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Dimethylsulfide (DMS) is the major biosulfur source emitted to the atmosphere with key roles in global sulfur cycling and
potentially climate regulation. The main precursor of DMS is thought to be dimethylsulfoniopropionate. However, hydrogen sulfide
(H2S), a widely distributed and abundant volatile in natural environments, can be methylated to DMS. The microorganisms and the
enzymes that convert H2S to DMS, and their importance in global sulfur cycling were unknown. Here we demonstrate that the
bacterial MddA enzyme, previously known as a methanethiol S-methyltransferase, could methylate inorganic H2S to DMS. We
determine key residues involved in MddA catalysis and propose the mechanism for H2S S-methylation. These results enabled
subsequent identification of functional MddA enzymes in abundant haloarchaea and a diverse range of algae, thus expanding the
significance of MddA mediated H2S methylation to other domains of life. Furthermore, we provide evidence for H2S S-methylation
being a detoxification strategy in microorganisms. The mddA gene was abundant in diverse environments including marine
sediments, lake sediments, hydrothermal vents and soils. Thus, the significance of MddA-driven methylation of inorganic H2S to
global DMS production and sulfur cycling has likely been considerably underestimated.
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INTRODUCTION
Dimethylsulfide (DMS) is a volatile organic sulfur compound that
plays important roles in chemotaxis [1], global sulfur cycling and
climate regulation [2–4]. It is the major organosulfur compound
emitted to the atmosphere, representing 20 Tg of sulfur annually
[5, 6]. Atmospheric DMS oxidation products serve as cloud
condensation nuclei and aerosols that influence the global
radiation budget and climate [3, 4, 7].
The abundant marine osmolyte dimethylsulfoniopropionate

(DMSP), produced by many phytoplankton and bacteria [8], is
regarded as the major biosource of DMS [9] through the action of
bacterial and algal DMSP lyase enzymes [9–12]. However, there are
many DMSP-independent biopathways that generate DMS, for
example, microbial cycling of S-methyl-methionine, dimethyl sulf-
oxide (DMSO) and methoxyaromatic compounds [13–15]. Further-
more, microorganisms in oxic and anoxic terrestrial and marine
environments generate DMS from the methylation of methanethiol
(MeSH) [16–18], a reactive volatile derived from DMSP demethylation
[19] and/or hydrogen sulfide (H2S) methylation [20, 21]. Many diverse
bacteria (including cyanobacteria, Proteobacteria and Actinobacteria)
which are abundant in sediment environments, contain the MeSH S-
methyltransferase MddA [17, 18, 22], but the enzyme(s) responsible
for H2S methylation have not been identified.
H2S is one of the Earth’s most common and abundant volatile

sulfur compounds [6, 23], often reaching several hundred

micromolar and several millimolar concentrations in hydrothermal
vents and marine sediment environments [24–26]. However, H2S is
toxic to cells because it inhibits cytochrome oxidase activity and
blocks respiratory electron transport chains [27, 28]. Various H2S
detoxification pathways exist in living organisms [29, 30], includ-
ing the methylation of H2S to MeSH in higher animals and plants
[29, 31]. Recently, a human thiol S-methyltransferase (METTL7B)
was shown to catalyze H2S S-methylation to DMS rather than
MeSH [32]. Previous studies have also shown that bacteria in
anoxic sediments S-methylate H2S to DMS [20, 21], but to the best
of our knowledge, H2S methylation by aerobic bacteria has not
been reported.
Here we evaluated the methylation of H2S to DMS in various

environmental samples, including seawater, marine and lake
sediments, and soils, under oxic conditions. Furthermore, using
Neptunicoccus sediminis, an aerobic Rhodobacteraceae bacterium
isolated from marine sediment, as a model organism which
converted H2S to DMS, we established that its mddA gene,
formerly only known to S-methylate MeSH [18], was responsible
for this H2S-dependent DMS production as a detoxification
strategy. Biochemical analysis of the recombinant MddA con-
firmed its in vitro S-methylation of H2S via MeSH to produce DMS
and the kinetic feasibility. Based on sequence alignment, structure
prediction, and site-directed mutagenesis, the putative catalytic
mechanism of MddA was proposed, which enabled identification
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of functional MddA enzymes in diverse Archaea and eukaryotic
algae, not previously suspected of DMS production. Finally,
bioinformatic analysis showed that mddA is widely distributed in
diverse organisms and environments. Thus, H2S-dependent DMS
production may play an important, yet largely unappreciated role
in microbial H2S detoxification, global DMS emissions and sulfur
cycling, and chemotaxis.

