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Skilful nowcasting of extreme precipitation 
with NowcastNet

Yuchen Zhang1,4, Mingsheng Long1,4 ✉, Kaiyuan Chen1, Lanxiang Xing1, Ronghua Jin2, 
Michael I. Jordan3 ✉ & Jianmin Wang1 ✉

Extreme precipitation is a considerable contributor to meteorological disasters and 
there is a great need to mitigate its socioeconomic effects through skilful nowcasting 
that has high resolution, long lead times and local details1–3. Current methods are 
subject to blur, dissipation, intensity or location errors, with physics-based numerical 
methods struggling to capture pivotal chaotic dynamics such as convective initiation4 
and data-driven learning methods failing to obey intrinsic physical laws such as 
advective conservation5. We present NowcastNet, a nonlinear nowcasting model for 
extreme precipitation that unifies physical-evolution schemes and conditional- 
learning methods into a neural-network framework with end-to-end forecast error 
optimization. On the basis of radar observations from the USA and China, our model 
produces physically plausible precipitation nowcasts with sharp multiscale patterns 
over regions of 2,048 km × 2,048 km and with lead times of up to 3 h. In a systematic 
evaluation by 62 professional meteorologists from across China, our model ranks first 
in 71% of cases against the leading methods. NowcastNet provides skilful forecasts at 
light-to-heavy rain rates, particularly for extreme-precipitation events accompanied 
by advective or convective processes that were previously considered intractable.

Nowcasting is defined by the World Meteorological Organization 
(WMO) as forecasting that yields local details across the mesoscale 
and small scale, over a period from the present up to 6 h ahead and 
which provides a detailed description of the present weather1. Now-
casting is crucial in risk prevention and crisis management of extreme 
precipitation, commonly defined as the 95th percentile of the cumu-
lative frequency distribution of daily precipitation2. According to a 
recent report from the WMO3, over the past 50 years, more than 34% 
of all recorded disasters, 22% of related deaths (1.01 million) and 57% 
of related economic losses (US$ 2.84 trillion) were consequences of 
extreme-precipitation events.

Weather radar echoes provide cloud observations at sub-2-km spatial 
resolution and up to 5-min temporal resolution, which are ideal for pre-
cipitation nowcasting6. The natural option for exploiting these data is 
numerical weather prediction, which produces precipitation forecasts 
based on solving coupled primitive equations of the atmosphere7. 
However, these methods, even when implemented on a supercom-
puting platform, restrict the numerical weather prediction forecast 
update cycles to hours and the spatial resolution to the mesoscale, 
whereas extreme weather processes typically exhibit lifetimes of tens 
of minutes and individual features at the convective scale4,8,9. Alterna-
tive methods such as DARTS10 and pySTEPS9 are based on an advection 
scheme inspired solely by the continuity equation. These methods solve 
separately for the future states of the motion fields and the intensity 
residuals from composite radar observations and iteratively advect 
past radar fields to predict future fields. The advection scheme partially 
respects the physical conservation laws of precipitation evolution and is 

able to provide skilful extrapolations within 1 h, but it degrades quickly 
beyond that horizon, incurring high location error and losing small 
convective features. These errors accumulate in the autoregressive 
advection processes in uncontrolled ways11, owing to existing advection 
implementations failing to incorporate nonlinear evolution simulations 
and end-to-end forecast error optimization.

Deep-learning methods have been applied in recent years to weather 
nowcasting12–16. These methods exploit large corpora of composite 
radar observations to train neural-network models in an end-to-end 
fashion, dispensing with explicit reference to the physical laws behind 
precipitation processes. They have proved useful for low-intensity 
rainfall as measured by per-grid-cell metrics such as the Critical Suc-
cess Index (CSI)4. A large step forward in this setting has been the deep 
generative model of radar (DGMR) approach developed by DeepMind 
and the UK Met Office4. This approach generates spatiotemporally 
consistent predictions with a lead time of up to 90 min, simultaneously 
capturing chaotic convective details and accounting for ensemble 
forecast uncertainty. In an expert evaluation by more than 50 mete-
orologists from the UK Met Office, DGMR ranked first in 89% of cases 
against competing methods, including the advection-based method 
pySTEPS9. Still, for extreme precipitation, DGMR may produce nowcasts 
with unnatural motion and intensity, high location error and large cloud 
dissipation at increasing lead times4. These problems reflect the fact 
that radar echoes are only partial observations of the atmospheric 
system. Deep-learning models based purely on radar data analysis are 
hampered in their ability to capture the fuller range of physical phe-
nomena underlying precipitation5. We believe that physical knowledge 
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of aspects of precipitation processes, including the conservation law 
of cloud transport10 and the log-normal distribution of rain rate17, need 
to be embedded into data-driven models to make skilful nowcasting 
of extreme precipitation possible.

We present NowcastNet, a unified nowcasting model for extreme 
precipitation based on composite radar observations. It combines 
deep-learning methods with physical first principles, by means of a 
neural-network framework that implements neural evolution opera-
tors for modelling nonlinear processes and a physics-conditional 
mechanism for minimizing forecast error. This framework enables 
seamless integration of advective conservation into a learning model, 
successfully predicting long-lived mesoscale patterns and capturing 
short-lived convective details with lead times of up to 3 h. As we will 
show on the USA and China events corpora, the forecasts made by 
NowcastNet are judged by expert meteorologists to be more accurate 
and instructive than pySTEPS, DGMR or other deep-learning systems.

NowcastNet
Skilful nowcasting requires making use of both physical first principles 
and statistical-learning methods. NowcastNet provides such a unifica-
tion using a neural-network framework, allowing end-to-end forecast 
error optimization. Our nowcasting algorithm (Fig. 1a) is a physics- 
conditional deep generative model that exploits radar-based estimates 
of surface precipitation to predict future radar fields x T1:  given past 
radar fields T− :00

x . The model includes a stochastic generative network 
parameterized by θ and a deterministic evolution network parameter-
ized by ϕ. The nowcasting procedure is based on physics-conditional 
generation from latent random vectors z, described by

∫P φ θ P φ θ P( | , ; ) = ( | , ( ), ; ) ( )d . (1)T T T T T1: − :0 1: − :0 − :00 0 0
x x x x x z z z 

The integration over latent Gaussian vectors z enables ensemble fore-
cast with predictions skilfully capturing the pivotal chaotic dynamics4.

