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Abstract

• Context.——Pancreatic ductal adenocarcinoma has some of the worst prognostic outcomes 

among various cancer types. Detection of histologic patterns of pancreatic tumors is essential to 

predict prognosis and decide the treatment for patients. This histologic classification can have a 

large degree of variability even among expert pathologists.

Objective.——To detect aggressive adenocarcinoma and less aggressive pancreatic tumors from 

nonneoplasm cases using a graph convolutional network–based deep learning model.

Design.——Our model uses a convolutional neural network to extract detailed information from 

every small region in a whole slide image. Then, we use a graph architecture to aggregate the 

extracted features from these regions and their positional information to capture the whole slide–

level structure and make the final prediction.

Results.——We evaluated our model on an independent test set and achieved an F1 score of 

0.85 for detecting neoplastic cells and ductal adenocarcinoma, significantly outperforming other 

baseline methods.

Conclusions.——If validated in prospective studies, this approach has a great potential to 

assist pathologists in identifying adenocarcinoma and other types of pancreatic tumors in clinical 

settings.

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive type of cancer derived from 

the epithelial cells that make up the ducts of the pancreas. PDAC ranks firmly last among 

all cancer types in terms of worst prognostic outcomes,1 and its incidence and mortality 
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rates have continued to increase for decades in the United States.2–5 According to one 

study,6 from 1990 to 2017, the numbers of cases and deaths worldwide identified as 

related to pancreatic carcinoma have doubled. It is estimated that there will be 60 430 

pancreatic cancer cases and 48 220 deaths caused by pancreatic cancer in the United States 

in 2021.7 Furthermore, PDAC is expected to become the second leading cause of cancer 

death by 2030.8 Therefore, preventive measures, screening, and surveillance are becoming 

increasingly important for pancreatic cancer.

PDAC makes up the overwhelming majority of pancreatic malignant tumors and is derived 

from the ductules of the exocrine pancreas, which carry digestive enzymes and other 

secretions from the exocrine pancreas to the lumen of the small bowel. PDAC has a variable 

histologic appearance, ranging from high-grade lesions with necrosis and marked cellular 

atypia to bland, “foamy” infiltrative glands in a highly fibrotic stroma. Inflammation may 

be prominent, subtle, or essentially absent. The islet cells of the pancreas also have a 

neoplastic counterpart, which is the pancreatic neuroendocrine tumor (PanNET). PanNET, 

while prognostically much more favorable, is also histologically diverse and may mimic a 

benign inflammatory condition (eg, islet aggregation in chronic pancreatitis) or PDAC.

Endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) and EUS-guided fine-

needle biopsy (EUS-FNB)9 have become the primary diagnostic methodologies used in 

the evaluation of pancreatic mass lesions. These methods are the least invasive means of 

procuring tissue for diagnosis currently available, as they can be performed via endoscopy. 

However, they have significant limitations in terms of tissue fragmentation, crush artifact, 

and the overall quantity of tissue procured for diagnosis. Considering these limitations, 

the severity of pancreatic carcinoma, and the enormous morbidity of pancreatectomy, it 

is imperative that the diagnostic utility of EUS-FNA/FNB be maximized. PDAC is a 

histologically diverse malignant neoplasm with numerous known patterns, including several 

that can mimic neuroendocrine tumors (which typically have a much better prognosis) and 

various nonneoplastic pancreatic lesions. Although there exists a set of guidelines for the 

classification of pancreatic tumors from the Papanicolaou Society of Cytopathology10 (see 

Table 1), some cases can be ambiguous even to the trained eyes of pathologists. The low 

tissue volume of FNA/FNB procedures may increase the frequency of cases that do not 

receive a definitive diagnosis (ie, cases labeled as atypical or suspicious). Therefore, not 

only radiologists and oncologists but also pathologists may incorrectly identify some benign 

tumors or pseudotumor cells for malignant tumors.11–13

Our study proposes an automatic and accurate method based on graph convolutional neural 

networks to detect PanNETs and PDAC on digitized histology slides. Furthermore, such 

an approach can assist pathologists with reviewing the slides by generating additional 

diagnostic information for consideration, such as the location of cells suspicious for 

malignancy or neoplasia in a pancreatic tissue specimen.