MATERIALS AND METHODS
Product analyses
Gas chromatography (GC) analyses were performed using a Nexis GC-2030
(Shimadzu, Japan) equipped with a flame photometric detector and a
fused silica capillary column (30m × 0.53mm× 1 μm). The sample gas was
injected into the GC using a purge-and-trap device. The carrier gas was
nitrogen. The column temperature was 70 °C and the detector temperature
was 250 °C. Standard curves for DMS were generated (using DMS
standards from 0.1 nmol to 10 nmol) and used for quantification of DMS
produced from sediment samples, bacterial cultures and enzyme reaction
mixtures. The detecting lower limit of the method was 0.1 nmol. Volatile
organic sulfur compounds were also determined by headspace GC-MS. The
GC-MS analyses were performed using a Q Exactive GC Orbitrap GC-MS/MS
System (Thermo Fisher Scientific, United States) equipped with a DB-5ms
Ultra Inert GC column (Agilent Technologies, United States). All samples
were analyzed in triplicate.
High performance liquid chromatography (HPLC) analyses were

performed using an UltiMate 3000 (Thermo Fisher Scientific, United States)
attached with a SunFire C18 reversed-phase column (4.6 × 250mm, 5 μm
particle size, Waters, United States). The detection wavelength was 260 nm,
and injection volume was 10 μl. The samples were eluted with a linear
gradient of 1–20% (v/v) acetonitrile in 50mM ammonium acetate (pH 5.5)
over 15min at a flow rate of 1 ml/min. All samples were analyzed in
triplicate. S-adenosyl-L-homocysteine (SAH) standard curves were estab-
lished using SAH standards from 0.5 μM to 1mM and used for quantitative
detections. The detecting lower limit of the method was 5 pmol.

Assays of H2S methylation by environmental samples and
bacteria
Marine sediments were collected using a box corer from the East China Sea
(30°00′ N, 124°00′ E and 31°30′ N, 123°30′ E) and the South China Sea
(21°00′ N, 117°30′ E). Lake surface sediments were collected from the East
Lake (30°33′ N, 114°22′ E). Soil samples were collected from garden soil
(36°11′ N, 120°29′ E). Samples in the upper 10 cm were collected from each
location and stored at −20 °C. Seawater samples were collected from the
North Pacific Ocean (17°24′ N, 153°09′ E) at a depth of 30 meters and was
filtered (every 5 L) through a 0.22 μm pore size polyethersulfone
membrane (Millipore, United States).
The marine sediment and seawater samples were resuspended with

artificial seawater which was prepared using sea salts (Sigma-Aldrich,
United States) while the terrestrial samples were resuspended with distilled
water. Then 1ml resuspended mixture was added to a 10ml sterile glass
vial. The saturated H2S aqueous solution (110mM) was prepared by
bubbling H2S gas into water at 25 °C. Then H2S solution was added to the
vial to a final concentration of 1 mM. The vial was sealed immediately with
aluminum crimp cap (molded polytetrafluoroethylene/butyl septa) using a
manual crimper after the addition of H2S, and incubated at 20 °C for 48 h.
The same volume of distilled water instead of H2S solution was used as the
negative control. All operations were carried out under oxic conditions. GC
was used for the detection of gaseous sulfur products as described above.
N. sediminis was cultured in Marine Broth 2216 medium (Becton,

Dickinson and Company, United States) at 30 °C to an OD600 of 0.6. The
cells were washed twice and resuspended with artificial seawater. Then
1ml resuspended cells was transferred to a 10ml sterile glass vial. H2S
solution was added to the culture to a final concentration of 1 mM and
then the vial was sealed with aluminum crimp cap (molded polytetra-
fluoroethylene/butyl septa) immediately. The vials were incubated at 20 °C
for 24 h without shaking. The products were also detected using GC.
Pseudomonas deceptionensis M1T wild-type and ΔmddA strains cultures

on LB medium [33] were adjusted to an OD600 of 0.6. Cells were washed
twice with M9 minimal medium [33] and inoculated into fresh M9 medium
with 2 mM H2S. After incubation at 30 °C, DMS generated from H2S was
quantified by GC as described [18]. DMS production rates are expressed as

pmol mg protein−1 min−1. The protein content in the cells was estimated
by a Bradford method (BioRad, United States).

RT-qPCR analyses
N. sediminis was cultured in Marine Broth 2216 medium at 30 °C to an
OD600 of 0.6. Then H2S solution was added to the culture to a final
concentration of 1 mM. The same volume of distilled water was added to
the culture as the negative control. Samples were collected 2 h after the
addition of different additives. Each sample for qPCR was performed in
triplicate. Total RNA extraction was performed using RNeasy Kit (QIAGEN,
Germany). Reverse transcription was performed using the PrimeScript RT
Reagent Kit (TaKaRa, Japan). The RT-qPCR reaction was performed using
LightCycler 480 II (Roche, Switzerland). Data were analyzed by the 2−ΔΔCt

method and recA was used was the reference gene. Significance was
determined using paired two-tailed t test.