Although our work fits in a nascent thread of research on physics- 
informed neural networks5, there are many challenges in the precipita-
tion domain that are not readily accommodated by existing research. 
Most notably, the multiscale nature of atmospheric physics introduces 
emergent dependencies among several spatiotemporal scales and 
imposes inherent limits on atmospheric predictability8. In particular, 
the convective processes are subject to chaotic error growth from 
uncertain initial conditions, limiting advection schemes to a spatial 
scale of 20 km and a lead time of 1 h (ref. 18). Naive combinations of 
neural networks and physical principles entangle the multiscale vari-
ability and corrupt the mesoscale and convective-scale patterns, creat-
ing undesirable confounding and uncontrolled errors.

We address the multiscale problem by a new conditioning mechanism 
that the data-driven generative network θ boosts over the advection- 
based evolution network ϕ (Fig. 1a). The evolution network imposes 
compliance with the physics of precipitation, yielding physically plau-
sible predictions ″ T1:x  for advective features at a scale of 20 km. The 
nowcast decoder takes the nowcast encoder representations of past 
radar fields x T− :00

, along with the evolution network predictions ″ T1:x , 
and generates fine-grained predictions T1:x  from latent Gaussian  
vectors z that can capture convective features at a 1–2-km scale. Such 
a scale disentanglement mitigates error propagating upscale or down-
scale in the multiscale prediction framework19. We use the spatially 
adaptive normalization technique20 to enable an adaptive evolution 
conditioning mechanism. In each forward pass, the mean and variance 
of every-decoder-layer activations are replaced by the spatially cor-
responding statistics computed from the evolution network predic-
tions x″ T1: . As a result, NowcastNet adaptively combines mesoscale 
patterns governed by physical laws and convective-scale details 
revealed by radar observations, yielding skilful multiscale predictions 
with up to a 3-h lead time.

Learning is framed as the training of a conditional generative adver-
sarial network21, given the pre-trained evolution network that encodes 
physical knowledge. A temporal discriminator is built on the nowcast 
decoder, taking as input the pyramid of features in several time windows 
and outputting whether the input is likely to be real radar or a fake field. 
The nowcast encoder and decoder are trained with an adversarial loss 
to generate convective details present in the radar observations but 
left out by the advection-based evolution network. Also, the generated 
nowcasts need to be spatially consistent with the radar observations. 
This is achieved by the pool regularization, which enforces consistency 
between spatial-pooled ensemble nowcasts and spatial-pooled obser-
vations. The pooling-level consistency is more tolerant of the spatial 
chaos in real fields and is capable of resolving the conflict between the 
generative network and the evolution network.

Evolution network
NowcastNet enables multiscale nowcasting by conditioning the 
data-driven (stochastic) generative network θ on the advection-based 
(deterministic) evolution network ϕ. In atmospheric physics, the con-
tinuity equation is the fundamental conservation law governing the 
cloud transport and precipitation evolution. It has inspired a series 
of operational advection schemes22, which model the precipitation 
evolution as a composition of advection by motion fields and addition 
by intensity residuals. However, previous implementations of advection 
schemes, for example, pySTEPS, fall short in three respects: (1) their 
advection operation is not differentiable and thus cannot be embedded 
easily into an end-to-end neural framework for gradient-based optimi-
zation; (2) their steady-state assumption limits the implementations 
to linear regimes, failing to provide the nonlinear modelling capability 
crucial for precipitation simulations; and (3) their autoregressive nature 
prevents direct optimization of the forecast errors and errors arising 
from the estimation of the initial states, motion fields and intensity 
residuals will accumulate in an uncontrolled manner in the Lagrangian 
persistence model8.

We address these desiderata with our evolution network (Fig. 1b), 
which implements the 2D continuity equation10 through neural 
evolution schemes. On the basis of a new differentiable neural evo-
lution operator, it learns the motion fields, intensity residuals and 
precipitation fields simultaneously by neural networks; moreover, it 
directly optimizes the forecast error throughout the time horizon by 
gradient-based backpropagation.

Our physics-informed evolution network is built on a new differen-
tiable neural evolution operator (Fig. 1c). The evolution operator takes 
the current radar field x0 as input and predicts the future radar fields 
x1:T. At each time step, the radar field predicted at the last time step x″t −1 
is evolved by one step of advection with the motion field vt to obtain 
x′t and the intensity residual st is then added to yield x″t . The operator 
makes all motion fields and intensity residuals learnable end to end by 
gradient-based optimization, which is unattainable by existing advec-
tion schemes. When learning the operator with backpropagation, we 
stop the gradients between each time step to block information inter-
ference. This mitigates the numerical instability arising from the under-
determined nature of the overall system, which has discontinuous 
interpolations in the evolution operator.

The evolution network augments with an encoder–decoder archi-
tecture that simultaneously predicts motion fields v1:T and intensity 
residuals s1:T at all future time steps based on past radar fields T− :00

x . 
Such a full dependency between the past and future time steps miti-
gates the nonstationarity issue in sequence prediction. Also, the evolu-
tion encoder, motion decoder and intensity decoder are neural 
networks (Fig. 1b), enabling nonlinear evolution modelling, which 
previous advection schemes struggle to capture.

Learning of the evolution network is framed as directly optimizing 
the forecast error throughout the time horizon. The accumulated error 
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arises in the evolution operator, measured by the sum of distances 
between evolved field ″tx  and the observed radar xt. Because each  
evolution step involves solving for both the motion field vt and the 
intensity residual st, to shortcut the gradient path for end-to-end  
optimization, we adopt the concept of residual learning23 and further  
calculate the sum of distances between the advected field ′tx  and the 
observed radar xt. Combining the two sums of distances leads to the 
accumulation loss. Furthermore, inspired in part by the continuity 
equation and in part by the fact that large precipitation patterns  
tend to be longer lived than small ones8, we further design a motion- 
regularization term to make the motion fields smoother on the grids 
with heavier precipitation. Specifically, the spatial gradients of the 
motion fields v1:T are computed by a Sobel filter24 and the gradient 
norm, weighted by rain rate, is used as the regularizer.

Evaluation settings
We evaluate the forecasting skill and value of NowcastNet against 
state-of-the-art precipitation nowcasting models. pySTEPS9, an 

advection-based method, has been widely adopted by meteorologi-
cal centres worldwide for operational nowcasting25. PredRNN13, a 
data-driven neural network, has been deployed at the China Mete-
orological Administration. DGMR4, an ensemble nowcasting method 
based on deep generative models with integrated domain knowledge, 
for example, spatiotemporal consistency of clouds and heavy-tailed 
distribution of rainfall, has shown the best forecasting skill and value 
in an expert evaluation held by the UK Met Office.