DATA COLLECTION AND ANNOTATION

In this study, we focused on classifying the 2 most common pancreatic tumors, PDAC and 

PanNET, in combination with a benign control group. To develop and evaluate our model to 
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classify these pancreatic tumor patterns, we collected 143 digitized formalin-fixed, paraffin-

embedded, hematoxylin and eosin–stained whole slide images from Dartmouth-Hitchcock 

Medical Center in Lebanon, New Hampshire. The EUS-FNA/EUS-FNB cell block slides 

were digitized using an Aperio AT2 scanner (Leica Biosystems, Nussloch, Germany) at 

×20 resolution (0.5 μm/pixel) at Dartmouth-Hitchcock Medical Center. These slides were 

identified using structured cytopathology diagnosis data from the laboratory information 

management system. In addition, a full-text pathology report search was performed for 

further disambiguation of cases within each class. To assure the quality of the slides and 

their labels in our data set, they were independently reviewed by the expert pathologists 

involved in our study (X.L. and R.H.) for concordance with the identified diagnosis. Our 

pathologists assessed all slides identified as negative, positive, and those with neoplastic 

cells present based on the laboratory information management system structured data and 

pathology reports. A manual review of report text was used for cases of unusual histologic 

appearance or any other irregularity concerning the identified diagnosis versus the slide’s 

appearance.

Our classification criteria for this data set are described in Table 1. Of note, cases 

without viable tumors (eg, entirely necrotic) were excluded from the data set. The positive 

cases in our data set include only PDAC. At the same time, lymphomas, acinar cell 

carcinoma, neuroendocrine carcinoma, and other malignancies were excluded because of 

the unavailability of a sufficient number of those cases for training at our institution. 

The neoplastic cell class in our data set is represented by neuroendocrine tumors, which 

excludes neuroendocrine carcinomas. Also, rarer tumors such as solid pseudopapillary 

tumors were excluded from this class. In addition, we opted to exclude cystic lesions, 

such as mucinous cystic neoplasm and intraductal papillary mucinous neoplasm, from the 

neoplastic category because the diagnosis of these cases often relies heavily on cyst fluid 

chemistry studies and clinical information, which our proposed neural network does not 

consider. The negative class contains normal cells as well as blood, fibrin, mild atypia 

associated with inflammation, leukocytes, and benign gastric or duodenal epithelium due 

to procedural artifact. Atypical and suspicious cases were also excluded because of lack of 

definitive diagnosis and interobserver variability. Rarely, some cell blocks from such cases 

were included in the negative category if they met 1 of 2 criteria: (1) the original pathology 

report described them as negative or unremarkable; or (2) they were cleared in blinded 

review by our senior expert cytopathologist (X.L.).

The digitized slides in our data set were partially annotated by our domain expert 

pathologists (X.L. and R.H.) to indicate the pancreatic cancer subtypes and their locations 

on the slides. As such, the neoplastic and positive regions were annotated using the polygon 

annotation feature in the Automated Slide Analysis Platform or ASAP (Radboud University 

Medical Center, Nijmegen, The Netherlands),14 a fast viewer and annotation tool for 

high-resolution histology images. These annotations are used as reference standards for 

developing and evaluating our patch classification models. The distribution of the annotated 

images is shown in Table 2. Any disagreements in annotations were resolved through joint 

discussions among annotators and further consultation with our senior expert pathologist 

(X.L.). We randomly partitioned 91 unannotated slides and the 52 annotated slides into a 

training set, a validation set, and a test set for the patch-level classification.
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Of note, all whole slides (annotated and unannotated) were reviewed and classified by our 

expert pathologists (X.L. and R.H.), and whole slide labels were established according to 

consensus opinions between X.L. and R.H. and the original diagnosis in the clinical report. 

Slides on which agreement could not be reached were excluded from our data set. All whole 

slide images were randomly partitioned into the training, validation, and test sets and used 

for whole slide inference.

METHODS

Given the large size of high-resolution whole slide histology images and the memory 

capacity of currently available computer hardware, it was not feasible to directly train a 

model on whole slide images. Therefore, we used a sliding window strategy to extract small 

fixed-size (224 × 224-pixel) patches from the whole slide images. To analyze and classify 

a whole slide image, our pipeline has 2 parts: (1) a deep convolutional neural network 

to extract high-dimensional features from patches extracted from a whole slide image and 

(2) a graph convolutional neural network to aggregate patches’ high-dimensional features 

and their positional information to make the whole slide inference. The deep convolutional 

neural network model is implemented to recognize local features at the patch level, whereas 

the graph convolutional neural network model is used to capture structural and global 

patterns at the slide level. As a result, this pipeline allows us to analyze high-resolution 

images with feasible memory and computational resources while capturing global and 

structural information of whole slide images.

