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Polygenic risk prediction: why and when out-of-sample
prediction R2 can exceed SNP-based heritability

Xiaotong Wang,1 Alicia Walker,1 Joana A. Revez,1 Guiyan Ni,1 Mark J. Adams,2 Andrew M. McIntosh,2,3

Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium,
Peter M. Visscher,1,* and Naomi R. Wray1,4,*
Summary
In polygenic score (PGS) analysis, the coefficient of determination (R2) is a key statistic to evaluate efficacy. R2 is the proportion of pheno-

typic variance explained by the PGS, calculated in a cohort that is independent of the genome-wide association study (GWAS) that pro-

vided estimates of allelic effect sizes. The SNP-based heritability (h2
SNP, the proportion of total phenotypic variances attributable to all

common SNPs) is the theoretical upper limit of the out-of-sample prediction R2. However, in real data analyses R2 has been reported

to exceed h2
SNP , which occurs in parallel with the observation that h2

SNP estimates tend to decline as the number of cohorts being

meta-analyzed increases. Here, we quantify why and when these observations are expected. Using theory and simulation, we show

that if heterogeneities in cohort-specific h2
SNP exist, or if genetic correlations between cohorts are less than one, h2

SNP estimates can

decrease as the number of cohorts being meta-analyzed increases. We derive conditions when the out-of-sample prediction R2 will be

greater than h2
SNP and show the validity of our derivations with real data from a binary trait (major depression) and a continuous trait

(educational attainment). Our research calls for a better approach to integrating information from multiple cohorts to address issues of

between-cohort heterogeneity.
Complex human traits (such as educational attainment)

or complex diseases (such as major depression) are

polygenic.1 Trait-associated alleles can be identified in

genome-wide association studies (GWASs). Polygenic

scores (PGSs), estimates of the genetic contribution to a

trait or disease liability for individuals, are calculated

as an aggregate score of associated variants (with weights

derived from GWAS results). The coefficient of determi-

nation (R2) is a key statistic to evaluate the efficacy of

PGS. R2 is the proportion of phenotypic variance ex-

plained by the PGS in a ‘‘target’’ cohort independent of

the GWAS used to identify risk alleles and estimate their

effect sizes. By definition, the SNP-based heritability

(h2
SNP, the proportion of total phenotypic variance attrib-

utable to all common SNPs2) is the upper limit of the

out-of-sample prediction R2. The difference between

h2
SNP and R2 is attributed to measurement errors of SNP

effects that decrease as sample sizes increase.3 h2
SNP can

be estimated from individual-level genotype data using

methods such as GREML4 implemented in software

such as GCTA.5 Increased power for GWASs is achieved

through meta-analysis of GWAS summary statistics

from multiple cohorts, and methods to estimate h2
SNP

from summary statistics are available. The LD Score

Regression (LDSC)6 is an example of such methods that

is commonly used in practice owing to its computational

efficiency.7

In practice, a decrease in estimates of h2
SNP is often noted

as the number of cohorts included in the GWASmeta-anal-
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ysis increases, until the estimate reaches a plateau. For

example, in the GWAS of major depression, the h2
SNP of a

cohort with �18,000 samples (9,041 affected individuals

and 9,381 control subjects) was 0.21 (standard error [SE]

0.021),8 while in a subsequent GWAS meta-analysis of

more than half million samples (135,458 affected individ-

uals and 344,901 control subjects), the h2
SNP estimate

declined to 0.087 (SE 0.004).9 Similar trends were also

observed in educational attainment10 and Alzheimer dis-

ease.11 At the same time, as opposed to the standard narra-

tive, out-of-sample prediction R2 can sometimes approxi-

mate or even exceed the h2
SNP estimated from the GWAS

meta-analysis. For example, in studies of educational

attainment, h2
SNP of years of education was 0.122 (SE

0.003), but the out-of-sample prediction R2 in the National

Longitudinal Study of Adolescent to Adult Health (Add

Health) cohort was 0.158, with the lower limit of 95% con-

fidence interval (C.I.) of 0.143.10,12 Here, we provide the

theory to explain these observations.