All models are trained and tested on large radar corpora of the USA 
and China events, consisting of crops in fixed-length series extracted 
from the radar stream. An importance-sampling strategy4 is used to 
create datasets more representative of extreme-precipitation events. 
In the USA corpus, we use the Multi-Radar Multi-Sensor (MRMS) data-
set26 and all models are trained with radar observations for the years 
2016–2020 and evaluated for the year 2021. In the China corpus, we 
use a private dataset provided by the China Meteorological Adminis-
tration, with radar observations from September 2019 to March 2021 
for training and from April 2021 to June 2021 for evaluation. Although 
the China corpus is smaller, the underlying weather system is more 
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Fig. 1 | NowcastNet for extreme-precipitation nowcasting. a, Architecture  
of NowcastNet, a physics-conditional deep generative model. The nowcast 
encoder learns contextual representations. The nowcast decoder conditions 
on the physics-informed evolutions ″ T1:x  and transforms draws from a latent 
Gaussian vector z into mesoscale and convective-scale predictions  T1:x .  
b, Evolution network, a neural implementation of the advection schemes 

informed by the 2D continuity equation, which imposes compliance with the 
precipitation physics and outputs mesoscale predictions ″ T1:x . c, Evolution 
operator, a neural operator that iteratively advects x0 by motion fields v1:T to get 
x′ T1:  and adds by intensity residuals s1:T to get x″ T1: . Precipitation data obtained 
from the MRMS26 dataset and maps produced with cartopy and Natural Earth.
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complex owing to geographical diversity. To avoid overfitting, we use 
a transfer learning strategy27, in which all models are pre-trained on the 
USA training set and fine-tuned to the China training set.

NowcastNet can produce high-resolution fields in seconds at infer-
ence time. We report two main quantitative metrics: the CSI with neigh-
bourhood28 that measures the location accuracy of nowcasts and the 
power spectral density (PSD)29 that measures the precipitation vari-
ability based on spectral characteristics of nowcasts compared with 
that of radar observations.

Precipitation events
We investigate a precipitation event starting at 09:30 UTC on 11 Decem-
ber 2021 (Fig. 2), which was part of a tornado outbreak in eastern USA. 
First, several lines of intense storm developed across the Mississippi 

Valley and moved eastward; later, they converged to a convective fine 
line stretching along the associated cold front and sweeping from east-
ern Kentucky into Alabama. This precipitation event led to dozens of 
tornadoes, widespread rainstorms and straight-line winds reaching 
speeds of 78 mph. Prediction of the fine line, represented by the yellow 
line echo in the radar fields, is known to be very challenging.

pySTEPS predicts future radar fields of good sharpness but incurs 
large location error and fails to keep the shape of the line echo at 1 h 
ahead. PredRNN only provides an outline trend but the predictions are 
too blurry, losing the multiscale patterns useful for meteorologists 
to make forecasts. DGMR is able to preserve the convective details 
but suffers from unnatural cloud dissipation, yielding large location 
errors and underestimated intensities. Worse still, the shapes of the 
line predicted by DGMR are excessively distorted. Throughout the 3-h 
event, NowcastNet is the only method able to accurately predict the 
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Fig. 2 | Case study of a precipitation event starting on 11 December 2021, 
with a large convective fine line and a tornado outbreak in eastern USA. 
NowcastNet is able to predict the convective-fine-line evolutions and details 
for a longer time period. a, Geographic context for the predictions. b, A single 
prediction at T + 1 h, T + 2 h and T + 3 h lead times for different models. c, CSI 

neighbourhood at thresholds 16 mm h−1 and 32 mm h−1. d, PSD at different 
wavelengths. Images are zoomed in 768 km × 768 km to highlight local details. 
Precipitation data obtained from the MRMS26 dataset and maps produced with 
cartopy and Natural Earth.
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movement of the fine line and preserve the envelope of the rain area. 
The line echo covers intense rainfall (>32 mm h−1), for which NowcastNet 
achieves notably better CSI. NowcastNet also achieves the highest PSD 
at all wavelengths (that is, spatial scales), yielding sharp, consistent and 
multiscale nowcasts in reference to the ground truth.

We investigate another precipitation event starting at 23:40 UTC on 
14 May 2021 in the Jianghuai area of China (Fig. 3), for which several cities 
issued red rainstorm warnings. Three convective cells evolved differently. 
The first cell moved from the centre to the northeast, developing into a 
bow echo from a single-cell thunderstorm echo. The second cell was a 
squall line moving from the southwest to the middle, with the tail mov-
ing to the east. The third cell was in between and showed steady growth.

Subject to noncompliance of physical conservation laws, PredRNN and 
DGMR suffer from fast dissipation and fail to predict the evolution of any 
convective cell at a 2-h lead time. pySTEPS predicts the direction of the 

three cells but fails to predict the specific location or the shape change. 
By contrast, NowcastNet yields plausible nowcasts for the evolutions of 
the three cells at a 3-h lead time. Although the nowcasts of the squall line 
and the growing cell are still not perfect, they are useful for meteorolo-
gists. Quantitative results of NowcastNet in terms of CSI neighbourhood 
and PSD are substantially improved relative to the leading methods.

We inspect more weather events with extreme precipitation, con-
vective initiation, light rainfall and typical processes in Extended Data 
Figs. 2–8 and Supplementary Figs. 2–5. High-resolution nowcasts of 
2,048 km × 2,048 km are shown in Extended Data Figs. 9 and 10.

Meteorologist evaluation
We evaluate the forecast value of different models for extreme- 
precipitation events by the meteorologist evaluation protocol from 
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several convective cells and red rainstorm warnings in the Jianghuai area of 
China. NowcastNet is the only method able to predict the multiscale evolutions 
of the three convective cells over a longer time period. a, Geographic context for 
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the UK Met Office4. For fairness, the China Meteorological Administra-
tion made a public invitation to senior meteorologists across China 
to participate in the evaluation. On the public website, experts can 
control the display of precipitation fields but the nowcasts of different 
models are shown anonymously and out of order. Finally, 62 expert 
meteorologists from the central and 23 provincial observatories com-
pleted the evaluation, each judging 15 test cases chosen randomly 
from the extreme-precipitation-event subsets. The USA and China 
subsets consist of 1,200 extreme events occurring over 93 days in 2021 
and 50 days from April 2021 to June 2021, respectively. We note that, 
although judging the USA events by China meteorologists may incur 
some bias, we expect it to be relatively minor, as the global weather 
system shares underlying physical principles and the two countries 
share meteorological observations and technologies.