Deep Convolutional Neural Network

Deep neural networks have been proved a powerful tool in computer vision and are 

increasingly applied in medical image analysis.15–17 In the histologic image inference 

domain, deep convolutional neural networks are applied as a backbone for whole slide 

image analysis and classification.18,19 This study uses a residual neural network20 to 

extract the image features. The whole slide images are usually high resolution, from 0.25 

to 1 μm/pixel. Because of this high resolution and hardware memory limitations, it is 

not feasible to directly extract features from whole slide images without downsampling. 

However, by downsampling whole slide images, we may lose critical histologic features for 

classification. Therefore, to train our deep residual neural network with achievable memory 

and computational resource requirements, we use a sliding-window strategy to generate 

small, fixed-size patches from the whole slide images. The labels of these small patches 

depend on whether they include the annotated regions of interest by pathologists. Using this 

sliding-window approach, we generated 3091 neoplastic patches, 6275 positive patches, and 

94 633 negative patches in the training set. We then trained multiple ResNet models with 

different numbers of layers, including 18, 50, and 101 layers. Among these, the ResNet-18 

model performed the best in the patch-level classification on our validation set. Therefore, 

we used the ResNet-18 model trained on the augmented annotated training set as our feature 

extractor. In the training process of the feature extractor, the ResNet-18 model used the 

extracted tissue patches as inputs and outputted the predicted class probabilities for each 

patch. All the layers in this model are initialized with He initialization.21 We trained the 
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ResNet-18 model for 60 epochs with an initial learning rate of 0.001 and decayed the 

learning rate by a factor of 0.9 to the power of the number of epochs.

Graph Neural Network

Using the ResNet-18 model, we can extract features from patches and get the predictions 

at the patch level. To infer the whole slide image labels, we developed a novel method 

based on a graph neural network to aggregate the patch-level information extracted by our 

patch-level ResNet-18 model for the whole slide–level inference. Graphs’ unique ability 

to capture structural relationships among data points allows for the extraction of more 

insights and information than analyzing data points in isolation. In recent years, graph neural 

networks, such as graph convolutional networks (GCNs), have gained massive success in 

analyzing data with nonregular structures, such as social networks and protein networks.22,23 

GCNs use graph convolutional layers to aggregate the neighbor nodes’ information and 

have achieved state-of-the-art performance on graph classification benchmarks such as 

Citeseer, Cora, PubMed, and NELL.24–27 Some recent work has proposed using GCNs 

to make the whole slide inference.28 This method leverages the pretrained ResNet-50 model 

on ImageNet29 to extract features from patches in a whole slide image. Although this 

approach’s overall architecture is similar to ours, our approach is different in constructing 

the graph and extracting the patch-level features. Of note, instead of the ResNet-50 model 

pretrained on ImageNet, our feature extractor uses ResNet-18 architecture and is trained 

on labeled pancreas patches from annotations. In our approach, the whole slide images 

are viewed as graphs. Fixed-size patches and their extracted features are considered nodes 

and node features, respectively. We use the patches’ positional information and features 

extracted by our patch classification model to construct graphs from whole slide images; we 

have named this the Slide2Graph method and describe it below.

Slide2Graph for Whole Slide Inference

Graph Construction.——An overview of our graph construction pipeline is shown in 

Figure 1. To construct the computational graphs for whole slide images, we first use 

a framework developed by our group for slide preprocessing to automatically remove 

background and extract tissue segments at a ×10 (1 μm/pixel) magnification level.30 Then, 

tissue images are divided into 224 × 224-pixel fixed-size patches, and the coordinates 

of patches are saved. We removed the last fully connected and the SoftMax layers from 

our patch-level ResNet-18 classifier and used the rest of our trained ResNet-18 to extract 

512-dimensional feature vectors from each fixed-size patch. Each 224 × 224-pixel fixed-size 

patch image extracted from a whole slide image is viewed as a node in the computational 

graph, and its 512-dimensional feature is used as the node feature. We used the previously 

saved positional information of patches or nodes to add edges in the computation graphs. 

