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Tuning electronic and phononic states with
hidden order in disordered crystals

Nikolaj Roth 1 & Andrew L. Goodwin 1

Disorder in crystals is rarely random, and instead involves local correlations
whose presence and nature are hidden from conventional crystallographic
probes. This hidden order can sometimes be controlled, but its importance for
physical properties of materials is not well understood. Using simple models
for electronic and interatomic interactions, we show how crystals with iden-
tical average structures but different types of hidden order can have very
different electronic and phononic band structures. Increasing the strength of
local correlations within hidden-order states can open band gaps and tune
mode (de)localisation—bothmechanisms allowing for fundamental changes in
physical properties without long-range symmetry breaking. Taken together,
our results demonstrate how control over hidden order offers a new
mechanism for tuning material properties, orthogonal to the conventional
principles of (ordered) structure/property relationships.

The delocalised electronic and vibrational states key to many physical
properties of periodic solids emerge from the collective behaviour of
atoms and electrons on ordered lattices1–3. Random disorder breaks
this emergence and drives localisation, resulting in scattering of elec-
tronic and vibrational states and lowering of electronic and thermal
transport4,5. For strong random disorder, transport is completely
stopped and—in the case of electronic properties—ametal-to-insulator
transition can occur through Anderson localisation6,7.

Disordered crystals present an interesting problem that, at face
value, lies between these two extremes. Disorder is rarely random, and
instead, many disordered crystals still obey strict local chemical rules
that do not result in long-range symmetry breaking8. In this sense, such
materials support a ‘hidden order’ that is not evident in conventional
crystallographic analysis. A well-known example is the hydrogen-
bonding network of water-ice Ih, where periodically arranged oxygen
atoms each are covalently bonded to two of four nearby hydrogen
atoms to give a non-periodic arrangement of H2O orientations9. Rela-
ted states have been identified in mixed-anion perovskites10,11,
Coulomb-phase pyrochlores12–15, and metal–organic frameworks16. An
obvious and important question concerns the nature of collective
electronic and/or phononic states in such systems: are they similar to
those in ordered crystals or more closely related to those of amor-
phous solids? Or are they altogether different in character?

There are strong indications that hidden order may impact
material properties. Short-range order in battery materials can influ-
ence ionic conductivities and charge-storage capacities by affecting
the networks of mobile ions and vacancies17,18. Likewise, the nature of
phonon broadening in disordered crystals has also been found to vary
as a function of the type and extent of short-range order present19–21 In
the few systems known to exhibit hidden-order transitions—such as
the magnetocaloric Gd3Ga5O12

22—the emergence of hidden order
couples to thermodynamic anomalies.What remains entirelyunclear is
the nature of this link between hidden local order and collective
phenomena.

Here we address precisely this problem by exploring the con-
sequences of hidden order on the electronic and vibrational states of a
model family of disordered crystals. The toymodel we study is chosen
because there is an obvious mechanism for varying the degree and
nature of the hidden order it supports. We begin by introducing this
model and explaining our approach for calculating electronic and
phononic states for its various realisations. We then proceed to
demonstrate a complex interplay between hidden order and the nat-
ure of collective states. In particular, we report three key findings: (i)
that hidden order can be used to selectively broaden specific parts of
the electronic or phononic band structure, (ii) that it modulates loca-
lisation in different ways, and (iii) that it can result in the opening of
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band gaps without long-range symmetry breaking. We conclude by
discussing generalisations of this toy model and the relevance of its
behaviour to a range of physical systems.

Results and discussion
Hidden-order model
A useful toymodel for exploring different types of correlated disorder
is the two-dimensional system A2B, where B atoms occupy a square
lattice with A atoms positioned halfway between them (Fig. 1a), similar
to the H2S layers in H3S

23 or the CuO2 layers in cuprate
superconductors24. By introducing a distortion such that A atoms form
one stronger and one weaker bond to neighbouring B atoms, several
distinct types of disorder can be achieved. One possibility is for

random distortions of A atoms, such as illustrated in Fig. 1b. In this
case, the B atoms will have a varying number of strong and weak
bonds. In many real systems, however, there will be local chemical
rules that govern the types and geometries of bonds. One such
example is for each B atom to have two strong and two weak bonds,
which can be satisfied by a large number of configurations, with an
example shown in Fig. 1c. These rules are similar to the two-in-two-out
rule for hydrogen bonding in ice9 and this square-lattice representa-
tion results in the well-known ‘6-vertex’ statistical mechanical model25.
Note that there are two types of B atom geometries, where the two
strong bonds are either parallel or perpendicular to one another. A
stronger chemical rule is then to have only perpendicular strong
bonds, as illustrated in Fig. 1d, equivalent to the square-ice system26. In