We augment the UK Met Office protocol by running two types of 
evaluation: posterior evaluation and prior evaluation. In the posterior 
evaluation, meteorologists were asked to objectively rank the forecast-
ing value of the predictions of each model with reference to the future 
ground-truth observations. In the prior evaluation, meteorologists 
needed to subjectively rank the forecasting value given past radar series 
but without seeing the future ground truth. This protocol simulates 
the real scenario in which future observations are not accessible and 
meteorologists have to make an on-the-fly choice of which model is 
preferred for nowcasting.

The statistics of meteorologist evaluation are shown in Fig. 4a,b. In 
the posterior evaluation, NowcastNet was ranked as the first choice for 
75.8% of the USA events ([72.1, 79.3]) and for 67.2% of the China events 
([63.1, 71.1]). In the prior evaluation, NowcastNet was ranked as the 
first choice for 71.9% of the USA events ([66.6, 76.8]) and 64.4% of the 

China events ([58.9, 69.7]). The numbers in brackets are 95% confidence 
intervals. NowcastNet holds the highest meteorologist preference 
by providing skilful nowcasts that exhibit physical plausibility and 
multiscale features, whereas other models struggle.

Quantitative evaluation
We provide a quantitative evaluation based on the results for CSI 
neighbourhood and PSD shown in Fig. 4c,d. The evaluation includes 
U-Net30, a common baseline for precipitation nowcasting. Adopt-
ing the importance-sampling protocol of DGMR4, we sample two 
subsets from the USA and China corpora, both representative of 
extreme-precipitation events. By CSI neighbourhood, NowcastNet 
produces more accurate nowcasts at higher rain rate (>16 mm h−1). 
By PSD, NowcastNet yields sharper nowcasts of more consistent 
variability in spectral characteristics to radar observations for a 
3-h lead time. These quantities justify that NowcastNet is skilful for 
extreme-precipitation nowcasting, better able to predict precipita-
tion patterns at both the mesoscale and the convective scale, while 
maintaining high accuracy of evolution prediction over a longer time 
period.

In Supplementary Figs. 10–17, we provide further quantitative 
evaluations under both uniform-sampling and importance-sampling  
protocols4.

Conclusion
Precipitation nowcasting is a leading long-term goal of mete-
orological science. Although progress has been made, numerical 
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Fig. 4 | Meteorologist evaluation and quantitative evaluation of the USA 
and China datasets. a, Meteorologist evaluation for the USA events based on 
the first-choice preference of each model. Black horizontal lines indicate the 
Clopper–Pearson 95% confidence intervals. Meteorologists substantially 
preferred NowcastNet to other competitors (n = 62, P < 10−4). b, Meteorologist 
evaluation for the China events. Meteorologists substantially preferred 

NowcastNet to other competitors (n = 62, P < 10−4). c, Quantitative scores for 
the USA events in 2021. The first row shows CSI neighbourhood of different 
models at precipitation thresholds of 16 mm h−1, 32 mm h−1 and 64 mm h−1.  
The second row shows PSD over 1,024 km × 1,024 km predictions for different 
models at T + 1 h, T + 2 h and T + 3 h lead times. d, Quantitative scores for the 
China events from April 2021 to June 2021.



532  |  Nature  |  Vol 619  |  20 July 2023

Article
weather-prediction systems are at present unable to provide skil-
ful nowcasts for extreme-precipitation events that are needed for 
weather-dependent policymaking.

Much of the inherent difficulty of nowcasting stems from the multi-
scale and multiphysics problems arising in the atmosphere and the need 
to combine physical first principles with statistical-learning methods in 
a rigorous way. Our work addresses this challenge using an end-to-end 
optimization framework that combines physical-evolution schemes 
and conditional-learning methods. The resulting model, NowcastNet, 
provides physically plausible nowcasts with high resolution, long lead 
time and local details for extreme-precipitation events, for which exist-
ing methods struggle.

Much future work is needed to improve precipitation nowcasting 
skill. One direction is integration of more physical principles such as 
momentum conservation. Another direction is exploitation of more 
meteorological data such as satellite observations. We hope this work 
will inspire future research in these directions.
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Methods

Detailed explanations of the proposed model, as well as baselines, data-
sets and evaluations, are given here, with references to the Extended 
Data Figs. and Supplementary Information that add to the results pro-
vided in the main text.

Model details
We describe NowcastNet with important details of the model architec-
tures, the training methods and the hyperparameter tuning strategies. 
Ablation study of NowcastNet is available in Supplementary Informa-
tion section A.

Evolution network. The 2D continuity equation modified for precipi-
tation evolution31 is

x
v x s

t
∂
∂

+ ( ⋅ ∇) = . (2)

Here x, v and s indicate radar fields of composite reflectivity, motion 
fields and intensity residual fields, respectively, and ∇ denotes the 
gradient operator. The tendency term (v ⋅ ∇)x reveals the mass leaving 
the system, which is the first-order approximation of the difference 
before and after the advection operation:

t t t t
t

( + ∆ ⋅ ∆ , + ∆ ) − ( , )
∆

, (3)
x p v x p

with p and t being the position and time, respectively. The residual 
field s shows the additive evolution mechanisms, such as the growth 
and decay of precipitation intensities. According to the continuity 
equation, the temporal evolution of precipitation can be modelled as 
a composition of advection by motion fields and addition by intensity 
residuals, which is the evolution operator we design for the evolution 
network. We use deep neural networks to simultaneously predict all 
these fields based on past radar observations, which enables nonlinear 
modelling capability for the complex precipitation evolution.

The evolution network (Fig. 1b) takes as input past radar observations 

T− :00
x  and predicts future radar fields x″ T1:  at a 20-km scale based on a 
nonlinear, learnable evolution scheme we propose specifically in this 
article. The architecture details are described in Extended Data Fig. 1a. 
The backbone of the evolution network is a two-path U-Net30, which 
has a shared evolution encoder for learning context representations, 
a motion decoder for learning motion fields v1:T and an intensity 
decoder for learning intensity residuals s1:T. The spectral normalization 
technique32 is applied in every convolution layer. In the skip connec-
tions of U-Net, all input and output fields are concatenated on the 
temporal dimension, that is, the channels in convolutional networks.