For each node, we used the KD-Tree algorithm31 to search its 4 nearest nodes in the 

Euclidean space and then add edges between nodes that were weighted by the nodes’ 

Euclidean distance. As a result, we converted the whole slide images into computational 

graphs. Through the constructed graphs, our approach keeps track of the distances between 

extracted patches from a whole slide image. Figure 2 shows our proposed pipeline for 

whole slide image classification. We used GCNs, which leverage all patches’ spatial and 

positional information to aggregate the local patch features and make the whole slide image–
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level inference. Of note, in comparison with previous aggregation methods, this method 

incorporates the positional information of each patch and the global structure of the whole 

slide image.

Graph Model Architecture.——We modify the graph model proposed by Zhang et 

al32 and use self-attention global pooling layers33 as our graph model architecture. The 

overall model structure is shown in Figure 3. After constructing the graph, we apply 

3 graph convolutional or GCN layers to update the node features. Each GCN layer 

generates a new node representation by aggregating features from the node itself and its 

neighboring nodes in the graph structure. Therefore, every node contains information of its 

surrounding neighborhood after the 3 feed-forward GCN layers in Slide2Graph architecture. 

We concatenate the outputs of every GCN layer and then use the self-attention pooling layer 

to select the top 50% highly weighted nodes that determine the class of a graph. We run a 

global mean pooling and maximum pooling on these top 50% nodes and concatenate them. 

Finally, a fully connected layer and a SoftMax layer take the feature matrices and output 

the predicted whole slide class probabilities. We trained this model for 200 epochs with 

an initial learning rate of 0.001 and learning rate annealing. Slide2Graph code is publicly 

available at https://github.com/BMIRDS/Slide2Graph.

RESULTS

We evaluated our model’s performance on our holdout test set, which was not used during 

the model training. Table 3 summarizes the precision, recall, F1 score, and area under 

the relative operating characteristic curve metrics for each class and overall. In addition, 

we calculated the 95% CIs for all the metrics using a bootstrapping method with 10 000 

iterations. For error analysis, the confusion matrix of our model is shown in Figure 4.

We also implemented other models, including DeepSlide, a decision tree, a random forest, 

and Adaboost,18,34–36 to aggregate patch information for comparison, and showed the 

efficacy of Slide2Graph. In DeepSlide,18,34–36 we ran systematic grid searches to find the 

best thresholds for patch-level confidence score and the required percentages of predicted 

patches in one slide for developing whole slide inferencing rules using our training and 

validation sets. In the DeepSlide approach, only patches with a confidence score greater 

than 0.75 were considered for whole slide inference. In DeepSlide’s whole slide inferencing 

rule, if the percentage of neoplastic or positive patches in a slide exceeded 20% of the 

entire patches extracted from the whole slide, the slide was classified as neoplastic or 

positive, respectively. If both the percentages of neoplastic and positive patches exceeded 

20%, then the class with the larger percentage was considered as the class for the slide. 

Otherwise, this slide was deemed to be negative. In addition, we used the percentages of 

neoplastic and positive patches extracted from a slide as the independent variables to predict 

the whole slide label in the other machine learning models, that is, decision tree, random 

forest, and Adaboost. Sixfold cross-validation and grid search were used to find the best 

hyperparameters for the random forest and the Adaboost models. As shown in Figure 5, 

our proposed Slide2Graph graph model performs the best among all 5 whole slide inference 

models.
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Of note, because of the small size of the testing set, there are overlaps among all models’ F1 

score CIs. Therefore, to investigate the statistical significance of the performance differences 

among different models, we used a bootstrapping approach to randomly sample 50 subsets 

from our test set. Then, we used the 2-tailed Student t test to examine the statistical 

significance of difference among F1 scores from various methods. As Table 4 shows, 

the F1 score of our Slide2Graph model outperformed the other models with a statistical 

significance level of P < .001, whereas Adaboost was the strongest competitor among the 

baselines.