Fig. 1 | The effect of random and correlated disorder on electronic and phonon
bands. aOrderedA2B structurewithAhalfway betweenB atomson a square lattice.
bA random configuration of A site distortions. c Two-in-two-out rule for correlated
distortions. d Correlated disorder with perpendicular strong bonds. e–h The cor-
responding diffuse scattering patterns. The square lattice of black dots are Bragg

peaks, which are several orders of magnitude stronger than diffuse scattering.
i–l Electronic bands for these systems along special directions, with Γ = (0, 0), X =
(1=2, 0) and M= (1=2,

1=2). The energy scale is arbitrary and the zero point does not
imply the Fermi level.m–p Phonon bands.
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this highly constrained case, the strong A–B bonds are ordered in one-
dimensional chains, but there is no three-dimensional bond order.

These distorted systems all have identical average crystal struc-
tures and therefore identical Bragg diffraction intensities. In this sense,
the presence of additional local order is hidden from conventional
crystallographic analysis. The clearest signature of this hidden order is
through weak diffuse scattering. Figure 1e–h shows the single-crystal
scattering pattern for each system. The square grid of black dots
indicates the positions of Bragg peaks, which are several orders of
magnitude stronger than the weak diffuse scattering lying between
them. In the case of the undistorted parent structure (Fig. 1e) there is
nodiffuse scattering. Randomdistortions give broaddiffuse scattering
(Fig. 1f), while the two-in-two-out locally ordered system has char-
acteristic structured diffuse scattering with pinch-points (Fig. 1g),
reminiscent of those found in the scattering of three-dimensional (3D)
spin-ice with a similar local rule12,27. Finally, the system with two strong
perpendicular bonds has thin lines of diffuse scattering (Fig. 1h),
indicative of long-range one-dimensional correlations.

Collective electronic behaviour
We explore the effect of varying hidden order on the electronic
properties of these models by calculating the electronic band struc-
ture using a semi-empirical tight-binding model with nearest neigh-
bour hopping parameters. Drawing on the conceptual analogy to H
and S arrangements in H3S

23,28, we assign to B atoms a set of s, px and py
orbitals but only a single s orbital to the A atoms. On-site energies and
hopping parameters for strong and weak bonds are modelled on the
values calculated for H3S, which has 2D layers with similar distortions
of H between S on a square lattice23,28. Using this realistic parameter
set allows some general effects to be illustrated. We note that the
energy scale used is arbitrary and does not imply the Fermi energy lies
at E =0. Further details of our calculations are given in the methods
section.

The electronic bands depend very strongly on the type and
degree of hidden order. In the ordered state, the bands are well-
defined in energy and disperse throughout the Brillouin zone with
band crossings at the Γ and M points (Fig. 1i). Random distortions of
the A sites change this picture, as shown in Fig. 1j. While the overall
features and general dispersion are very similar to the ordered case,
the bands are nowbroader. Hence, as anticipated, the electronic states
are no longer well-defined in energy and will scatter as a consequence,
reducing electronic transport.

By introducing the local two-in-two-out rule, significant differ-
ences to both the random and ordered cases are found (Fig. 1k). Now
some of the bands have become narrower in energy again, while the
gaps below the flat band at Γ and above the low-energy flat band at M
have been filledwith dilute states. Furthermore, the crossing above the
flat band at Γ has lifted and given way to a small band gap. Changing
the local order to the caseof twoperpendicular strongbonds per B site
leads to very different effects, as shown in Fig. 1l. The bands are now
generally narrow with states well-defined in energy, meaning electro-
nic transport is not as hindered by scattering as in the two other dis-
ordered cases. In sharp contrast to the random and ordered systems,
the bands crossing at Γ andM have now lifted and clear band gaps are
observed. The dilute states filling some gaps in the two-in-two-out
systemaregone. There are also veryweakadditional band-like features
between the strong narrow bands.