Genetic manipulations of N. sediminis
The knockout mutant ΔmddA of N. sediminis was constructed by
homologous recombination. Two 1 kb DNA fragments, one upstream of
mddA and one downstream of mddA, were amplified by PCR from its
genomic DNA. The two DNA fragments were joined by overlapping PCR
and cloned into plasmid pK18mobsacB-Ery [34]. The constructed vector
was then conjugated into N. sediminis to generate ΔmddA mutant and
ΔmddA mutants were confirmed by PCR and DNA sequencing, as
described previously [34]. To complement the ΔmddA mutant, the mddA
gene was amplified by PCR from N. sediminis genomic DNA and then
cloned into plasmid pBBR1MCS-4 [35]. The constructed plasmid was
conjugated into the ΔmddA mutant yielding the complemented strain
ΔmddA/pBBRmddA. The primers used in this study are listed in
Supplementary Table S1.

Protein expression and purification
AllmddA genes were synthesized, codon optimized for expression in E. coli,
by BGI Tech (China), and subcloned into the pET-22b vector to allow
protein expression work with incorporation of a C-terminal hexahistidine
tag. All site-directed mutations were introduced using QuikChange II
mutagenesis kit (Agilent Technologies, United States) and were verified by
sequencing. The expression plasmids were transformed into E. coli C43
(DE3) cells. Cells were grown in LB medium at 37 °C to an OD600 of 0.8.
Then the culture was induced with 0.1 mM isopropyl-β-D-
thiogalactopyranoside (IPTG) overnight at 20 °C. The cells were resus-
pended in a lysis buffer (50 mM Tris-HCl pH 8.0, 200 mM NaCl and 10%
glycerol) and lysed using a high-pressure homogenizer. The lysate was
centrifuged at 16,000 g for 20min and the supernatant was then
centrifuged at 200,000 g for 60 min to collect the membrane fraction.
The membrane pellets were resuspended in lysis buffer containing 1.5% n-
dodecyl-β-D-maltoside (DDM). After solubilization overnight at 4 °C, the
mixture was centrifuged at 200,000 g for 30 min. The protein was purified
using a Ni-nitriloacetic acid (Ni-NTA) agarose column followed by a size-
exclusion chromatography column (Superdex 200, Cytiva, United States).
The peak fractions were collected and stored at −80 °C.

Enzyme assays in vitro
Reaction mixtures (100 μl) contained 400mM Tris-HCl (pH 8.0), 4 µg
purified protein (or cell extract), 1 mM S-adenosyl-L-methionine (SAM) and
0.5 mM substrate (H2S, MeSH, potassium iodide (KI), potassium thiocyanate
(KSCN), dithiothreitol (DTT), captopril or D-penicillamine). For apparent
optimum pH assays, H2S was used as the substrate and Tris-HCl was
replaced with Britton-Robinson buffer (20mM final concentration). The
reactions were carried out in 10ml sterile glass vials. The vials were sealed
immediately after the addition of the substrate. After incubation at 30 °C
for 1 h, hydrochloric acid was injected to the reaction mixture to a final
concentration of 0.1 M to terminate the reaction. The detection of gaseous
DMS, MeSH and H2S was performed by GC while the detection of non-
volatile SAH and SAM was performed using HPLC.
For kinetic parameter assays, the reaction mixtures (100 μl) contained

400 mM Tris-HCl (pH 8.0), 4 µg purified PdMddA, 20 mM SAM and varying
concentrations of substrate (H2S, MeSH or DTT). The reactions were
performed as described above. The production of SAH by PdMddA when
using H2S as the substrate was halved because it is a two-step
methylation. Non-linear fitting of the data was performed using the
Origin software.

C.-Y. Li et al.

1185

The ISME Journal (2023) 17:1184 – 1193



Growth analyses of N. sediminis and E. coli
N. sediminis cells were cultured in Marine Broth 2216 medium at 30 °C for
48 h, washed and diluted 1/50 into fresh media for growth analysis. E. coli
cells were cultured in LB medium at 37 °C overnight, washed and diluted
1/100 into fresh LB medium for growth analysis. H2S (in solution) was
added to the bacterial suspensions to a final concentration of 1 mM. The
same volume of distilled water was added to the bacterial suspensions as
negative controls. The bacterial suspensions with different additions were
transferred to the wells in the microplate and then were incubated at 20 °C.
The turbidity of the bacterial suspensions was measured at 600 nm using
an FP-1100-C Automated Microbiology Growth Curve Analysis System
(Bioscreen, Finland).