DISCUSSION

The approach proposed in this study can automatically and accurately detect pancreas 

tumor patterns on the whole slide images. Our proposed approach achieved the best 

performance on our test set compared with other baseline methods. Unlike other studies 

in this domain, which do not consider the benign class in whole slide inference or rely 

on detailed benign tissue annotations, we considered tissues outside the region of interest 

annotations as negative or benign. We used these regions for the training of our patch-level 

classifier. Therefore, these negative regions could contain noise and findings that may be 

visually similar to those seen in positive or neoplastic cases. For example, Figure 6 is an 

image from a case diagnosed with benign pancreatitis. Albeit the slide is correctly labeled 

as negative or benign, this region does appear atypical because it contains inflammation 

and fibrosis surrounding residual atrophic, mild atypical ductular structures (ie, reactive 

atypia). This region bears a striking resemblance to a well-differentiated adenocarcinoma 

with infiltrating glands.37 Although the cells in this region are still benign, the tissue 

overall is architecturally more similar to a well-differentiated adenocarcinoma than to 

normal pancreatic acini/parenchyma. Likewise, Figure 7, A through D, depicts several 

situations in which benign pancreas might mimic a neuroendocrine tumor; contrariwise, a 

neuroendocrine tumor may mimic lymphocytes (if discohesive) or carcinoma (if glandular or 

organoid).38 This phenomenon of mimicry is likely one of the reasons why our patch-level 

classifier does not perform perfectly, as tissue findings of some reactive and malignant 

processes are known to demonstrate considerable morphologic overlap.37,38 Because we do 

not explicitly annotate benign (including reactive atypia) or normal regions in our data set, 

the developed algorithm is subject to these ambiguities.

Notably, although our patch classifier does not achieve the perfect performance at the 

patch level, our whole slide inference model still showed a high performance in detecting 

neoplastic and positive patterns. Reviewing the model’s mistakes by expert pathologists 

shows that our algorithm’s major error type is overcalling of negative cases—that is, 

labeling them as either neoplastic or positive. Although this error is diagnostically irritating 

and would be cumbersome in the full-scale clinical use of the algorithm, it does not create 

the same concern for patient safety as frequent misclassifications of positive or neoplastic 

cases as negative.
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Why the Graph Model Performs Better

It is challenging to classify pancreatic tissue in small patches because of significant 

histologic overlap among low-grade malignancies, reactive atypia, pancreatitis, etc. For 

example, although Figure 6 appears benign to trained eyes, it is impossible to exclude 

the possibility that it might have come from a tissue specimen that contains a tumor; 

the inflammation and fibrosis seen could easily be found in a case of pancreatitis or at 

the edge of a malignancy. The ductules seen are minimally atypical and unlikely to be 

malignant. However, if more atypical epithelium were present elsewhere in the specimen, 

that evaluation would need to be reconsidered. Neuroendocrine tumors also often exhibit 

morphologic overlap with other conditions; Figure 7, A through D, depicts several situations 

where this may occur. Of note, at our institution, in recent memory, we have received at 

least 1 consultation in which prominent islet cell aggregates deceived the initial reviewer 

into diagnosing a neuroendocrine tumor. However, the evaluation of the subsequent surgical 

specimen revealed benign chronic pancreatitis as the source of the neoplastic-appearing 

cells.

Therefore, the patch-level classifier essentially performs as a weak classifier because 

of these overlaps. However, our proposed graph model can consider those patch-level 

predictions and additional positional data to come to a more reliable prediction for 

classifying a whole slide, particularly for the neoplastic and positive classes.

Several improvements in our approach facilitate this performance. Unlike the models 

previously used for whole slide–level inferencing, which treat every patch equally and use 

the percentages of predicted patches for each class to make the whole slide predictions, 

our graph-based model takes the patches’ positions and the global structure of the whole 

slide into consideration. As we applied the self-attention pooling layer to aggregate the node 

features, we can obtain the associated attention map for a whole slide. This attention map 

can provide insights into the results of our Slide2Graph model by highlighting the regions 

that significantly influence the whole slide inference. Figure 8, A and B, shows the most 

important regions by Slide2Graph highlighted in red, which contributed the most to the 

whole slide–level classification compared with regions of interest annotated by an expert 

pathologist. The regions highlighted in darker shades of red have a higher impact on the 

classification results. These visualizations can draw attention to important regions of whole 

slide images for their classification and provide insights into our approach’s reasoning that 

pathologists can review and confirm. Therefore, the proposed approach in this study can 

potentially assist pathologists in reviewing whole slide images and improve their accuracy 

and efficiency in this diagnostic task.