Collective vibrational behaviour
We observe similar effects on the phonon spectrum as a consequence
of correlations (Fig. 1m–p). In our calculations, phonon energies and
eigenvectors are obtained by diagonalising the dynamicalmatrix using
semi-empirical force constants between nearest neighbours. An arbi-
trary (but sensible) set of force constants was chosen to best illustrate
the effects, as elaborated in themethods section. For reference, Fig. 1m

shows the phonon bands for the ordered system, where acoustic and
optical phonons are well-defined in energy with crossing of four bands
at theMpoint. Randomdistortions again give phonon bands similar to
the ordered system but broadened in energy, resulting in increased
phonon scattering (Fig. 1n). The broadening is least evident for the
long-wavelength acoustic branches as these are most insensitive to
variations in local configurations. The behaviour at the M point is now
different: the four bands no longer cross as before, but change their
dispersion to avoid the crossing.

The locally ordered two-in-two-out system has some differences
from the random system in terms of the bandwidths (Fig. 1o), but it is
the system with the strongest hidden order for which the phonon
dispersion is most different (Fig. 1p). Here, the bands are almost all
narrow, and a large band gap has opened throughout the Brillouin
zone (Fig. 1p). Consequently, the type of correlations in disordered
structures can also strongly impact properties that depend on vibra-
tions, such as thermal transport. While some interplay between cor-
related disorder and phonon structure had been reported
previously19,20, a key result of this study is the demonstration that this
interplay can be sufficiently strong as to open vibrational band gaps.

Thermodynamic stabilisation of hidden order
In Fig. 2, we show the integrated electronic and phonon densities of
states, whichmake clear that the band gaps seen along high-symmetry
directions do indeed persist throughout the entire Brillouin zone. The
emergence of band gaps for the two systems with strongest hidden
order is conceptually important because, for the right filling fraction, a
variation in hidden order type could lead to a metal–insulator transi-
tion. This would indeed be the case for this model system of H2S-like
layers, where the Fermi level falls within the gap as shown in Fig. 2a.
Focusing on the emergence of electronic band gaps we note that the
energies of the corresponding valence (low-energy) edge states are
reduced in the ‘perpendicular’ hidden-order state relative to the
ordered and randomcases,which is also reflected in the total energy as
shown in Fig. 2c. This stabilisation implies that the electronic energy of
the system can be reduced through a concerted distortion to the
hidden-order state. Such a transition is conceptually similar to a Peierls
distortion, but is fundamentally different in that it proceeds without
any global symmetry lowering. Ordered versions of the distortion can
be producedwith the same total system energy, but not lower, leading
to the hidden-order version being entropically favoured, as discussed
further in SupplementaryDiscussion 4. Coupling to strain, which is not
considered in our model, may select an ordered ground state for a
given system, but if the configurational entropy of the hidden-order
arrangements is extensive, then any enthalpic driving-force for the
order will be overcome at a finite temperature. Similar mechanisms
may be at play in disordered ‘orbital-molecule’ states, such as in
LiRh2O4 and Li2RuO3

29,30, where the structural distortions associated
with valence electron localisation are local and not long-range
ordered31.

Mode localisation
Correlations not only affect the form of the electronic and phonon
band structure, but also change the delocalisation of modes. We show
this in Fig. 3 by indicating the degree of delocalisationof electronic and
phonon modes weighted by the number of states. Our key metric is a
weighted participation ratio32: Dk =Wk/∑i∣ci∣4, with Wk the weight of
each state at point k, and ci the state coefficients, as elaborated further
in the methods section. Taking each diagram in turn, we begin by
noting that in the ordered system (Fig. 3a), electronic bands with dis-
persion are generally quite delocalised, while flat bands are localised.
In the randomly distorted system (Fig. 3b), all bands have become
more localised—as anticipated for disordered systems. The two-in-two-
out rule gives rise to intermediate behaviour (Fig. 3c). But, most sur-
prisingly, the most strongly correlated state (perpendicular strong
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bonds), gives delocalised states (Fig. 3d). Similar changes are observed
for the phonon modes (Fig. 3e–h), for which the key difference is the
resilience of delocalisation within the long-wavelength acoustic
branches.