Previously, de Vlaming et al.13 demonstrated that het-

erogeneity in genetic effects across cohorts attenuates

the statistical power of GWASs, i.e., the empirical power

from a GWAS meta-analysis is less than the power from

a single-cohort GWAS of the same sample size. Their con-

clusions thus focused on the reduced performance of

PGSs from meta-analysis compared to expectation from

a sample of equal size constructed under idealized condi-

tions of equal h2
SNP and genetic correlations (rg) between

cohorts of 1 (both conditions are expected if all cohorts
LD, Australia; 2Division of Psychiatry, University of Edinburgh, Edinburgh,

Edinburgh, Edinburgh, UK; 4Queensland Brain Institute, The University of
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Figure 1. A schematic illustration of the
report in a simplified scenario
In this made-up scenario, there are two large
GWAS cohorts, each with a sample size of
500,000 and SNP-based heritability of 0.1.
After meta-analysis, the results are used to
generate genetic predictors in an indepen-
dent cohort, the ‘‘target’’ cohort. (1) The

h2
ma can be expressed as a function of per-

cohort h2
SNP, the between-cohorts genetic

correlations, and meta-analysis weights
(Equation 2) or directly estimated from the
meta-analysis summary statistics (these
two estimates should be consistent). (2)
Similarly, the genetic correlation between
the meta-analyzed cohort and the target
sample (rgðma;tÞ) can be calculated from Equa-

tion 4 (which should be consistent with that
estimated from summary statistics of the

‘‘target’’ and themeta-analysis cohort using LD Score Regression). (3) FromEquation 6, h2
t r

2
gðma;tÞ > h2

ma þ Me

NT
, the out-of-sample prediction

R2 (0.11) is greater than the SNP-based heritability in the meta-analysis cohort (0.085) that is used to generate genetic predictors.
are random samples of the same population and with

phenotype measured in the same way). Using similar

principles, we derive an equation for the expected value

of the SNP-based heritability of the meta-analysis GWAS

(h2
ma) as a function of cohort-specific SNP-based heritabil-

ities and between-cohort genetic correlations and show

this explains the observed decrease in h2
ma estimates as

the number of cohorts in a GWAS meta-analysis increases.

We show the validity of our derivations using simulation

and empirical data. Building on the work from de Vlam-

ing et al.,13 Dudbridge,14 and Daetwyler et al.,15 we derive

theoretical conditions when out-of-sample prediction R2

can exceed h2
ma (it will occur only when the SNP-based

heritability of the target sample is greater than h2
ma) and

test our theory with major depression and educational

attainment datasets (Figure 1).

Our derivations require recognition of analytical ap-

proaches taken in practice and the assumptions of the un-

derlying truemodel onwhich they depend, which contrast

to an alternative model that likely operates when bringing

together real datasets. An underlying assumption of stan-

dard GWAS meta-analyses is that each contributing

GWAS cohort is a random sample from a homogeneous

idealized population, such that the ‘‘true’’ SNP effects

and the ‘‘true’’ h2
SNP of each cohort are the same and that

the ‘‘true’’ genetic correlations between cohorts are 1.

Hence, the assumption is that differences in estimated

h2
SNP between cohorts and that genetic correlations less

than 1 simply reflect statistical sampling. However, with

real data these assumptions may be violated. For example,

genetic ancestry between cohorts can be different even

when labeled the same continent-based ancestry, and/or

there may be differences in experimental settings and/or

measured phenotypes.16 Notably, GWAS results derived

from population-based databases may use ‘‘proxy’’ pheno-

types in place of formal clinical phenotypes. For example,

genetic understanding of major depressive disorder has
1208 The American Journal of Human Genetics 110, 1207–1215, July
been facilitated by use of datasets that record major depres-

sion proxy phenotypes (e.g., from different UK Biobank

data fields, multiple major depression phenotypes have

been derived and significant variabilities in h2
SNP have

been reported in these phenotypes, and genetic correla-

tions are significantly less than 117).

The expected value of the parameter h2
ma can be ex-

pressed as a function of cohort-specific SNP-based herita-

bility (i.e., true h2
SNP of the ‘‘population’’ from which the

cohort is sampled) and between-cohorts genetic correla-

tions (i.e., the true genetic correlations between the

cohort populations) (supplemental note). Here ‘‘popula-

tion’’ reflects genetic ancestry, phenotype definition

and sampling frame of the phenotype:

h2
ma ¼

XC
i¼ 1

XC
j¼1

wiwjrgði;jÞhihj (Equation 1)