Bioinformatics analysis
The three-dimensional structure of PdMddA was predicted using Alpha-
Fold2 [36]. The structural data can be obtained from the AlphaFold Protein
Structure Database [37] with accession code A0A0F6P9C0. The figures of
the structure were generated with PyMOL (https://pymol.org/2/).
To explore the distribution of mddA gene in all domains, verified

sequences of MddA were used as reference to extract homologs from
public databases. For bacteria and archaea, MddA homologs were
extracted from NCBI NR database by BLASTp with an e-value of 1e-30
and a minimum identity of 40%. Considering huge amount of hits were
detected, these hits were further clustered at 80% amino acid identity and
one representative sequence of each cluster was kept using CD-HIT [38].
For Eukaryotes, MddA homologs were extracted from re-assemblies of
Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP)
(https://doi.org/10.5281/zenodo.740440) by hmmsearch with an e-value of
1e−30. To reduce false positives, only MddA sequences containing the
catalytic histidine and five SAM binding residues were retained for tree
building. Sequences alignment and trimming were respectively conducted
by MAFFT [39] and TrimAl [40]. The tree was constructed using Maximum
likelihood method in Fasttree [41]. Visualization of the tree was performed
with iTOL [42].
The distribution of prokaryotic and eukaryotic mddA genes in global

ocean was estimated in Tara Oceans datasets OM-RGC-v2 and MATOU,

respectively. This analysis was conducted using the online webserver
Ocean Gene Atlas [43] with hmmsearch (e-value < 1e−30) as the search
method. Briefly, hmm databases based on the amino acid sequences of
ratified mddA genes, two reference genes (DMSP lyase gene alma1 for
eukaryotic mddA and DMSP lyase gene dddP for prokaryotic mddA), and
recA genes for normalization were submitted to Ocean Gene Atlas for
searching homologs in OM-RGC-v2 metagenomes/metatranscriptomes
and MATOU metagenomes/metatranscriptomes. For MATOU, only samples
with a filter size within 0.8–20 μm (picoplankton/nanoplankton) were
included in our analyses.
Environmental metagenomes analysis was conducted using the online

webserver from the Integrated Microbial Genomes & Microbiomes (IMG/M)
system [44]. The MddA, DddP and RecA sequences used to search the
metagenomes are summarized in Supplementary Table S2. The metagen-
omes examined in this study are listed in Supplementary Table S3. The
homologs of MddA, DddP and RecA in metagenomes of different
environments with an e-value cut-off of 1e−30 and a minimum identity
of 30% to reference sequences were extracted using BLASTP from IMG/M
analysis system [44]. The abundance of mddA and dddP in metagenomes
of different environments were calculated by using the numbers of unique
MddA and DddP sequences normalized to the number of unique RecA
sequences.

RESULTS
Microorganisms in diverse environments methylate H2S to
DMS
H2S methylation to DMS is often prominent in anoxic sediments
[20]; however, it is unclear whether H2S is methylated to DMS in
oxic environments. Considering H2S is often abundant in marine
sediments [24], we conducted oxic incubation experiments on
East China Sea surface marine sediment to test for H2S-dependent
DMS production. GC analysis showed that DMS production
under oxic conditions was stimulated by H2S addition to the
sediment, but no DMS was detected from heat-inactivated
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samples (Fig. 1A, B), suggesting that DMS formation from H2S was
mediated by microorganisms. No MeSH was detected in these
incubations, indicating that if MeSH was an intermediate in
H2S-dependent DMS production it did not accumulate and was
likely quickly S-methylated to DMS or lost to biotic and/or abiotic
oxidative processes.
To investigate the potential for H2S-dependent DMS production

in more diverse oxic environments, we collected various environ-
mental samples, including marine surface sediment, seawater, lake
surface sediment, and soil, and incubated them with H2S under
oxic conditions (see methods). All these samples generated DMS
at 0.08–1.10 pmol DMS min−1 g−1 wet weight (0.009 pmol DMS
min−1 L−1 for the seawater sample) (Fig. 1C), implying that oxic
H2S-dependent DMS production occurs in diverse oxic environ-
ments when H2S is present. The observed DMS production rates
varied in the diverse oxic samples, but the marine sediments
produced more DMS than those from terrestrial samples.