The variance in the degree of localisation is clearly exemplified by
interrogating representative modes in real space. Figure 4a–h shows
two examples of electronic modes for the different systems. The
orbitals are coloured according to the wavefunction phase, while
corresponding saturation is given by the wavefunction amplitude.
Whenevermodes are localised, atoms do not contribute equally to the
wavefunction,which fragments into small coherent regions incoherent
with respect to one another (see, e.g., Fig. 4b). We provide a detailed
interpretation of these images in Supplementary Discussion 2, but

highlight for interest here the unusual behaviour shown in Fig. 4h for
the system with perpendicular strong bonds. This particular mode is
completely delocalisedwith strong coherence along chains butmixing
fromchain to chain, causing chains to havephase shifts relative to each
other. This is in contrast to the ordered, random and two-in-two-out
systems, where the corresponding modes are all localised to a large
extent. In a similar way, Fig. 4i–p shows the real-space representations
of two types of phonon modes. Here colours indicate displacement
direction—further highlighted by arrows—while saturation gives the
corresponding amplitudes. The two vibrational modes illustrate how
correlations can have different effects on modes, opening up the
possibility of selectively (de)localising modes. These phonon modes
are further discussed in Supplementary Discussion 2. To summarise,
wefind that hiddenorder not only affects the density and coherence of
states but also their degree of delocalisation—often in quite nuanced
and unexpected ways.

Generality and extension to other systems
These results are not unique to the specific toy model on which we
have focused but recur in other model systems containing hidden
order. Figure 5a illustrates the case of valence-bond glass formation on
the square lattice. Here we consider the electronic states formed
through the overlap of s orbitals for different distributions of
neighbour-pair hopping parameters. A conventional, gapless, band
structure emerges when hopping is uniform, but a gap opens when
hopping is stronger between a site and exactly one of its four nearest
neighbours (‘Mixed’ system in Fig. 5a). The limiting case corresponds
to isolated dimer formation at halffilling, which is conceptually related
to the gapped states of valence-bond glasses such as Ba2YMoO6

33. The
low-energy branch corresponds to orbital combinations that are
bonding with respect to individual dimers, but because the dimers are
not periodically arranged, these combinations propagate with many
different periodicities. The only ‘forbidden’ periodicity is M = (12 ,

1
2),

which corresponds to checkboard phase order and hencemust always
be antibonding with respect to dimers. Likewise, the high-energy
branch corresponds to antibonding dimer combinations and is for-
bidden only at Γ, where all orbital contributions are in-phase and
necessarily bonding. Figure 5b shows the corresponding density of
states, illustrating the increasing band gap with a degree of
dimerisation.

This same concept generalises to orbital-molecule formation in
charge-disordered states. For example, at temperatures between 700
and 1100K, the spinel AlV2O4 adopts a cubic structure with one crys-
tallographically distinct vanadium site of formal charge V2.5+. Pair dis-
tribution function measurements show, however, that the system
contains a disordered distribution of spin-singlet V9+

3 and V8+
4 mole-

cules ‘hidden’ within this average structure, rationalising why the
material is notmetallic in this regime34. In these various cases, as in that
of the original A2B example explored above, the electron count asso-
ciated with the formation of localised ‘molecules’ corresponds to the
energy atwhich gap opening occurs.We expect that phonon band gap
formation may be rationalised qualitatively in a similar vein, in that
correlated disorder partitions phonons into inter- and intra-molecular
contributions at low- and high-energy, respectively.

Hidden substitutional order can also result in gap opening. We
illustrate this in the case of decorations of the triangular lattice, as
shown in Fig. 5c. If an equal mixture of two components is distributed
randomly across this lattice, then the electronic band structure of the
crystal is substantially broadened at the Brillouin zone boundary.
However, the formation of the so-called ‘triangular Ising antiferro-
magnet’ hidden-order state35, in which triplets of mutually neigh-
bouring sites always contain exactly two sites of one type, leads to gap
opening at a filling fraction of one half (Fig. 5d). Hence, for the right
electron count, a transition between random and correlated compo-
sitional disorder in this system could again result in a metal–insulator

Fig. 2 | Density of states (DOS) and total system energy. a Electronic DOS.
b Phononic DOS. Hidden order can induce band gaps that are not present in
randomly disordered systems. Orange triangles show the Fermi level which fall
right in this gap. The total electronic energy (c) shows how certain disorder types
can be favoured.
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transition without any long-range symmetry breaking. Any such tran-
sition need not be driven by electron–electron correlations, since
these are excluded from our model; this point distinguishes the
disorder-driven gap opening we observe here fromMott physics. This
type of hidden order in the atomic distribution has been observed in

the 2D layered semiconducting alloy Re0.5Nb0.5S2, where it was
demonstrated to affect the size of the band gap36.