Here,

d wi is themeta-analysis weight applied to the ith cohort

d h2
i is the true h2

SNP of the ith population from which

the ith cohort is sampled, hi ¼
ffiffiffiffiffi
h2
i

q
. In practice, hi is

commonly replaced by bhi, the h2
SNP estimated in the

ith cohort

d rgði;jÞ is the true genetic correlation between the ith and

jth populations from which the ith and jth cohorts are

sampled. Similarly, rgði;jÞ is commonly replaced bybr gði;jÞ, genetic correlations estimated between ith and

jth cohorts

d C is the number of cohorts included in the meta-

analysis

Notably, for the purpose of our study we have defined

h2
ma as parameter whose definition depends on the specific

cohorts and their sample sizes that contributed to the

GWAS meta-analysis.
6, 2023



In practice, the per cohort weights (wi) in Equation 1 are

derived from the fixed-effect inverse-variance meta-analysis

(IVM) method that is commonly used in meta-analysis of

GWASs from multiple cohorts. Under this model, the h2
ma

can be written as:

h2
ma ¼ 1

N2
T

XC
i¼ 1

XC
j¼1

NiNjrgði;jÞhihj (Equation 2)

where,

d Ni is the effective sample size for the ith cohort in the

meta-analysis

d NT is the total effective sample size

The estimate of genetic correlation between the meta-

analysis cohort (subscript ma) and the target cohort used

in out-of-sample prediction (subscript t) is:

rgðma;tÞ ¼
PC

i¼1wirgði;tÞhiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPC
i¼ 1

PC
j¼ 1wiwjrgði;jÞhihj

q (Equation 3)

which under the fixed-effect IVM model is,

rgðma;tÞ ¼
XC
i¼1

Nirgði;tÞhi

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXC

i¼ 1

XC

j¼ 1
NiNjrgði;jÞhihj

r
(Equation 4)

Building on these results, we extended work from

de Vlaming et al.,13 Dudbridge,14 and Daetwyler et al.15

and derived theoretical conditions for when out-of-

sample prediction R2 can exceed the h2
SNP estimated from

the meta-analyzed cohorts that provide the PGS weights

(supplemental note) and found that this occurs when

the product of the SNP-based heritability of the left-out

sample (h2
t Þ with the squared genetic correlation of the

left-out sample and the meta-analyzed sample (r2gðma;tÞÞ ex-
ceeds the sum of the estimated SNP-based heritability of

themeta-analyzed sample used to generate the PGS (Equa-

tion 2) and a term associated with the error of the esti-

mates in the meta-analyzed sample (Me

NT
), i.e.,

h2
t r

2
gðma;tÞ >

XC
i¼ 1

XC
j¼1

wiwjrgði;jÞhihj þMe

XC
i¼1

w2
i

Ni

¼ h2
ma þMe

XC
i¼ 1

w2
i

Ni

(Equation 5)

Note, this inequality also explains why in idealized set-

tings (where h2
t ¼ h2

ma and rgðma;tÞ ¼ 1), h2
ma should be the

upper limit of out-of-sample prediction R2. In idealized set-

tings, the inequality above will never hold (i.e., h2
ma is an

upper limit of the out-of-sample coefficient of variation)

because the term
PC

i¼1w
2
i
Me

Ni
is always greater than 0, but

will approximate 0 with decreasing standard errors

(increasing large sample sizes).
The Americ
Under the fixed-effect inverse variance assumptions, the

inequality can be expressed as:

h2
t r

2
gðma;tÞ >

1

N2
T

X
i;j

NiNjrgi ;gjhihj þ Me

NT

(Equation 6)

where i and j are the ith and jth cohort in the meta-analysis,

respectively. Me is the effective number of SNPs, which is

defined as18:

