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What are digital twins to begin with
Although twin is an intrinsically biological phenomenon, 

so-called digital twins made their first appearance in the con-
text of manufacturing and engineering. As is often the case, 
the exact origins of concept and naming are not commonly 
agreed upon and depend upon scientific communities. For 
example, one can easily argue that the underlying concept 
has been at the core of closed-loop state estimation and con-
trol in systems theory many decades before the name digi-
tal twin became popular. We shall ignore historical context, 
though, and focus on the author’s subjective point of view on 
what already has been and what potentially might be trans-
fered to medicine. We shall discuss past and possible (near 
and far) future usage in oncology, focussing on tumors of the 
hematopoietic and lymphoid tissues.

The concept of a digital twin usually involves three ingre-
dients: a physical entity in the real world, a digital represen-
tation in a virtual world, and information exchange between 
these two. In our context, the physical entity is certainly a 
particular human being, often a patient. We start by discuss-
ing the two other ingredients in more detail.

 Digital representation
Here, mathematical models (MM) try to capture the 

dynamics of biomarkers. Let us first look at an established 
application of digital twins to get an intuition. Car manufac-
turers have replaced the expensive and long process of crash-
testing physical prototypes by running simulations on MMs 
that capture the most important characteristics of the car. 
With obvious economic advantages that overcompensate the 
tedious process of finding a MM. In mechanics, the deriva-
tion of a MM that allows to predict the future and answer the 
question What would happen if ...? is possible based on Isaac 
Newton’s work. Using Newton’s law, acceleration equals 

force divided by mass, we can write down explicit formulae 
for the acceleration. Knowing the acceleration and a starting 
position, we can numerically solve differential equations and 
hence simulate (predict) the future of the considered isolated 
system. The main modeling task is to identify the relevant 
states x of the system and all forces acting on them: tedious, 
but possible.

With a similar approach, it is possible to capture the 
dynamics of (cancerous) cell counts in a MM. If we denote 
the number of proliferating cells at a given time t as xprol(t) , 
the rate of change of this number (similar to velocity or 
acceleration in the above case) will depend on the value 
of xprol(t) . The more proliferating cells there are, the more 
daughter cells will subsequently increase the cell count. 
Hence it is a natural first step to assume ẋprol(t) = r ⋅ xprol(t) , 
i.e., a change in time that is proportional to the number 
of cells with a constant value r as the difference between 
proliferation and cell death. The analytical solution of this 
equation is a function that is exponential in time t, which 
seems plausible for many situations in population dynamics 
or disease progression.

From these very basic considerations we can already 
identify typical challenges in modeling. First, the conceptual 
relation above involves a model parameter r which might be 
different, e.g., depending on patient, mutation of genes, or 
the time of day. The typical procedure thus involves a fitting 
of experimental observational data to models, resulting in 
personalized model parameters. How much and what kind 
of data is necessary depends very much on the MM. Sec-
ond, the model is using a gross homogenous view on the 
cancerous cells, ignoring spatial location and particularities 
(e.g., surrounding tissue for solid tumors or competition for 
nutrients in the bone marrow) as well as cell cycle, genetic 
differences between cells, maturity, and so on. Especially 
for application in radiology or surgery geometric represen-
tations of cancerous cell compounds are necessary. Third, 
the simple MM above is obviously limited to very coarse 
statements, but can not give any deep insight as to what 
would happen if, e.g., drugs were administered or how the 
immune system is affected by the progression of the disease. 
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Deriving MMs that are detailed enough to get answers, but 
are not over-parameterized has become an art. And it moti-
vates to equip digital twins with multiple MMs of varying 
levels of detail and characteristics. As a take-away, we note 
that there is not a unique digital twin, but a collection of dif-
ferent MMs that have to be tailored to a particular purpose 
(clinical or research question).

 What is the purpose
The information exchange comprises the collection of 

data in real and virtual worlds, running algorithms to create 
more data, and communicating and applying data. Similar 
to MMs, the exact mechanisms of interaction and exchange 
depend on the purpose of the digital twin. We shall have a 
look at five use cases.

The first use case in oncology is given by a general analy-
sis of the dynamics of biomarkers. MMs without person-
alization, a simplistic interpretation of a digital twin, can 
still in some cases be used to derive general treatment rules. 
E.g., the Norton-Simon hypothesis “Chemotherapy success 
is proportional to the growth rate of proliferating cancerous 
cells” and a substitution of the above discussed exponential 
growth by a so-called Gompertz growth in the MM led to 
the recommendation of early, dense, high-dosage chemo-
therapy treatments for breast cancer, a landmark success for 
mathematical modeling (Simon and Norton 2006; Michor 
and Beal 2015).

The second use case is the personalization of MMs via 
longitudinal biomarker data. Algorithms can loop on the 
steps measurements, state and parameter estimation, simula-
tion and optimization of treatments. Results are exchanged 
between the real and the virtual world. One clinical example 
is the scheduling and dosage of chemotherapy treatments. 
Another example is the scheduling of phlebotomies. Such 
important and complex decisions are usually based on expert 
knowledge, accumulated throughout the life of a physician 
and shaped by subjective (and sometimes unconscious) 
experience. It is not readily transferable and may be unavail-
able in rural areas. Clinical decision support based on digital 
twins can help. E.g., a patient suffering from Polycythemia 
vera might obtain a personalized and optimized phlebot-
omy schedule based on a MM that captures the individual 
hematocrit dynamics. With every additional measurement 
the predicted timings of critical hematocrit values become 
more accurate, allowing for personalized schedules that try 
to avoid time intervals in which for whatever reasons (say, a 
marriage or important business meetings) treatments should 
be avoided. While a tailored MM (slightly more involved 
than the one above, consisting of two additional states and a 
feedback mechanism mimicking EPO) and algorithmic con-
cepts have been published (Lilienthal et al. 2020), a clinical 
realization has to our knowledge not yet been realized due to 
ethical, economic, legal, and technical barriers.