In Supplementary Discussion 5, we include a discussion of the
further extension of our approach to 3D. The results are qualitatively
the same as for two dimensions, albeit with some additional subtleties

Fig. 3 | Weighted delocalisation ofmodes. a–d Delocalisation of electronic modes. e–h Delocalisation of phononic modes. The order corresponds to the order in Fig. 1.

Fig. 4 | Real-space view of modes. a–h Two types of electronic modes for the
different systems. Colour hue indicates the phase of the wavefunction, while
saturation indicates the amplitude. i–p Two types of phonon modes for the

different systems. Colour hue indicates direction of motion with saturation indi-
cating amplitude. Arrows inside atoms further illustrate the movements.
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and avenues for control given the increased scope for geometric iso-
merism in 3D.

Disorder engineering
Perhaps our key result has been to show clearly that correlations in
disordered crystals have consequences for properties, as both elec-
tronic and vibrational modes are impacted in functionally important
ways. Hence control over correlations offers a new handle with which
to tune properties in functional materials. Moreover, because hidden
order affects electronic and vibrational states in subtly different ways,
it may prove possible to combine the effects of both to engineer
functional materials with particularly desirable properties. We offer a
handful of examples to demonstrate this point.

One topical family is that of thermoelectric materials, where the
design brief is to combine a low thermal conductivity with large elec-
trical conductivity in a gapped semiconductor, as captured by the
phonon–glass–electron–crystal paradigm37. The conventional
approach is to introduce disorder into a subset of atoms that do not
contribute to electronic conductivity38–40. This is a design principle
based on the idea of disorder being random and creating strong scat-
tering of modes, which is why disorder on the substructure responsible
for electronic conductivity is to be avoided. But our present study
suggests an entirely newdesign strategy of introducing specific kinds of
hidden order that at once broaden heat-carrying phonon modes whilst
preserving narrow electronic modes in the conduction band. Addi-
tionally, one might even use correlated disorder to tune the electronic
band gap so as to optimise thermoelectric performance41. In this con-
text, we note that thermoelectric half-Heusler materials can be made
with different local vacancy orderings but with identical average crystal
structures and stoichiometries42, indicating the possibility for tuning
this class of materials through the concepts presented here.

The effect of disorder on topological insulators (TIs) is a problem
of strong currency in the field of functional materials design. TIs are
insulated in bulk but host conducting gapless edge or surface states.
Thesegapless states are topologically protected and are robust against
weak disorder43,44. For strong disorder, the non-trivial topological
states can break down due to localisation. However, in some systems,
strong disorder causes phase transitions from topologically trivial to
non-trivial states, such as topological Anderson insulators45,46 or
disorder-induced topological Floquet insulators47. Quantised topolo-
gical invariants are related to symmetries, but these canbe broken into
strongly disordered crystals. However, it has been shown that
symmetry-stabilised topological invariants are still strictly quantised
even in the presence of disorder that breaks symmetries locally yet
restores them on average48. Since TI phases are robust to disorder, the
disorder itself can be used to further engineer their band
structures49,50. Aswehave shownhere, the hidden order presentwithin
correlated disordered states can be used to control band structures,
underlining the importance of understanding correlations in dis-
ordered TIs whilst also offering a new mechanism for tuning TI
materials. The first 3D TI to be identified experimentally was the alloy
Bi1−xSbx

51, which supports disorder in the distribution of Sb and Bi.
However, to the knowledge of the authors, the detailed nature of this
disorder has not been studied. The compound is a TI for a range of x,
and thismight allow somedegree of tuning of local order. Several such
systems are known, such as Bi1−xSbxTe3

52 andMn(Bi1−xSbx)2Te4
53. Other

groups of TIs have been found experimentally to be disordered
crystals54,55. Common to all these systems is that the nature of their
disorder is not well understood, since earlier studies have only ana-
lysed average structures.