Me ¼ M2
TPMT

k¼ 1

PMT

j¼ 1r
2
jk

MT is the total number of SNPs included in the GWAS

and r2jk is a standard measurement of the LD between the

SNP j and SNP k in the study.19Me in European populations

for common SNPs on a standard GWAS chip array is

approximately 60,000.20

To illustrate how heterogeneities in rg and h2
i will affect

h2
ma and to explain empirical observations, we use simula-

tions (supplemental methods S1) to investigate the impact

of varying rg and h2
SNP on estimates of h2

ma. To reflect com-

mon practice, the meta-analysis weights are determined

under the fixed-effect IVM model. In brief, we simulated

h2
SNP of 100 cohorts and pairwise rg between these 100 co-

horts. The underlying true h2
SNP is set to be either the

same across cohorts (where differences in h2
i estimates

are purely attributed to sampling variation) or set to be

different across cohorts (where differences in both the

underlying true h2
i and sampling variation contribute to

variation in estimates h2
i ). We simulated between-cohort

rg under similar assumptions. We arbitrarily chose 0.2,

0.5, and 0.8 as true underlying h2
SNP and rg. Cohort sample

sizes were simulated under four different settings. For each

combination of h2
SNP, rg, and sample sizes settings, the

simulation was replicated 100 times. As shown in Figure 2

(sample sizes between 5,000 and 10,000) and Figures S1–S3

(other sample sizes), when rg and h2
SNP vary, the h2

ma drops

initially with an increasing number of cohorts being

meta-analyzed, but eventually reaches a plateau. Note

that in a single simulation, h2
ma can both increase and

decrease with an increasing number of cohorts, but the

average over simulations shows the clear trend to a

decreased plateau value (Figure S4). The overall trends are

consistent across different h2
SNP, rg, and sample size assump-

tions, and the main difference is the increased standard er-

ror with increased heterogeneity or decreased sample sizes.

To show empirical validity of our derivations, we ob-

tained GWAS summary statistics of 21 cohorts for major

depression21 (Table S1; supplemental method S2.1). The

h2
SNP estimates of these cohorts, along with genetic correla-

tions between them, were estimated using LDSC,6

following standard practice of the Psychiatric Genomics

Consortium (PGC). We randomly ordered the 21 selected

cohorts, and meta-analyzed (using IVM and the software

METAL22) adding one cohort at a time. With the 21 result-

ing meta-analysis summary statistics we estimated their
an Journal of Human Genetics 110, 1207–1215, July 6, 2023 1209
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Figure 2. Estimates of h2
ma as the number of cohorts being meta-analyzed increases under different rg and h2

SNP simulation settings
X axes are the number of cohorts beingmeta-analyzed, and y axes are the estimates of h2

ma. Each cohort beingmeta-analyzed is simulated
to have a sample size between 5,000 and 10,000, and the cohort with the largest effective sample size was meta-analyzed first.
(A) True rg and h2

SNP are the same in all cohorts so variation between simulation replicates represents sampling variation.
(B) True rg are the same but h2

SNP are different between cohorts.
(C) True h2

SNP are the same but rg are different between cohorts.
(D) True rg and h2

SNP are both different in each cohort.
Each scenario (depicted by color) has been repeated 100 times and so the graph shows the variation across replicates. Figures S1–S3 show
similar simulation results but for different sample sizes.
h2
ma using LDSC6 (supplemental method S2.2) and show

good agreement with estimates of h2
ma from Equation 2

(Figure 3; supplemental method S2.3) Notably, in some

meta-analyses addition of a cohort generates an increase

in the magnitude of h2
ma, both estimated from the data

and predicted from Equation 2. However, the clear trend

is a decrease in the estimated h2
ma as more cohorts are

added, a reflection of the estimated genetic correlations be-
1210 The American Journal of Human Genetics 110, 1207–1215, July
ing less than 1. To demonstrate consistent estimates of

rgðma;tÞ estimated directly and from Equation 4, we held

out the last cohort being meta-analyzed and estimated ge-

netic correlations between the meta-analyzed sample and

target samples with the LDSC6 (20 resulting rgðma;tÞ esti-

mates) (Figure 3).We repeated these analyses with different

orders of the cohorts and show our derivations are valid

regardless of this (Figure 3).
6, 2023



Figure 3. Comparison of h2
ma and rgðma;tÞ estimated by the derived equations with those directly estimated from the meta-analysis

summary statistics
Left: 21 major depression cohorts were meta-analyzed, adding one cohort at a time, in different orders. The first meta-analysis results are
simply the GWAS summary statistics of the first cohort. Right: We held out the last cohort being meta-analyzed and calculated genetic
correlations between the left-out cohort and each of 20 remainingmeta-analyses. X axes are the number of cohorts included in themeta-
analysis. In general, h2

ma (first column) and the rgðma;tÞ (second column) estimated with the formulae are consistent with those directly
estimated from themeta-analysis summary statistics. Notably, when the sample size of the left-out cohort is small, rgðma;tÞ estimated with
two methods could have some insignificant differences because of large standard errors.
To show that out-of-sample prediction R2 can be higher

than the estimated h2
ma under the conditions outlined by

the inequality in Equation 6 above, we chose a binary trait

(major depression, MD23) and a continuous trait (educa-

tional attainment, EA10) where cohort-specific SNP-based

heritabilities and between-cohort genetic correlations

were available, as proof-of-principle examples.