The evolution operator (Fig. 1c) is at the core of the evolution net-
work. We use the backward semi-Lagrangian scheme as the advection 
operator. Because v1:T is learnable, we directly set it as the departure 
offset of the semi-Lagrangian scheme. Also, because s1:T is learnable, 
we directly use it to model the growth or decay of precipitation inten-
sities. We take precipitation rate instead of radar reflectivity as the unit 
of radar field x, as this modification will not influence the physical 
nature of the evolution process. As applying bilinear interpolation for 
several steps will blur the precipitation fields, we opt for the nearest 
interpolation in the backward semi-Lagrangian scheme for computing 
x′t. Yet, the nearest interpolation is not differentiable at v1:T. We resolve 
this gradient difficulty by using bilinear interpolation (bili) to advect 
( ′)t bilix  from x″t −1, v1:T, and use ( ′)t bilix  to compute the accumulation loss 
for optimizing the motion fields. Then we use the nearest interpolation 
to compute ′tx  from x″t −1, v1:T, and compute the evolved field ″ = ′ +t t tx x s . 
After each round of the evolution operator, we detach the gradient 
between two consecutive time steps because the overall system is 

underdetermined. Meanwhile, the successive interpolation opera-
tions will make end-to-end optimization unstable, and detaching the 
gradient (stop gradient in Fig. 1c) will markedly improve the numerical 
stability33.

The objective function for training the evolution network comprises 
two parts. The first part is the accumulation loss, which is the sum of the 
weighted L1 distances between real observations and predicted fields:

∑J L L= ( ( , ( ′) ) + ( , ″)) . (4)
t

T

t t t taccum
=1

wdis bili wdisx x x x

In particular, the weighted distance has the following form:

L ( , ′) = ( − ′) ( ) , (5)t t t t twdis 1x x x x w x∥ ⊙ ∥

in which the pixel-wise weight w(x) = min(24, 1 + x) is taken from DGMR4. 
Because the rain rate approximately follows a log-normal distribu-
tion17, it is necessary to add weight to balance different rainfall levels. 
Otherwise, neural networks will only fit light-to-medium precipitation 
taking dominant ratio in the data and heavy precipitation will not be 
accounted for sufficiently. We follow DGMR4 and use a weight propor-
tional to the rain rate and clip it at 24 for robustness to spuriously large 
values in radar observations.

The second part is the motion-regularization term in the form of 
gradient norm, which is motivated in part by the continuity equation 
and in part by the fact that large precipitation patterns tend to be longer 
lived than small ones8:

∑J = ( ∇ ( ) + ∇ ( ) ) , (6)
t

T

t t t tmotion
=1

1
2

2 2
2

2
∥ ⊙ ∥ ∥ ⊙ ∥v w x v w x

in which vt
1 and t

2v  are the two components of the motion fields. The 
gradient of the motion fields ∇v is computed approximately with the 
Sobel filter24:

v v v v
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in which ⁎ denotes the 2D convolution operator in the spatial dimension.
Overall, the objective for training the evolution network (Fig. 1b) is

J J λJ= + . (8)evolution accum motion

During training, we sample the radar fields with 256 × 256 spatial 
size as the input. On both the USA and China datasets, we fix input 
length T0 = 9 and set output length T = 20 for training and take the first 
18 predicted fields for evaluation. Note that increasing T0 does not 
provide substantial improvements and T0 ≥ 4 is sufficient. The tradeoff 
hyperparameter λ is set as 1 × 10−2. We use the Adam optimizer34 with 
a batch size of 16 and an initial learning rate of 1 × 10−3, and train the 
evolution network for 3 × 105 iterations, during which we decay the 
learning rate to 1 × 10−4 at the 2 × 105th iteration.

Generative network. Conditioning on the evolution network predic-
tions x″ T1: , the generative network takes as input the past radar observa-
tions T− :00

x  and generates from latent random vectors z for the final 
predicted precipitation fields T1:x  at a 1–2-km scale. The backbone of 
the generative network is a U-Net encoder–decoder structure, with 
architecture details shown in Extended Data Fig. 1b. The nowcast  
encoder has the identical structure as the evolution encoder (Extended 
Data Fig. 1a), which takes as input the concatenation of x T− :00

 and ″ T1:x . 
The nowcast decoder is a different convolutional network, which  
takes as input the contextual representations from the nowcast  
encoder, along with the transformation of the latent Gaussian vector z.  
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The designs of D Block, S Block and Spatial Norm heavily used in the 
generative network are elaborated in Extended Data Fig. 1e.

The noise projector transforms the latent Gaussian vector z to the 
same spatial size as the contextual representations from the nowcast 
encoder, as elaborated in Extended Data Fig. 1d. For each forward pass, 
each element of z is independently sampled from the standard Gauss-
ian N(0, 1). Then z is transformed by the noise projector into a tensor 
with one-eighth the height and width of input radar observations.

The physics-conditioning mechanism to fuse the generative network 
and the evolution network is implemented by applying the spatially 
adaptive normalization20 to each convolutional layer of the nowcast 
decoder (Extended Data Fig. 1b,e). First, each channel of the nowcast 
decoder is normalized by a parameter-free instance-normalization 
module35. Then the evolution network predictions x″ T1:  are resized to 
a compatible spatial size and then concatenated to the nowcast decoder 
at the corresponding layer through average pooling. Finally, a two-layer 
convolutional network transforms the resized predictions into new 
mean and variance for each channel of the nowcast decoder, ensuring 
not to distort the spatial-coherent features from the evolution network 
predictions x″ T1: . Through the physics-conditioning mechanism, the 
generative network is adaptively informed by the physical knowledge 
learned with the evolution network, while resolving the inherent con-
flict between physical-evolution and statistical-learning regimes.

Conditioning on the evolution network predictions at a 20-km scale, 
the generative network is needed to further generate convective details 
at a 1–2-km scale through training on a temporal discriminator D 
(Extended Data Fig. 1c). The temporal discriminator takes as input real 
radar observations T1:x  and final predicted fields T1:x  and outputs scores 
of how likely they are being real or fake. At its first layer, the inputs are 
processed by 3D convolution layers with several kernel sizes at the 
temporal dimension from 4 to the full horizon. Then the multiscale 
features are concatenated and feedforwarded to subsequent convo-
lutional layers with spectral normalization32 applied in each layer. The 
objective for training the temporal discriminator is

J L D L D= ( ( ), 1) + ( ( ), 0), (9)T Tdisc ce 1: ce 1:x x

with Lce being the cross-entropy loss. Within a two-player minimax 
game, the nowcast decoder of the generative network is trained to 
confuse the temporal discriminator by minimizing the adversarial 
loss modified by21

J L D= ( ( ), 1). (10)Tadv ce 1:x

The gradients backpropagate through x T1: , first to the nowcast 
decoder and then to the nowcast encoder of the generative network, 
leading it to predict realistic multiscale fields with convective-scale 
details.