The same principles might be used to engineer band gaps and
transport properties of photovoltaics, and—in principle—combining

Fig. 5 | Simple systems with band gaps induced by local order. a Square system
of s orbitals with different types of hopping parameters forming partial and full
dimers, and their corresponding electronic band structures. b Density of states for

the square system. c Triangular system of s orbitals from two types of atoms and
corresponding electronic bands. dDensity of states showing that half filling gives a
Fermi level in the band gap induced by hidden order.
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effects of electronic and phonon band structures could tune
electron–phonon coupling in superconductors. This could potentially
be relevant to understanding materials like the topological super-
conductor FeTe1−xSex

56.
In an entirely different field, we anticipate that the link we

demonstrate between hidden order and gap opening may have
implications for the design of disordered photonic materials. The
relatively recent demonstration of optical transparency in hyperuni-
form structures has shown that subtleties of disordered networks can
have fundamentally important effects on the optical band structure57.
Likewise, control over the degree of short-range order has emerged as
an unexpected design strategy for controlling visual appearance in
photonic matter58. To the best of our knowledge, the concept of
introducing hidden order within an otherwise-crystalline photonic
medium as a means of introducing transparency has not yet explored,
andmay offer interesting new approaches for controllingmatter–light
interactions.

As a final point, we note that, because phases with different types
of hidden order can have significantly different properties, it is more
important than ever to develop experimental tools for probing hidden
order in crystallinematerials. The Bragg diffraction techniques used to
determine crystal structures are sensitive only to long-range order,
which is why it is often only the average structure of materials that is
known. By contrast, diffuse scattering is sensitive to local correlations,
but is several orders of magnitude weaker than Bragg scattering—this
has limited its use historically59. The development ofmoderndetectors
and high-intensity x-ray, neutron and electron sources have nowmade
it feasible tomeasure diffuse scatteringmuchmore routinely, allowing
for the identification of distinct locally ordered phases17,18,42.

Methods
Electronic states are calculated from supercell configurations using a
semi-empirical tight-bindingmodel. Taking ϕi as the ith atomic orbital
in the supercell, a basis of Bloch sums for wavevector k is

Φik =
1
ffiffiffiffi

N
p

X

tm

eikðtm +viÞϕiðr� tm � viÞ, ð1Þ

where tm is the position of themth supercell origin, vi is the position of
the ith atomic orbital in the supercell, N is the number of supercells,
and r is the real-space coordinate vector. In the tight-binding
approximation, the Hamiltonian then takes the form60:

Hijk =
X

τ

eikτγijτ + δijE0i: ð2Þ

Here, τ are the vectors between atomic orbital i and j with nonzero
matrix elements γijτ = 〈ϕi(r)∣H∣ϕj(r − τ)〉, δij is the Kronecker-delta and
E0i the energy of orbital i on an isolated atom. Here τ is limited to
nearest neighbours only and the matrix elements γijτ are given semi-
empirical values for the different types of orbital combinations. In the
present case, one type of atom is given one s orbital and the other type
one s and a set of porbitals. The neededparameters in the present case
are a set of four values comprised of γssσ, and ∣γspσ∣ for short and long
bonds, as well as parameters for E0i. Directional dependence is taken
into account using γspσ = lx∣γspσ∣ for an s to px element, where lx is the x-
component of the normalised τ vector, and similarly the s to py and s to
pz depend on ly and lz, respectively. p to s orbital elements obey
γpsσ = −γspσ

60. All other matrix elements are zero in this case. In other
cases, more matrix elements would be needed, such as the γppσ, γppπ

Using a custom Python script, the Hamiltonian was constructed
and diagonalised to obtain the eigenvectors and eigenvalues of the
system at different k. The bands were then unfolded to the Brillouin

Zone of the primitive cell by calculating the weight of each state as61:

W k =
1
No

X

o2PC

X

i2o
c*ik

 !

X

i2o
cik

 !

ð3Þ

The sum o∈ PC are over the different orbitals of the primitive cell, and
the sum i∈ o are those orbitals in the supercell which are equivalent in
the primitive cell. cik are the coefficients of the normalised eigenvec-
tors in the Bloch sumbasis andNo the number of orbitals in the system.
The number of states per cell for eachmode is then given as 2N0∈PCWk,
where N0∈PC is the number of orbitals in the primitive cell and the
factor of two takes into account the spin degree of freedom. The
weighed degree of delocalisation of eachmode,Dkwas calculated as32:
Dk =Wk/∑i∣ci∣4.