For MD (supplemental method S3.1), we obtained access

to results of leave-one-cohort out (LOO) analysis.21,24 In
The Americ
brief, for the 26 cohorts with individual-level genotype

data, one cohort at a time was left out and the remaining

cohorts meta-analyzed, together with 9 additional cohorts

whose GWAS summary statistics (but not individual-level

data) were available. PGS were calculated for all individuals

in the left-out sample with SNP weights derived from the

LOO meta-analysis summary statistics using the SBayesR

method with default settings.25 The h2
t of the left-out sam-

ple, h2
ma of the LOO meta-analysis, and the r2gðma;tÞ between
an Journal of Human Genetics 110, 1207–1215, July 6, 2023 1211



Figure 4. Empirical investigation of Equation 6 for major depression datasets
In this figure, the x axis is the product of h2

t (estimates of SNP-based heritability on the liability scale of target cohorts being predicted
into) and r2gðma;tÞ (squared genetic correlations between the leave-one-cohort out meta-analysis used to generate the PGS, and the left-out
target cohort where PGSs are calculated); the y axis is the out-of-sample prediction R2 on the liability scale calculated in the target cohort.
Each dot represents a target cohort (only cohorts where estimated h2

t is between 0 and 1 are considered, sizes of dots are in proportion to
the effective sample size). The horizontal line denotes h2

ma (red dotted line) and its 95% C.I. (blue dotted line). (Although we left a
different cohort out each time, the h2

ma and 95% CI remain unchanged because the sample size of the left-out cohort is small when
compared with the total sample size of the meta-analysis.) Our derivations show that when the h2

SNP in the cohort being predicted
into is higher than the predicted threshold (vertical black line), out-of-sample prediction R2 will exceed the h2

ma in the meta-analysis
used to generate the predictor. Small cohorts have estimates (depicted by small dots) with large standard errors (see Table S2).
the left-out sample and the remaining cohorts were esti-

mated using LDSC and HapMap3 SNPs. For the left-out

cohort, we retained only those h2
SNP estimates that are

greater than 0 and smaller than 1 (Figure 4) or retained

all cohorts whose h2
SNP are available (Figure S5). Results

show that the derived inequality (Equation 6) is consistent

with empirical results.

For EA, we obtained cohort-specific SNP-based herita-

bility estimates and between cohort genetic correlations

for all pairs of cohorts from the supplemental file of

Lee et al.10 We removed cohorts with heritability esti-

mates smaller than 0 or larger than 1, or not available

(supplemental method S3.2). 35 out of 71 cohorts met

the criteria. We conducted analyses as for MD, but LOO

PGS results were available for only 2 cohorts. The empir-

ical results again agree with our derived expectation

(Figure S6).

In conclusion, in this report, we demonstrate that the

h2
ma can be expressed in terms of per-cohort h2

SNP, be-

tween-cohort genetic correlations, and meta-analysis

weights (which are a function of the sample sizes under

the commonly used fixed effect IVM model). Under ideal-

ized conditions where between-cohorts genetic correla-

tions are all equal to 1 and all cohorts have a common
1212 The American Journal of Human Genetics 110, 1207–1215, July
SNP-based heritability, the out-of-sample prediction R2

will always be smaller than SNP-based heritability (smaller

because of error associated with estimates of SNP effect

sizes). The difference between h2
SNP and R2 will tend to

be 0 with an infinitely large sample size. However, when

h2
SNP and rg heterogeneities exist, h2

SNP estimates made

from GWAS meta-analysis results will decrease as the

numbers of meta-analyzed cohorts increases (Equation 2)

until reaching a plateau, and the out-of-sample prediction

R2 can be greater than SNP-based heritability (Equation 6).

Notably, a key assumption of the fixed-effect meta-anal-

ysis is that true underlying effect sizes of SNPs are the

same for each cohort, and the experimental settings and

measured phenotype are the same.16 These assumptions

do not always hold, especially when population-based da-

tabases are used where phenotypes may be proxy pheno-

types. With the knowledge of how between-cohort het-

erogeneity can impact SNP-based heritability estimates,

it may be relevant to select cohorts that represent the

focal trait (e.g., clinically measured major depressive dis-

order for MD or years of education [as opposed to the

proxy trait of attended college yes/no] for EA) and treat

other cohorts as genetically correlated traits (i.e., an

MTAG analysis).26
6, 2023
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researchers/data-access-committee/data-access-information/.
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