experimental findings were based on 66 patients, several images were generated per patient.
Randomization Irrelevant since there were no experimental groups in this study.

Blinding Blinding was irrelevant due to the absence of experimental groups.

Reporting for specific materials, systems and methods
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Antibodies

Antibodies used Study used 38 primary antibodies. See Supplemental data table 9 for all requested information about each reagent including the
precise working concentration used (called "Titer").

Validation All reagents were validated in-house with chromogenic immunohistochemistry on FFPE human control tissue. Following this stage of

validation all antobodies were metal-labeled and further tested with MIBI-TOF. Imaging data for all antibodies in control tissues can
be found in Extended Data Figure 1.

Human research participants

Policy information about studies involving human research participants

Population characteristics Study did not directly involve human participants, but used archival cloinical specimens from the decudua of 66 patients who
underwent elective pregnancy termination between 6-20 weeks gestation at San Francisco General Hospital. Patients were
aged 20-39, with parity of 0-4, racially diverse (While, Hispanic, Asian, Black) and with BMI ranging 19-48. Additional
information about the patients appears in Supplementary table 1.

Recruitment No participants were recruited, archival tissue was used. Per protocol #46646 from Stanford IRB board, consent to use
archival deidentified tissue was not required

Ethics oversight All human samples were acquired in accordance with Institutional Review Board (IRB) protocol #46646 "Assessing Normal




Ethics oversight Expression Patterns of Immune and Non-Immune Markers Across Tissue
Types With Mulitplexed lon Beam Imaging" at Stanford University.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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