Phonon modes were calculated in a very similar way by con-
structing and diagonalising the mass-adjusted dynamical matrix from
the eigenvalue equation:

DU =ω2U: ð4Þ

Here D is the mass-adjusted dynamical matrix, U is the eigenvector of
mass-adjusted elementary movements and ω the energy. The method
for phonon calculations follows that given in detail in ref. 62. Elements
of D are given by

Dijk =
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

maimaj
p

X

τ

eikτKijτ , ð5Þ

where i and j now reference the elementary movements of all atoms in
the supercell along cartesian axes.mai is themass of the atom towhich
the ith elementary movement belongs. Kijτ is the force constant
between elementary atomicmovements i and j. The diagonal elements
Diik need to conserve force balance: Diik = −1/mai∑j≠iKij. Again, only the
nearest neighbours are included. Two types of force constants are
used: K⊥ and K∥ for perpendicular and parallel movements of nearest
neighbours, with two possibilities for short and long bonds for each.

The phonon bands were unfolded in the same way as the elec-
tronic bands using

W k =
1
Nu

X

u2PC

X

i2u
c*ik

 !

X

i2u
cik

 !

, ð6Þ

where u are the elementary displacements in the primitive cell, Nu the
number of elementary displacements in the supercell and cik the
coefficients of the normalised eigenvectors of D. The weighed delo-
calisation was then calculated in the same way as for the
electronic modes.

The electronic and phononic band structures were calculated on
configurations with 32 by 32 atoms and averaged over 30 different
configurations. For the electronic bands, values were chosen to be
close to those calculated for H3S, so as to keep them realistic. This was
done using theminimal tight-bindingmodel from ref. 28, where values
for orbital energies are taken relative to the sulphur s level, with
E0Ss =0, E0Sp = 8.16 eV and E0Hs = 6.42 eV. The hopping elements used
for the 2D simulation were rounded to the nearest integer values,
γssσ = −5 and −3 eV for strong and weak bonds, respectively. Similarly,
∣γspσ∣ = 6 and 4 eV were used. For the calculation of the density of
states, we averaged over 100 configurations of size 60 by 60 cells. For
the 3D systems shown in the SI, the exact values for H3S given in ref. 28
were used for configurations with 16 atoms along each dimension and
averaged over 10 configurations. These are γssσ = −4.69 and −2.98 eV
and ∣γspσ∣ = 5.69 and 4.3 eV. For the phonon calculations, parameters
were chosen to give clear band structures. In the 2D systems, the
masses for the two types of atom weremA = 0.8 andmB = 1. Values for
the force constant were chosen as K∥ = −2 and −1 for strong and weak
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bonds, respectively, as well as K⊥ = −0.6 and −0.2. For the 3D systems
presented in the SI, values used are mA =0.75,mB = 1,K∥ = −2 and −1,
and K⊥ = −0.4 and −0.2. In general, the averaged values for strong and
weak bonds were used for the calculation of the ordered system. The
Diffuse scattering intensity was calculated using the Scatty software63,
using configurations with 60 by 60 atoms and averaged over 100
different configurations.

For the dimer model simulations shown in Fig. 5a, b, configura-
tions of size 32 by 32 atomswere used for the band structures while 80
by 80 atom configurations were used for the density of states calcu-
lations. Each position on the lattice was given an s orbital with an
energy of 0. Hopping elements were chosen such that the average was
conserved. For the symmetric model, all hopping elements γssσ = −0.25
were used. For the mixed case, values of –0.7 and –0.1 were used for
strong and weak bonds, respectively. For the dimer state, values of –1
and 0 were used.

For the hexagonal system shown in Fig. 5c, d, configurations of
size 36 by 36 atomswere used for band structures, and 80by 80 atoms
were used for the density of states calculations. The two types of sites
(white and blue) were given s orbital energies of –0.25 and 0.25,
respectively. Hopping elements were chosen as –0.05, –0.1 and –0.2
for white-white, blue-white/white-blue and blue-blue hoppings,
respectively. For the ordered system, the averaged values were used
for both energy and hoppings.

Data availability
The data that support the findings of this study are available from the
corresponding author upon request.

Code availability
The custom python code used in this study is available from the cor-
responding author upon request.
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