N. sediminis S-methylates H2S to DMS
Bacteria isolated from marine sediment samples were screened for
H2S-dependent DMS production to identify model bacteria with this
ability. Of these isolates, N. sediminis, an aerobic Rhodobacteraceae
member originally isolated from Yellow Sea sediment [45], methy-
lated H2S to produce DMS at a rate of 150.8 pmol DMS min−1 g−1 wet
weight under oxic conditions (Fig. 1D, E). No MeSH was detected in
these incubations of N. sediminis with H2S (Fig. 1D), which was
consistent with the sediment incubations described above.

Identification of a key enzyme driving H2S-dependent DMS
production
The conversion of H2S to DMS is a methyl transfer reaction, and
we postulated that a thiol (R-SH) S-methyltransferase (EC 2.1.1.9)
was likely involved. To identify the methyltransferases catalyzing
the conversion of H2S to DMS in N. sediminis, its genome was
analyzed for candidate methyltransferases homologous to those
known to methylate H2S [31, 32, 46] or other thiol S-methyl-
transferases (Supplementary Table S4). This analysis only identified
a candidate MeSH S-methyltransferase MddA protein in N.
sediminis (NsMddA, WP_069301345.1) with 46% amino acid

identity to P. deceptionensis M1T MddA (PdMddA,
WP_048359798.1), which S-methylates MeSH to DMS but was
previously reported to lack the ability to S-methylate H2S [18].
We next investigated whether the putative NsMddA was

involved in H2S-dependent DMS production. The results showed
that E. coli cell extracts expressing cloned NsmddA showed in vitro
SAM-dependent DMS production from H2S (Fig. 1F), indicating
that NsMddA likely S-methylates H2S to MeSH and then MeSH to
DMS. In addition, PdMddA also showed in vitro SAM-dependent
DMS production from H2S in E. coli extracts (Fig. 1F) under the
conditions used here, which contradicted the previous work done
on this protein [18]. To confirm that MddA was responsible for
in vivo H2S-dependent methylation, ultimately generating DMS,
we constructed a N. sediminis ΔmddA knock out mutant, and
analyzed its ability to S-methylate H2S along with the
P. deceptionensis ΔmddA mutant [18]. H2S-dependent DMS
production was ~2-fold reduced in the N. sediminis ΔmddA strain
compared to the wild type N. sediminis strain, with this reduction
in activity being fully restored to wild type levels by cloned
NsMddA (Fig. 1E). Furthermore, H2S-dependent DMS production
was abolished in the P. deceptionensis ΔmddA mutant (Supple-
mentary Table S5). These data indicate that mddA in N. sediminis
and P. deceptionensis encode a functional H2S S-methyltransferase
that generates DMS via MeSH, but also that N. sediminis likely
contains another unidentified H2S S-methyltransferase. This is
consistent with previous research, in which diverse isolated
bacteria had Mdd activity but lacked mddA in their genomes
[17, 22]. The transcription of NsmddA was upregulated 3-fold when
N. sediminis was grown with H2S, but not with MeSH (Fig. 1G),
likely explaining the induction of DMS production seen in oxic
sediment and water incubation experiments when H2S was added.

Characterization of the MddA enzyme
When expressed and purified from E. coli, the NsMddA protein was
unstable and readily precipitated. Thus, the PdMddA, which was
more stable when purified from E. coli, was used as the model
protein to examine the enzymology of MddA. The PdMddA was
shown to have in vitro SAM-dependent H2S and MeSH S-
methyltransferase activity yielding SAH and DMS (Fig. 2A–E). In
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addition to PdMddA, several other purified MddA enzymes from
the bacteria known to contain it [18] were also shown to have
SAM-dependent S-methylation activity on H2S to produce DMS
(Fig. 2F), indicating that the activity of MddA towards H2S is likely
of universal significance to the MddA enzyme family. We noted
that in H2S-dependent DMS production assays of MddA, the levels
of MeSH detected were far lower than the DMS product (Fig. 2C).
These data support the hypothesis that MddA primarily S-
methylates H2S to the intermediate MeSH, which is subsequently
S-methylated to DMS.
The PdMddA enzyme had an apparent optimum pH of 8.0 and