Clinical Utility

We envision that a key function of our model will be to reduce the amount of time 

pathologists spend reviewing slides and to enable an alternative workflow that improves 

diagnostic efficacy. In such a workflow, slides are digitized upfront, and the algorithm can 

be used to highlight potentially malignant cases in the queue and encourage the pathologist 

to review them as priority cases. This would reduce the turnaround time associated with 

frankly malignant diagnoses. In addition, up-front augmentation and highlighting of high-
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risk regions can help pathologists to come to a decision more rapidly or even occasionally 

prevent misdiagnoses. The ability to rapidly review the most diagnostic fields of a slide 

could also speed the ordering of ancillary studies, such as immunostains, molecular genetic 

testing, and studies for microsatellite instability and programmed death ligand-1 expression. 

Such an alternative workflow would allow a case to undergo full review at the microscope 

once, concurrently with relevant immunostains, and be signed out on the spot. Future 

iterations of the algorithm, optimized for specificity, can even order relevant ancillary 

studies automatically.

This study is the first step toward the goal of deploying and evaluating our model in 

clinical settings. To start, such methodologies need to be developed and rigorously tested by 

retrospective evaluations before they can be deployed and evaluated in prospective studies. 

For this purpose, our research team has worked closely with expert pathologist collaborators 

who have provided guidance and advice on the design, development, and evaluation of the 

proposed technology in a retrospective evaluation before the potential deployment in clinical 

settings. As the next step, our team plans to conduct a prospective clinical trial to measure 

the impact of this model on pathologist performance in clinical settings.

Limitations and Future Directions

The proposed method in this paper has some limitations. First, the size of our data set 

in this study is small. Even though we use a partially annotated data set, our sample 

size, especially in the test and validation sets, is still slim, which resulted in wide 95% 

CIs in model evaluation. Moreover, when annotating the whole slide images, instead of 

annotating specific negative regions, we annotated only positive and neoplastic regions. 

Therefore, mimicries were not differentiated from normal tissues in our annotations and 

were considered as negative regions in the current setup. As a result, the negative regions 

used to train our model contain many different types of cells other than positive and 

neoplastic cells, such as benign epithelium, acinar tissue, normal cells, and inflammation. 

This lack of annotations likely led to the observed mimicry phenomenon in the patch-level 

classifier discussed above. The variance and diversity of cells in negative regions introduce 

noise in our negative class and some morphologic overlap with the positive and neoplastic 

classes. The inclusion of cell blocks from cases overall labeled atypical in the negative 

class may have introduced a low level of additional noise as well. Although our reviewers 

considered atypia in the cell blocks not significant, there is some interobserver variability 

in the threshold at which specimens are called atypical. The broad scope of the negative 

class, although important from the perspective of clinical utility (because it reflects the 

diversity of negative clinical findings), makes the model harder to train. That is likely why 

our patch-level classifier did not perform ideally in terms of precision.

Besides the noisy negative class, our current model was trained only on a relatively small 

data set, which did not include several uncommon neoplasms, such as neuroendocrine 

carcinoma, acinar cell carcinoma, solid pseudopapillary tumor, and lymphoma. Therefore, 

these neoplasms are not included in the current version of our model. However, our model 

architecture can be extended to include more classes if we have sufficient training samples 

from them. In future work, we plan to use a larger data set with a more specific breakdown 
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of annotated negative findings and uncommon neoplasms to train our model to distinguish 

these neoplasms and atypical cases.

In addition, our model is composed of 2 parts: a patch-level feature extractor and a whole 

slide inference model. These parts are trained separately. Our future work will use small 

fixed-size patches as nodes directly to construct computational graphs for whole slide 

images, so the model can be trained end to end. Also, our approach has the potential to 

perform multitask learning. We will explore different ways of aggregating the loss function 

from the patch-level and whole slide–level classifiers to decide whether the information 

from these 2 classifiers can benefit each other. Through this process, our model can output 

the predictions for both patches and whole slide images simultaneously. In addition, we plan 

to explore various graph convolutional and global pooling layers and different approaches 

to construct graphs for whole slide images to further improve the graph-based model’s 

performance. Finally, our proposed approach was tested only by a retrospective evaluation. 

In the following steps, we plan to conduct a prospective clinical trial to measure the impact 

of the proposed tool in clinical settings and its translational value. In this prospective 

evaluation, we will engage with expert pathologists to deploy and validate our approach as a 

decision support system in clinical settings.
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Figure 1. 
Overview of our Slide2Graph preprocessing pipeline. First, the tissue regions are identified, 

and the background is removed. Then, a sliding-window method is used to generate 

small fixed-size patches from each whole slide image, and the corresponding features for 

each patch are extracted using a convolutional neural network model. Finally, a graph is 

constructed by considering each patch as a node and connecting each node with its 4 nearest 

neighbors.
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Figure 2. 
Overview of our Slide2Graph classification pipeline. After background removal, fixed-

size patches were extracted from whole slide images using the sliding-window method. 