We take the idea of generative ensemble forecasting from DGMR4 
and predict a group of precipitation fields xz

T1:
i  from several latent inputs 

z1:k, with k being the number of ensemble members. Then we aggregate 
the k predictions xz

T1:
i

  and real fields x1:T respectively by a max-pooling 
layer Q in the spatial dimension, with kernel size and stride set as 5  
and 2, correspondingly. On the basis of ensemble forecasts, the pool 
regularization is defined as the weighted distance between spatial- 
pooled observations and the mean of k spatial-pooled predictions


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Overall, the objective for training the generative network (Fig. 1a) is

J βJ γJ= + . (12)generative adv pool

We set the number of ensemble members as k = 4, adversarial loss 
weight β = 6 and pool-regularization weight γ = 20. Similar to the evo-
lution network, we set input length T0 = 9 and output length T = 20.  

We use the Adam optimizer34 with a batch size of 16 and an initial learn-
ing rate of 3 × 10−5 for the nowcast encoder, the nowcast decoder and 
the temporal discriminator and train the generative network for 5 × 105 
iterations.

Transfer learning. NowcastNet is a foundational model for skilful 
precipitation nowcasting. A large-scale dataset will help NowcastNet 
be more apt at learning physical evolution and chaotic dynamics of 
the precipitation processes. Therefore, in countries or regions with 
intricate atmosphere processes but without sufficient radar observa-
tions, we use the transfer learning strategy27, a de facto way to reusing 
knowledge from pre-trained foundational models. Given a pre-trained 
NowcastNet model, we use the objectives Jevolution and Jgenerative to fine-tune 
its evolution network and generative network through decoupled 
backpropagation, which detaches the gradients between Jevolution and 
Jgenerative. As the physical knowledge behind the precipitation is universal 
and transferable across the world, we decrease the learning rate of the 
evolution network as one-tenth that for the generative network to avoid 
forgetting36 of physical knowledge. We pre-train a NowcastNet model 
on a large-scale dataset and fine-tune it to a small-scale dataset with 
the Adam optimizer34, but only for 2 × 105 iterations.

Hyperparameter tuning. We use the mean of CSI neighbourhood 
(CSIN) over all prediction time steps at the rain levels of 16 mm h−1, 
32 mm h−1 and 64 mm h−1 when tuning the hyperparameters of the evo-
lution network. We compute the criterion for hyperparameter tuning 
as the average of the quantities, CSIN + CSIN + CSIN

3
16 32 64 . When tuning the 

hyperparameters of the generative network, we use the two main 
evaluation metrics, CSI neighbourhood and PSD. For each model with 
different hyperparameters, we first ensure that the PSD of the model 
is no worse than that of pySTEPS. Then we use the average CSI neigh-
bourhood criterion CSIN + CSIN + CSIN

3
16 32 64  to determine the final hyper-

parameters.

Baselines
We describe the four baselines used in the comparative study. There is 
a rich literature of relevant work and we discuss them as further back-
ground in Supplementary Information section E.

DGMR. DGMR is a state-of-the-art method for precipitation nowcasting, 
recognized by expert meteorologists. We genuinely reproduce it taking 
exactly the same architecture and training settings described in ref. 4 
and the released model files available at https://github.com/deepmind/
deepmind-research/tree/master/nowcasting, with the quantitative and 
qualitative results to match those reported in the original paper. We 
set the number k of ensemble members as 4 during training, which is 
the same as NowcastNet.

PredRNN-V2. We consider PredRNN-V2 (ref. 13), the latest version of 
PredRNN37 with a four-layer convolutional-recurrent network, deployed 
at the China Meteorological Administration for operational nowcast-
ing. We cut radar fields into 4 × 4 patches and unfold the patches as the 
channel dimension, which efficiently balances the computation cost 
and forecasting skill. Reverse scheduled sampling with an exponential 
increasing strategy is applied in the first 5 × 104 iterations.

U-Net. We use the improved version proposed by Ravuri et al.4, which 
adds a residual structure in each block of the vanilla U-Net30, along 
with a loss weighted by precipitation intensity, and predicts all fields 
in a single forward pass.

pySTEPS. We use the pySTEPS implementation from ref. 9, following 
the default settings available at https://github.com/pySTEPS/pysteps.

All deep-learning models, including NowcastNet, DGMR, PredRNN-V2 
and U-Net, are trained on the USA dataset (years 2016–2020) by the 

https://github.com/deepmind/deepmind-research/tree/master/nowcasting
https://github.com/deepmind/deepmind-research/tree/master/nowcasting
https://github.com/pySTEPS/pysteps


Adam optimizer with a batch size of 16 for 5 × 105 iterations and trans-
ferred to the China dataset by fine-tuning for 2 × 105 iterations. For all 
models under evaluation, we establish a fair comparison by using the 
same weighting scheme w(x) in the weighted distance Lwdis and the 
same sampling strategy of training data. Both the weighting scheme 
and the sampling strategy are taken from DGMR4.

Datasets
Two large-scale, high-resolution datasets of composite radar observa-
tions from the USA and China are used throughout the experiments. 
The evaluation metrics are described in Supplementary Information 
section B. More case studies of representative precipitation events and 
quantitative results of overall performance are available in Extended 
Data Figs. 2–8 and Supplementary Information sections C and D.

USA dataset. The USA dataset consists of radar observations from the 
MRMS system26,38, collected over the USA. The radar composites cover 
the area from 20 °N to 55 °N in the south–north direction and 130 °W 
to 60 °W in the east–west direction. The spatial grid of the composites 
is 3,500 × 7,000, with a resolution of 0.01° per grid. The missing val-
ues on the composites are assigned negative values, which can mask 
unconcerned positions during evaluation. We use radar observations 
collected for a 6-year time range from 2016 to 2021, in which the train-
ing set covers years 2016–2020 and the test set covers the year 2021. 
We follow the strategy used in ref. 4 such that the radar observations 
from the first day of each month in the training set are included in the 
validation set. To trade off computational cost and forecasting skill, 
we set the temporal resolution as 10 min and downscale the spatial 
size of radar fields to half of the original width and height, which will 
keep the most of the convective-scale details. We cap the rain rates at 
the value of 128 mm h−1.

China dataset. The China dataset includes radar observations col-
lected over China by the China Meteorological Administration. The 
radar composites cover the area from 17° N to 53° N in the south–north 
direction and 96° E to 132° E in the east–west direction, with a coverage 
of the middle and east of China. The spatial grid of the composites is 
3,584 × 3,584, with a resolution of 0.01° per grid. Similar to the USA 
dataset, the missing values are replaced by negative values. We use 
radar observations collected for a nearly 2-year time range from 1 
September 2019 to 30 June 2021. Data from 1 September 2019 to 31 
March 2021 are taken as the training set, whereas those from 1 April 
2021 to 30 June 2021 are taken as the test set. We follow the strategy 
used in ref. 4 such that the radar observations from the first day of each 
month in the training set are included in the validation set. Notably, 
the test period covers the flood season when extreme precipitation 
and rainstorms are frequent in China. We set the temporal resolu-
tion, spatial size and rain-rate threshold exactly the same as the USA 
dataset.