temperature of 30 °C (Supplementary Fig. S1). Thiol S-methyltrans-
ferases can catalyze the methylation of diverse substrates, including
potassium iodide (KI), potassium thiocyanate (KSCN), dithiothreitol
(DTT), captopril and D-penicillamine [31, 32, 46]. These compounds,
in addition to several cellular thiols (L-cysteine, L-homocysteine,
glutathione) and carboxylate substrates (2-(methylthio)acetic acid
and thiodiglycolic acid), were used to test the substrate specificity
of PdMddA. Of these potential substrates, PdMddA only S-
methylated H2S, MeSH and DTT with Km values of 0.41mM,
1.99mM and 1.62mM, respectively (Table 1 and Supplementary
Fig. S2). PdMddA showed notably high kcat and kcat/Km values
towards the artificial substrate DTT which does not accumulate in
cells under natural conditions. The concentration of H2S in natural
environments range from several hundred micromolar to several
millimolar [25, 26], while MeSH is nanomolar [20]. Thus, H2S is the
only substrate that will likely reach the Km levels for PdMddA in the
environment. PdMddA exhibited a ~5-fold lower Km value towards
the H2S than for MeSH (Table 1), which was higher than human [32]
and rat [29] thiol S-methyltransferases but considerably lower than
those in plants (Supplementary Table S6). The kcat and kcat/Km
values of PdMddA towards MeSH were higher than for H2S (Table 1),
indicating that the consumption rate of MeSH is likely higher than
its production rate. This is consistent with the very low MeSH
(intermediate) levels detected in comparison to DMS in H2S S-
methylation enzyme assays (Fig. 2C). The higher specific activity of
PdMddA towards MeSH than H2S, may reflect that the reactive gas
MeSH is also toxic to cells if allowed to accumulate [47, 48], whereas
DMS is not toxic.

Key residues of PdMddA in methylation process
In X-ray crystallography work to elucidate the catalytic mechanism
of H2S-dependent DMS production, we obtained PdMddA crystals
but their diffractions were poor, and no structures could be solved.

We therefore predicted the structure of PdMddA using AlphaFold2
[36], only analyzing residues R10-S253 that had a > 70 confidence
score. PdMddA was predicted to comprise eight main transmem-
brane helices, with several small helices and two antiparallel β-
strands (Fig. 3A).
Analyzing the Protein Data Bank (PDB), PdMddA was most

similar to Tribolium castaneum isoprenylcysteine carboxyl methyl-
transferase (TcICMT, PDB code 5V7P, 27% identity, 33% coverage)
and Methanosarcina acetivorans isoprenylcysteine carboxyl
methyltransferase (MaMTase, PDB code 4A2N, 30% identity, 27%
coverage). Despite these low sequence identities, structural
alignment showed that the structures of PdMddA, TcICMT and
MaMTase shared four of the eight predicted transmembrane
helices (Supplementary Fig. S3). Sequence and structural align-
ments also showed that five conserved residues (Y185, H190,
E228, Y240, Y243) of PdMddA were located near to the SAH
molecules of MaMTase and TcICMT (Fig. 3B, C), suggesting that
these residues may participate in SAM binding. Substitution of
these residues to alanine significantly decreased the enzymatic
activity of PdMddA towards H2S and MeSH (Fig. 3D, E). Residue
H77 of PdMddA, strictly conserved in MddA homologs but not in
TcICMT or MaMTase (Fig. 3C), was located near the sulfur atom of
SAH (Fig. 3B). Biochemical analyses showed that substituting H77
to alanine completely abolished the S-methyltransferase activity of
PdMddA towards both H2S and MeSH (Fig. 3D, E), implying that
H77 could be the catalytic residue.

The PdMddA proposed catalytic mechanism
SAM-dependent methylation is an SN2 nucleophilic replacement
reaction [49, 50]. We predicted the PdMddA catalytic mechanism
for H2S S-methylation based on biochemical and structural
analyses, which is likely common to all MddA proteins. The S-
methylation of H2S can be divided into two steps (Fig. 4A). In the
first step, PdMddA binds the SAM and H2S molecules. H77 acts as a
general base and abstracts a proton from the H2S molecule. The
movement of electrons drives the transfer of the methyl group
from SAM to the sulfur atom of H2S, resulting in the formation of
MeSH. Subsequently, SAH is released from the active site and a
new SAM molecule binds to the active site. The second step is
similar to the first step. The residue H77 would become uncharged
again in solution, deprotonate the MeSH molecule, and facilitate
electron transfer, triggering the methyl transfer from SAM to
MeSH, thus enabling the formation of DMS (Fig. 4A). In addition to
acting as a base, the residue H77 may also help stabilize the
binding of substrate to the active site and retain MeSH at the
active site by hydrogen bonding for subsequent conversion to
DMS.