A third use case is closest to the digital twin in the origi-
nal sense of manufacturing and addresses monitoring. Digi-
tal twins of cars are able to predict propabilities of fatigue 
failures of certain parts and give maintenance recommen-
dations before anything bad happens. In the same way, it is 
perceivable that long-term longitudinal data could be used 
to monitor changes in biomarkers such as cell counts. It is 
the subject of current research which biomarkers have a high 
accuracy in early predictions. One such possibility might 
be specific metabolites measured via breath gas analysis. 
A combination with trained machine learning MMs could 
give predictions of developing cancer, as already shown for 
other diseases such as major depression (Lueno et al. 2022).

A fourth use case is the training of the next generation 
of oncologists. In analogy to airplane pilots who have to fly 
in simulators many miles before they obtain their license, 
clinical doctors might have to learn cause and effect rela-
tions of treatment choices in simulations. While simulated 
disease progressions certainly lack the intensity of reality, 
a number of advantages comes to mind: the delay between 
choice and effect is short and hence better suited for train-
ing, a larger number of treatments can be experienced in the 
same amount of time, the training is also possible in rural 
areas without many patients, and it is possible to learn from 
extreme situations that one tries to avoid in real treatments. 
It is the author’s conviction that learning is most efficient 
and needed in transient, dangerous situations (in analogy to 
taking off and landing an airplane).

A fifth use case is a design (or even realization) of clini-
cal studies with cohorts of digital twins. Let us look at the 
maintenance therapy of acute myeloid leukemia. While it 
has recently been shown clinically that also here denser 
chemotherapy treatments have advantages (Jaramillo 2017; 
Dumas 2020), the huge number of different choices (how to 
dose and time chemotherapy and G-CSF, how many consoli-
dation cycles with how much delay between them) makes 
it impossible to design clinical studies for all of them on a 
trial-and-error basis. However, simulation and optimization 
studies with digital twins can help to design clinical studies 
and to find out if a study targeting personalized treatments is 
worthwhile in the first place. E.g., in Jost (2020) an extended 
MM combined submodels for myelosuppression, pharma-
cokinetics and -dynamics of Ara-C and Lenograstim, and 
the proliferation of leukemic blasts. Optimization showed 
that in comparison to clinical practice, in 10 out of 13 cases 
a leukopenia could have been (in simulation) avoided with a 
modified treatment schedule, while not resulting in increased 
leukemic blast counts.

 Perspectives and opportunities
Looking at the five use cases above, it is not easy to say 

where the largest potential of digital twins lies. Deriving 
better clinical protocols from MMs, personalizing treatments 
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for clinical decision support, prevention tools, training of 
oncologists, or the design of virtual clinical studies may 
all contribute in their own ways to a better healthcare. Let 
us focus on perspectives of the last use case, virtual clini-
cal studies. By simulating different individual responses to 
drug administration, mouse models may be complemented 
or even completely replaced in the future. In addition to ethi-
cal considerations, time-to-clinics can be improved signifi-
cantly, the whole treatment space (with an almost infinite 
number of possibilities for how to dose, time, and combine 
drugs) can be evaluated and the economic costs can be dras-
tically reduced. It is with this in mind that we can understand 
statements like “...makes it imperative to devise methods of 
reducing the cost of drug development and one such way 
is through mathematical modeling” Brady and Enderling 
(2019), “Consequently, it will remain imperative to use 
mathematical methods to guide clinical trial design” Simon 
and Norton (2006), or the suggestive title “Improving Can-
cer Treatment via Mathematical Modeling: Surmounting the 
Challenges Is Worth the Effort” Michor and Beal (2015).

 Current challenges
Digital twins are at the intersection of many research 

communities with many active research directions, such as 
uncertainty quantification, model order reduction, optimal 
control, numerics, machine learning, measurement technol-
ogy, or data and knowledge management. In comparison to 
many engineering applications, the foremost challenges in 
medical applications seem to be data quality and the dif-
ficulty to find tailored MMs. Simplifying, one often differ-
entiates between MMs that are based on domain knowledge 
(such as the proliferation assumption above or Michaelis-
Menten kinetics underlying many pharmacokinetic models) 
and more general data-driven models such as deep neural 
networks. The first have the advantages of interpretability, 
transparency, and a reduced amount of necessary train-
ing data. The latter have the main advantage of universal 
approximation, i.e., any functional relation (and not only 
those that were a priori modeled) can be detected if enough 
data is available for training. Currently, many research 
endeavors focus on finding good compromises (hybrid mod-
els) that have all of these advantages plus additional proper-
ties, such as a reasonable extrapolation quality beyond the 
training data, intrinsic compliance with scientific laws, or 
the possibility to interact with other MMs.

 Recommendations
Given the enourmous potential of digital twins on so 

many different levels, the author strongly advocates an inter-
disciplinary training of the next generation of clinicians and 
scientists.

Often personalized (precision) medicine is associated 
mainly with genomics. From the author’s perspective it is 
important to not neglect the exploitation of nonlinear indi-
vidual dynamics, an inherent feature of digital twins.
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