A ResNet-18 model was trained on the extracted patches from annotated whole slide 

images and then used to extract histology features of patches. The features and positional 

information of patches were used to construct a computational graph for whole slide 

inferencing. Abbreviations: FC, fully connected; GCN, graph convolutional network.
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Figure 3. 
Slide2Graph architecture. Abbreviation: GCN, graph convolutional network.
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Figure 4. 
Slide2Graph’s confusion matrix on the test set.
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Figure 5. 
The F1 scores and 95% CIs of different models on the test set stratified by class.
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Figure 6. 
Differential survival of benign pancreatic ducts in chronic pancreatitis can create the illusion 

of a neoplasm (hematoxylin-eosin, original magnification ×20).
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Figure 7. 
Sample hematoxylin-eosin–stained images. A, Prominent islet cell aggregates in chronic 

pancreatitis mimicking neoplastic cells. B, Detached and degenerated acinar cells may 

mimic the detached cells of a neuroendocrine neoplasm. C, Surviving ducts in this 

case of chronic pancreatitis demonstrate an organoid pattern, an architecture frequently 

associated with neuroendocrine tumors. D, Plasma cells may resemble single neoplastic 

neuroendocrine cells, as seen here in immunoglobulin G4–related autoimmune pancreatitis 

(original magnification ×20).
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Figure 8. 
A, Regions of interest annotated by pathologists. B, Important regions by Slide2Graph for 

whole slide inferencing (hematoxylin and eosin stain, original magnification ×20 [A and 

B]).

Wu et al. Page 20

Arch Pathol Lab Med. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wu et al. Page 21

Ta
b

le
 1

.

C
la

ss
if

ic
at

io
n 

C
ri

te
ri

a 
M

od
if

ie
d 

Fr
om

 P
ap

an
ic

ol
ao

u 
So

ci
et

y 
of

 C
yt

op
at

ho
lo

gy
 S

ys
te

m
 f

or
 R

ep
or

tin
g 

Pa
nc

re
at

ic
ob

ili
ar

y 
C

yt
ol

og
ya

I.
 N

on
di

ag
no

st
ic

 
Pr

ep
ar

at
io

n/
ob

sc
ur

in
g 

ar
tif

ac
t p

re
cl

ud
in

g 
ev

al
ua

tio
n 

of
 th

e 
ce

llu
la

r 
co

m
po

ne
nt

 
G

as
tr

oi
nt

es
tin

al
 c

on
ta

m
in

an
t o

nl
y

 
N

or
m

al
 p

an
cr

ea
ti

c 
ti

ss
ue

 e
le

m
en

ts
 (

w
it

h 
a 

so
lid

 o
r 

cy
st

ic
 m

as
s 

by
 im

ag
in

g 
st

ud
y)

 
A

ce
llu

la
r 

as
pi

ra
te

 o
f 

a 
so

lid
 m

as
s

 
A

ce
llu

la
r 

as
pi

ra
te

 o
f 

a 
cy

st
 w

ith
ou

t e
vi

de
nc

e 
of

 a
 m

uc
in

ou
s 

et
io

lo
gy

 (
ie

, t
hi

ck
 c

ol
lo

id
lik

e 
m

uc
in

, e
le

va
te

d 
C

E
A

 o
r 

K
R

A
S 

or
 G

N
A

S 
m

ut
at

io
n)

II
. N

eg
at

iv
e 

(f
or

 m
al

ig
na

nc
y)

 
B

en
ig

n 
pa

nc
re

at
ic

 t
is

su
e 

(i
n 

th
e 

ap
pr

op
ri

at
e 

cl
in

ic
al

 s
et

ti
ng

)

 
A

cu
te

 p
an

cr
ea

ti
ti

s

 
C

hr
on

ic
 a

nd
 a

ut
oi

m
m

un
e 

pa
nc

re
at

it
is

 
Ps

eu
do

cy
st

 
Ly

m
ph

oe
pi

th
el

ia
l c

ys
t

 
Sp

le
nu

le
/a

cc
es

so
ry

 s
pl

ee
n

II
I.