Mechanistic informed extension of the MddA enzyme family
With insight into key residues for MddA-driven H2S and MeSH S-
methylation, we re-evaluated the occurrence of this enzyme in
more diverse organisms. MddA-like proteins with the predicted
catalytic H77 and conserved SAM binding residues were identified
in many more diverse organisms than were previously reported in
Carrión et al. [18], including some chlorophyte (Pycnococcus
provasolii), diatom (Nitzschia sp. RCC80), Chlorarachniophyte
(Lotharella globosa CCCM811) and Ochraphyta (Chrysocystis fragilis
CCMP3189) algae and halotolerant archaea (Haladaptatus spp.)
(Supplementary Fig. S4), not before suspected to produce DMS
from H2S or MeSH. Given that MddA proteins were only thought
to exist in diverse bacteria and cyanobacteria, these more diverse
candidate MddA enzymes from algae (P. provasolii, PpMddA; N. sp.
RCC80, NrMddA; L. globose, LgMddA and C. fragilis, CfMddA) and
archaea (Haladaptatus sp. W1, HwMddA; Haladaptatus sp. PSR5,
HpMddA) were expressed and purified from E. coli and tested for
SAM-dependent H2S S-methylation generating DMS. These
proteins all showed in-vitro S-methylation activity on H2S and
produced DMS (Fig. 4B). By searching homologs of ratified MddA

Table 1. Kinetic parameters of PdMddA with different substrates.

Substrate Km (mM) kcat (s
−1) kcat/Km

(M−1s−1)

H2S 0.41 ± 0.04 7.1 × 10–3 17.07

MeSH 1.99 ± 0.11 93.0 × 10–3 46.73

DTT 1.62 ± 0.22 253.3 × 10–3 156.17

KI NAa − −

KSCN NAa − −

Captopril NAa − −

D-penicillamine NAa − −

L-cysteine NAa − −

L-homocysteine NAa − −

Glutathione NAa − −

2-(methylthio)acetic
acid

NAa − −

Thiodiglycolic acid NAa − −
aNo activity detected.
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sequences from NCBI NR database and MMETSP (Marine Microbial
Eukaryote Transcriptome Sequencing Project) database, we found
mddA genes are widely distributed in many bacterium phyla (e.g.,
proteobacteria, acidobacteria and actinobacteria) and several
eukaryotic phyla (Chlorophyta, Bacillariophyta, Cercozoa, and
Rhodophyta) (Fig. 4C and Supplementary Table S7). These results
showed that some diverse algae and archaea likely S-methylate
H2S and generate DMS in a DMSP-independent pathway, thus
significantly extending the domains of life that conduct this
process.

The potential for H2S-dependent DMS production in diverse
environments
Previous research suggested that bacteria with mddA are highly
abundant (3–77% relative abundance, RA) in diverse soils, rhizo-
sphere and surface saltmarsh sediment environments, but extre-
mely scarce (0.01% RA) in marine water samples [17, 18, 22]. This led
to the prediction that MeSH-, and now H2S-dependent DMS
production was likely a significant process in sediment environ-
ments but insignificant in marine environments [17, 18, 22]. As this
study significantly extended the suite and diversity organisms
known to contain a functional mddA gene, we re-examined the
importance ofmddA in more diverse marine settings in comparison
to the most abundant DMSP lyase gene dddP.

Analysis of metagenomes from diverse environments confirmed
previous work by showing mddA to be far more abundant in
marine or terrestrial sediments than in diverse seawater or
freshwater samples (Fig. 5A). In addition, it was clear that mddA
in hydrothermal vents was also abundant (Fig. 5A). This was not
surprising given H2S is naturally abundant in many sediment and
hydrothermal vent environments [24–26]. The previously held
prediction that MeSH- and now H2S-dependent DMS production,
was an important process in sediment environments is strongly
supported here. Compared to dddP, mddA was less abundant in
most of our examined environments, except for lake sediment and
soil environments (Fig. 5A). Within marine water samples,
eukaryotic Alma1 and bacterial dddP DMSP lyase gene sequences
and transcripts were more abundant than their mddA equivalents
(Supplementary Fig. S5A, B). These data imply that MddA-driven
DMS production is a considerable, although may not be the major,
source of DMS in H2S-rich environments (Fig. 5B).
It was difficult to resolve the taxonomy of many of the

prokaryotic mddA genes beyond the bacterial domain and
Proteobacterial phylum in most metagenomic samples (see
Supplementary Fig. S5 for marine samples). The marine eukaryotic
mddA genes were more easily assigned and were affiliated to
Chlorophyta, Cercozoa and Bacillariophyta or, unexpectedly, more
than half of these sequences were from Appendicularia, a group of
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solitary and free-swimming tunicates found throughout the
world’s oceans (Supplementary Fig. S5C, D). The Appendicularia
had not previously been linked to DMS production whatsoever.