Data preparation. We construct the training set and test set for each 
dataset using an importance-sampling strategy4 to increase the ratio 
of radar series with heavy precipitation. We first crop the full-frame 
series into smaller spatiotemporal size. For the training set, we cut the 
series into crops of spatial size 256 × 256 and temporal size 270 min 
with offsets of 32 in the vertical and horizontal directions. For the test 
set, we cut the series into crops of spatial size 512 × 512 and temporal 
size 270 min with offsets of 32 in the vertical and horizontal directions. 
Then we give each crop an acceptance probability,

x g x∑ �Pr( ) = ( ) + , (13)T T
t T

T

t− :
=−

10
0

∥ ∥

which is the sum of radar fields for all grids and all time steps on this 
crop, and ϵ is a small constant. As done in DGMR4, for the training 

set, we set g(x) = 1 − e−x on each grid with a valid value and g(x) = 0 on 
each grid with a missing value. We use hierarchical sampling during 
training, by first sampling the full-frame series and then sampling the 
crop series. To evaluate the forecasting skill of different models on 
extreme-precipitation events, we define g(x) = x for the test set. The 
test set is sampled in advance and kept unchanged throughout evalu-
ation. As our goal is skilful nowcasting of extreme precipitation, this 
importance-sampling strategy is biased towards weather events with 
a larger proportion of heavy precipitation.

We also use the uniform-sampling protocol such that all light-to-heavy 
precipitation can be equally evaluated. In this protocol, the crops in the 
test set are sampled uniformly from all spatial and temporal ranges. 
Because the uniformly sampled series usually have scarce precipitation, 
we enlarge the dataset size to 288,000 for the USA case and 120,000 for 
the China case, three times larger than the importance-sampled test 
datasets. The quantitative results under this protocol are available in 
Supplementary Figs. 10 and 11.

Evaluation
We perform a meteorologist evaluation as a cognitive assessment task 
and a quantitative evaluation using operational verification measures.

Meteorologist evaluation. To construct the test subsets representa-
tive of extreme-precipitation events for expert meteorologist evalua-
tion, we first sample a new test set that contains the crops with spatial 
size of 512 × 512 using the same strategy detailed in the previous sec-
tion. After this test set is sampled, we rank the crops by the sum of rain 
rate on all grids with rate higher than a threshold of 20 mm h−1. This 
is the threshold of heavy rainfall used in operational practice by the 
China Meteorological Administration. We take the top 1,200 events 
as the subset for expert meteorologist evaluation. Because the test 
events are fewer, we change the strategy to ranking all events by the 
proportion of grids with a rate higher than 20 mm h−1, which include 
extreme precipitation with very high probability, while ensuring the 
temporal diversity. On all crops in this test subset, all models take 
as input the fields of spatial size 512 × 512, and the central 384 × 384 
area of the predicted fields are zoomed in to highlight the convective  
details.

To enable a professional, transparent and fair meteorologist 
evaluation, the China Meteorological Administration issued a pub-
lic announcement to all provincial meteorological observatories, 
inviting senior meteorologists to participate in the evaluation as 
volunteers. The announcement states the content, goal and how-to 
of the expert evaluation, and specifically clarifies that the evaluation 
results will only be used anonymously for the scientific research but 
not for the skill test of meteorologists or other purposes. Operation-
ally, we build an anonymous website for the meteorologist evaluation. 
Each expert logs in to the website using an automatically generated 
user account with password protection to perform the evaluation 
anonymously, without being informed of any model information. 
In the posterior evaluation, we show real radar observations in the 
past and future horizons and the model predictions anonymously 
in random order for each event, whereas in the prior evaluation, we 
only show the real radar observations in the past. Meteorologists 
can play the video, navigate the progress bar to deliberately observe 
cloud evolution or arbitrarily stop the video at a certain time step 
for a meticulous comparison of the forecasting skill and value of  
all models.

Quantitative evaluation. Evaluation with commonly used quantitative 
metrics involves comparing the difference between ground truths and 
model predictions on the crops in the test set. Each model outputs 18 
future frames of precipitation fields given nine past frames of radar 
observations, whereas pySTEPS is given four past frames. Similar to the 
evaluation protocol of DGMR4, the input spatial size is set as 512 × 512 
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for computing the PSD metric and as 256 × 256 for computing the other 
metrics. We apply the central-cropping technique, which crops 64 × 64 
grid cubes from the central area of the 18 predicted frames, along with 
the corresponding ground truths. The PSD metric is directly computed 
on the 512 × 512 precipitation fields, whereas the other metrics are 
computed between the predicted and ground-truth cubes. The cen-
tral cropping can eliminate the boundary influence and reduce the 
computation cost4. For methods with ensemble-forecasting ability, 
including NowcastNet, DGMR and pySTEPS, we set the number k of 
ensemble members as 4 for computing specific quantitative measures.

Data availability
The processed radar data that support the findings of this study are 
available on the Tsinghua Cloud with the accession code ‘nowcast’; see 
https://cloud.tsinghua.edu.cn/d/b9fb38e5ee7a4dabb2a6. A smaller 
dataset with the code for exploratory analysis is available on Code 
Ocean at https://doi.org/10.24433/CO.0832447.v1.

The MRMS data that support the training of the nowcasting models 
for the USA weather system are available with agreement from the 
NOAA at https://www.nssl.noaa.gov/projects/mrms or contact the 
MRMS data teams using mrms@noaa.gov.

The radar data that support the training of the nowcasting models for 
the China weather system are available from the China Meteorological 
Administration but restrictions apply to the availability of these data, 
which were used under license for the current study and so are not 
publicly available. Data are available from the authors on reasonable 
request and with permission of the China Meteorological Administra-
tion. Source data are provided with this paper.