 A
ty

pi
ca

l

 
A

ty
pi

ca
l c

yt
ol

og
ic

 a
nd

/o
r 

ar
ch

ite
ct

ur
al

 f
ea

tu
re

s 
no

t c
on

si
st

en
t w

ith
 n

or
m

al
 o

r 
re

ac
tiv

e 
ch

an
ge

s,
 y

et
 in

su
ff

ic
ie

nt
 to

 b
e 

ca
te

go
ri

ze
d 

as
 e

ith
er

 n
eo

pl
as

tic
 o

r 
su

sp
ic

io
us

 f
or

 m
al

ig
na

nc
y

IV
. N

eo
pl

as
tic

 
B

en
ig

n

 
 

Se
ro

us
 c

ys
ta

de
no

m
a

 
 

N
eu

ro
en

do
cr

in
e 

m
ic

ro
ad

en
om

a

 
 

Ly
m

ph
an

gi
om

a

 
O

th
er

 
 

W
el

l-
di

ff
er

en
ti

at
ed

 n
eu

ro
en

do
cr

in
e 

tu
m

or
 (

P
an

N
E

T
)

 
 

In
tr

ad
uc

ta
l p

ap
ill

ar
y 

m
uc

in
ou

s 
ne

op
la

sm
, a

ll 
gr

ad
es

 o
f 

dy
sp

la
si

a

 
 

M
uc

in
ou

s 
cy

st
ic

 n
eo

pl
as

m
, a

ll 
gr

ad
es

 o
f 

dy
sp

la
si

a

 
 

So
lid

-p
se

ud
op

ap
ill

ar
y 

ne
op

la
sm

V
. S

us
pi

ci
ou

s 
(f

or
 m

al
ig

na
nc

y)

 
Si

gn
if

ic
an

t c
yt

ol
og

ic
 a

nd
/o

r 
ar

ch
ite

ct
ur

al
 a

ty
pi

a 
su

gg
es

tiv
e 

of
 m

al
ig

na
nc

y 
th

ou
gh

 q
ua

lit
at

iv
el

y 
an

d/
or

 q
ua

nt
ita

tiv
el

y 
in

su
ff

ic
ie

nt
 f

or
 a

 d
ef

in
ite

 d
ia

gn
os

is

V
I.

 P
os

iti
ve

 o
r 

m
al

ig
na

nt

 
P

an
cr

ea
ti

c 
du

ct
al

 a
de

no
ca

rc
in

om
a 

an
d 

it
s 

va
ri

an
ts

Arch Pathol Lab Med. Author manuscript; available in PMC 2023 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wu et al. Page 22

 
C

ho
la

ng
io

ca
rc

in
om

a

 
A

ci
na

r 
ce

ll 
ca

rc
in

om
a

 
Po

or
ly

 d
if

fe
re

nt
ia

te
d 

(s
m

al
l o

r 
la

rg
e 

ce
ll)

 n
eu

ro
en

do
cr

in
e 

ca
rc

in
om

a

 
Pa

nc
re

at
ob

la
st

om
a

 
Ly

m
ph

om
a

 
M

et
as

ta
tic

 m
al

ig
na

nc
y

a D
at

a 
de

ri
ve

d 
fr

om
 P

ap
an

ic
ol

ao
u 

So
ci

et
y 

of
 C

yt
op

at
ho

lo
gy

 S
ys

te
m

 f
or

 R
ep

or
tin

g 
Pa

nc
re

at
ic

ob
ili

ar
y 

C
yt

ol
og

y.
10

 T
he

 b
ol

d 
ca

se
s 

ar
e 

th
os

e 
cl

as
se

s 
in

cl
ud

ed
 in

 th
is

 s
tu

dy
.

Arch Pathol Lab Med. Author manuscript; available in PMC 2023 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wu et al. Page 23

Table 2.

Distribution of Our Data Set and Its Annotations

Annotated Slides All Slides (Annotated + Unannotated)

Neoplastic Positive Negative Neoplastic Positive

Training 13 18 32 28 30

Validation 2 3 5 4 5

Test 7 9 16 11 12

Total 22 30 53 43 47
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Table 4.

Comparisons Between Slide2Graph and Other Baseline Models Based on Bootstrapping and F1 Scoresa

Slide2Graph DeepSlide Decision Tree Random Forest Adaboost

F1 score 0.79 0.70 0.64 0.70 0.72

a
All P values were less than .001.
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