Role for MddA in detoxification of H2S
H2S is a toxic compound, whereas, to our knowledge, DMS is not
harmful to organisms. Thus, the MddA-driven conversion of H2S to
DMS may be a cellular detoxification strategy. To test this
hypothesis, we examined the growth characteristics of wild type
N. sediminis ΔmddA strain in the presence of H2S. Growth of the
ΔmddA mutant was significantly impaired by the addition of 2 mM
H2S compared to the wild type strains and this phenotype was
fully complemented by cloned mddA (Fig. 6A, B). In addition to
work in N. sediminis, we also performed growth inhibition work in
E. coli expressing MddA. The growth of E. coli in the presence of
2 mM H2S was enhanced by the expression of MddA (Fig. 6C, D).
These data indicate that MddA plays a role in detoxification of H2S
in diverse organisms and environments.

DISCUSSION
H2S and DMS are abundant and important forms of inorganic and
organic sulfur, respectively, in natural environments. The S-
methylation of H2S to DMS via MeSH represents a biological route
from inorganic to organic sulfur (Fig. 5B). H2S readily reacts with
metal ions to produce metal sulfides, can be oxidized to thiosulfate
by dissolved organic matter in sediments [51], and is highly toxic to
cells by virtue of inhibiting cytochrome c oxidase activity electron
transport chains [27, 28]. In contrast, DMS is relatively stable in
environments and is non-toxic to cells [52]. The majority of DMS in
the environment is degraded by microbial or, to a lesser extent,
photochemical processes [52]. Some bacteria utilize DMS as a
source of reduced carbon and/or sulfur and/or energy [53].
Therefore, through the methylation of H2S, some bacteria (not
necessarily those generating the DMS via MddA) can incorporate
sulfur from H2S into organic matter necessary for growth.
Several thiol S-methyltransferase enzymes that catalyze H2S

methylation to DMS had been identified in higher animals and
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plants [29, 31, 32], but to the best of our knowledge, there had
been no aerobic bacteria, archaea or algae reported to have this
activity. Our data showed that many and diverse organisms
including aerobic bacteria and, likely, archaea and photosynthetic
bacteria, and algae, S-methylate H2S to produce DMS via the
MddA S-methyltransferase for protection against the cellular
toxicity of H2S and potentially MeSH.
MddA is located in the cell membrane, which may be important

for bacteria to respond to H2S toxicity since it was reported that

no channels or facilitators were needed for H2S to permeate cell
membranes [54, 55]. Therefore, environmental H2S gas can easily
enter the cell. The partition coefficient of H2S between membrane
and water is ~2, and thus, H2S concentration in the membrane
would be higher than the concentration in cytosol [55, 56]. In
addition, terminal oxidases in cellular respiration such as
cytochrome c oxidase and cytochrome bo3 oxidase, which H2S
inhibits, are also membranous enzymes. In addition to detoxifica-
tion, S-methylation of H2S to DMS may also play other
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physiological roles. For example, the DMS produced from H2S S-
methylation may act as a sulfur and/or an energy source for some
bacteria [57–59]; DMS and/or its oxidation product DMSO [60] may
serve as antioxidants to protect against oxidative stress [61]; or
DMS could act as chemical signaling molecule to attract or deter
grazers [1, 62].
H2S S-methylation to yield DMS was previously observed in

anoxic freshwater sediments [20]. Furthermore, previous research
showed that grassland and forest soils, and saltmarsh sediment
samples displayed MeSH-dependent DMS production [17, 18].
Here, we demonstrate that diverse soil, marine and lake
sediments, and seawater samples display significant levels of
H2S-dependent DMS production. H2S-dependent DMS production
is likely more prominent than suggested from our examination of
environmental omics datasets because many organisms exhibiting
MeSH and/or H2S-dependent DMS production phenotypes con-
tain unknown enzymes with these activities since their genomes
lack mddA [17] or they contain multiple different enzymes with
these activities, as was predicted for N. sediminis. It will be
important to identify these enzymes in the future to better
evaluate the environmental significance of H2S- and MeSH-
dependent DMS production.
The data presented here imply that both eukaryotic and

prokaryotic MddA-driven H2S and/or MeSH-dependent DMS
production pathways are important in aquatic and marine
settings, but that their importance vastly increases in marine
and terrestrial sediment and hydrothermal vent settings where
mddA sequences can be relatively abundant. Considering that H2S
is abundant in various environments and our re-evaluation of the
abundance of mddA in diverse organisms and environments, the
significance of MddA in global DMS production influencing
atmospheric chemistry and potentially climate, and sulfur cycling
has been previously underestimated.

DATA AVAILABILITY
The predicted structure can be obtained from the AlphaFold Protein Structure
Database (https://alphafold.ebi.ac.uk/) with accession code A0A0F6P9C0. The
sequences of MddA and other proteins can be found in NCBI database as well as
Supplementary Information files.
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