Code availability
We rely on PyTorch (https://pytorch.org) for deep model training and 
cartopy (https://scitools.org.uk/cartopy) for geospatial data process-
ing. We use specialized open-source tools for pySTEPS (https://pysteps.
github.io), DGMR (https://github.com/deepmind/deepmind-research/
tree/master/nowcasting), PredRNN-V2 (https://github.com/thuml/
predrnn-pytorch) and SPADE (https://github.com/NVlabs/SPADE). The 
code of NowcastNet and the pre-trained neural-network weights are 
available on Code Ocean (https://doi.org/10.24433/CO.0832447.v1). 
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Extended Data Fig. 1 | Architecture details of NowcastNet. a, Evolution 
network. b, Generative network. c, Temporal discriminator. d, Noise projector. 
e, Basic blocks. The input fields are of height H and width W. The convolutional 
layer uses (N,N)-kernel. Leaky ReLU is the leaky rectifier linear unit with 
negative slope of 0.2. BN is the batch normalization. Up and Down are bilinear 

interpolations to expand or reduce spatial size. Avg Pool is the spatial average 
pooling. Spatial Norm and Instance Norm are the normalizations applied 
within the spatially adaptive normalization to implement the physics- 
conditioning mechanism between the generative network and the evolution 
network.
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Extended Data Fig. 2 | Case study of a precipitation event starting at 23:50 UTC 
on 25 March 2021, with a tornado outbreak across several states of Alabama, 
Georgia and Tennessee. NowcastNet provides the only results that have 
forecast skills on high-intensity precipitation and show the sharp structures of 
several supercells for the 3-h horizon. a, Geographic context for the predictions. 

b, A single prediction at T + 1 h, T + 2 h and T + 3 h lead times for different 
models. c, CSI neighbourhood at thresholds 16 mm h−1 and 32 mm h−1. d, PSD at 
different wavelengths. Images are zoomed in 768 km × 768 km to highlight 
local details. Precipitation data obtained from the MRMS26 dataset and maps 
produced with cartopy and Natural Earth.



Extended Data Fig. 3 | Case study of a precipitation event starting at  
23:10 UTC on 4 May 2021, with a massive squall line that swept across 
several states in southeast USA. Compared with other baselines, NowcastNet 
is the only model that simultaneously keeps the shape and intensity of the 
squall line. a, Geographic context for the predictions. b, A single prediction at 

T + 1 h, T + 2 h and T + 3 h lead times for different models. c, CSI neighbourhood 
at thresholds 16 mm h−1 and 32 mm h−1. d, PSD at different wavelengths. Images 
are zoomed in 768 km × 768 km to highlight local details. Precipitation data 
obtained from the MRMS26 dataset and maps produced with cartopy and 
Natural Earth.
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Extended Data Fig. 4 | Case study of a precipitation event starting at  
23:20 UTC on 14 August 2021, with widespread convective weather 
occurring over eastern Tennessee. In the predictions of the four models, only 
NowcastNet provides clear nowcast of the initiation and the dissipation of the 
storm line. a, Geographic context for the predictions. b, A single prediction at 

T + 1 h, T + 2 h and T + 3 h lead times for different models. c, CSI neighbourhood 
at thresholds 16 mm h−1 and 32 mm h−1. d, PSD at different wavelengths. Images 
are zoomed in 768 km × 768 km to highlight local details. Precipitation data 
obtained from the MRMS26 dataset and maps produced with cartopy and 
Natural Earth.



Extended Data Fig. 5 | Case study of a precipitation event starting at 22:30 
UTC on 1 September 2021, with the remnants of Hurricane Ida approaching 
northeastern USA. NowcastNet provides better predictions on the evolution 
of high-intensity precipitation and is able to keep the contour of the cyclone 
system across 3 h. a, Geographic context for the predictions. b, A single 

prediction at T + 1 h, T + 2 h and T + 3 h lead times for different models. c, CSI 
neighbourhood at thresholds 16 mm h−1 and 32 mm h−1. d, PSD at different 
wavelengths. Images are zoomed in 768 km × 768 km to highlight local details. 
Precipitation data obtained from the MRMS26 dataset and maps produced with 
cartopy and Natural Earth.
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Extended Data Fig. 6 | Case study of a precipitation event starting at 03:50 
UTC on 11 December 2021, with a tornado outbreak that hit the central area 
around Tennessee. NowcastNet gives detailed predictions on the movements 
and intensities of the two storms and yields a more accurate description of  
the motions of several supercells. a, Geographic context for the predictions.  

b, A single prediction at T + 1 h, T + 2 h and T + 3 h lead times for different models. 
c, CSI neighbourhood at thresholds 16 mm h−1 and 32 mm h−1. d, PSD at different 
wavelengths. Images are zoomed in 768 km × 768 km to highlight local details. 
Precipitation data obtained from the MRMS26 dataset and maps produced with 
cartopy and Natural Earth.



Extended Data Fig. 7 | Case study of a precipitation event starting at 06:50 
UTC on 3 May 2021, with a squall-line system causing hail orange alert at the 
western Hunan province of China. NowcastNet provides more accurate 
predictions on the formation and movement of the squall line. a, Geographic 
context for the predictions. b, A single prediction at T + 1 h, T + 2 h and T + 3 h 

lead times for different models. c, CSI neighbourhood at thresholds 16 mm h−1 
and 32 mm h−1. d, PSD at different wavelengths. Images are zoomed in 768 km × 
768 km to highlight local details. Precipitation data obtained from the China 
Meteorological Administration and maps produced with cartopy and Natural 
Earth.
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Extended Data Fig. 8 | Case study of a precipitation event starting at 07:50 
UTC on 30 June 2021, with a squall line that developed quickly and swept 
across the Shandong province of China, causing several red warnings. 
NowcastNet provides the only sharp and meticulous predictions on the shape 
and the location of the squall-line-developing system. a, Geographic context 
for the predictions. b, A single prediction at T + 1 h, T + 2 h and T + 3 h lead times 

for different models. c, CSI neighbourhood at thresholds 16 mm h−1 and 
32 mm h−1. d, PSD at different wavelengths. Images are zoomed in 768 km × 
768 km to highlight local details. Precipitation data obtained from the China 
Meteorological Administration and maps produced with cartopy and Natural 
Earth.



Extended Data Fig. 9 | High-resolution precipitation nowcasting with 
spatial range of 2,048 km × 2,048 km. The precipitation event started at 
09:30 UTC on 11 December 2021 in eastern and central USA, with a widespread 
convective fine line accompanied by a tornado outbreak. NowcastNet is better 

able to predict the convective fine-line evolutions and details for a longer time 
period. Precipitation data obtained from the MRMS26 dataset and maps 
produced with cartopy and Natural Earth.
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Extended Data Fig. 10 | High-resolution precipitation nowcasting with 
spatial range of 2,048 km × 2,048 km. The precipitation event started at 
23:40 UTC on 14 May 2021 in central and eastern China, with several convective 
cells causing red rainstorm warnings. NowcastNet is the only method that is 

able to predict the multiscale evolutions of the three convective cells over a 
longer time period. Precipitation data obtained from the China Meteorological 
Administration and maps produced with cartopy and Natural Earth.
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