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Abstract Membrane progesterone receptors (mPRs) have
been detected in breast cancer cells and tissues, but their
roles in cancer progression remain unclear. Here, we dem-
onstrate the localization, signaling, and antiapoptotic actions
of mPRs in two nuclear progesterone receptor (PR)-negative
breast cancer cell lines, SKBR3 and MDA-MB-468
(MB468), and mPR expression in human breast tumor bi-
opsies. mPRα, mPRβ, and mPRγ subtypes were detected in
both cell lines as well as in breast tumor tissues from 13
individuals irrespective of nuclear steroid receptor expres-
sion. Competitive receptor binding studies with a selective
PR ligand, R5020, and an mPR agonist, Org OD 02-0

confirmed the presence of functional mPRs on both cancer
cell lines. Progesterone treatment of either cell line caused
rapid activation of an inhibitory G protein, as well as acti-
vation of p42/44 MAP kinase. Treatment with progesterone
or Org OD 02-0 significantly decreased cell death and
apoptosis in response to serum starvation, whereas testos-
terone, 17β-estradiol, dexamethasone, and R5020 and
RU486 were ineffective. Progesterone treatment of MB468
cells also increased mitochondrial membrane potential and
Akt activity, but no decrease in caspase 3 activity was
observed. Knockdown of mPRα expression in MB468 cells
by siRNA transfection blocked the inhibitory effects of
progesterone on cell death. The results indicate that proges-
terone can act through mPRs to inhibit apoptosis in breast
cancer cells. The involvement of mPRs in the development
or progression of breast tumor growth through inhibition of
cell death is an intriguing possibility and requires further
investigation.
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Introduction

Evidence for a direct influence of progestins on breast
cancer development and growth has been demonstrated in
several clinical trials, most notably the Women’s Health
Initiative estrogen plus progestin hormone therapy and the
Million Woman Study. These trials showed that hormone
replacement therapy containing an estrogen/progesterone
combination, but not estrogen alone, resulted in increased
breast cancer risk characterized by increased tumor size and
aggressiveness [6, 7, 10, 37, 50, 52, 53]. Progesterone
causes proliferation of immortalized breast cancer cell lines
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expressing high levels of PR and little or no ER [25], and
clinical reports of PR-positive ER-negative tumors [17, 31,
32] demonstrate that progesterone plays an important role in
breast cancer biology. However, the actions of progesterone
in breast tumor biology remain understudied in relation to
estrogen, and multiple investigators have concluded that
further studies are needed on the role of progesterone and
progesterone receptors in breast cancer [23, 33, 43].

Classically, estrogen and progesterone activate nuclear
steroid receptors (ligand-activated transcription factors),
which modulate expression of a wide range of genes, in-
cluding those regulating cell proliferation [4, 26]. In addi-
tion, progestins are able to rapidly activate growth factor
signaling pathways in breast cancer cells via direct, non-
nuclear-mediated actions through PR and PR/ER cross-talk
[14], resulting in breast cancer cell growth and development
of metastasis [9]. Progestins have also been shown to inhibit
apoptosis of PR-positive human breast cancer cells [46, 63],
as well as PR-negative cancer cells [45], suggesting this
antiapoptotic action is mediated through both PR [46, 63]
and non-nuclear progestin receptors.

One potential mediator of progesterone actions, particu-
larly in PR-negative cells, is the novel membrane progester-
one receptor (mPR). The mPR was first cloned, identified,
and characterized in fish ovaries [67], and three isoforms
(mPRα, mPRβ, and mPRγ) were subsequently cloned in
humans [66]. The mPRs are seven—transmembrane pro-
teins expressed on the plasma membranes of cells and bind
progestins in a specific, displaceable, high affinity, limited
capacity manner, characteristic of steroid membrane recep-
tors [62, 67] and activate G proteins in several cell types [29,
61, 62]. The mPRs do not belong to the G protein coupled
receptor (GPCR) superfamily but are members of the pro-
gestin and adipoQ receptor (PAQR) family [41, 60]. Several
cancer cell lines express mPRs, including PR-positive
MCF7 cells, and PR-negative SKBR3, MDA-MB-231, and
MB468 cells [16, 49]. The observation that mPRs are
expressed in both PR-positive and PR-negative cells sug-
gests mPRs may mediate progestin’s antiapoptotic effects
both in the presence and absence of PR. Indeed, we have
previously shown that mPRα is involved in the inhibition of
apoptosis in fish granulosa cells [15]. Therefore, the
objectives of this study were to examine the expression,
signaling, and biological functions of mPRs in two
human breast cancer cell lines in order to assess the
potential importance of mPRs in breast cancer development
and growth. In addition, the expression of mPRα, mPRβ,
mPRγ, PR, ERα, ERβ, and progesterone receptor membrane
component 1 (PGRMC1) mRNAs were examined in
paired normal and malignant human breast biopsies
from 13 individuals to determine the expression patterns
of mPRs in relation to those of other steroid receptors in
malignancy in vivo.

Methods

Chemicals

Chemicals were purchased from Sigma Aldrich (St. Louis,
MO) unless otherwise noted. Progesterone, 17β-estradiol,
testosterone, and cortisol were purchased from Steraloids
(Newport, RI, USA). Two selective mPR agonists [30], 10-
ethenyl-19-norprogesterone (Org OD 02–0) and 19a-
methylprogesterone (Org OD 13–0) were obtained from N.
V. Organon (Oss, The Netherlands). R5020 and [1,2,6,7,3H ]-
progesterone (100 Ci/mmol) were purchased from Perkin
Elmer (Waltham, MA, USA). Polyclonal antibodies for hu-
man mPRα and mPRβ have been validated previously in
human cells transfected with mPRs and in untransfected cells
as well as after siRNA treatment [13, 29]. ThemPRγ antibody
was generated in rabbits against the peptide sequence
TDIKNDSYSWPMLC. Western blotting of mPRγ-
transfected MDA-MB-231 cell membranes with the mPRγ
antibody shows the presence of a more prominent immunore-
active band than that observed in the untransfected controls,
confirming the specificity of the immunoreaction (Suppl.
Figure 1A). Additional blotting of SKBR3, Jurkat and
MB468 cells shows that the mPRγ antibody does not cross-
react with either mPRα or mPRβ (Suppl. Figure 1B). p44/42
MAP kinase, phospho-p44/42 MAP kinase, Akt and phospho-
Akt antibodies (Cell Signaling Danvers, MA), β-actin (clone
C-4, MP Biomedical Solon, OH, USA), and caspase 3 and
phospho-caspase 3 (Abcam, Cambridge, MA, USA) were
used. HRP-linked secondary antibodies against rabbit and
mouse IgG were purchased from Abcam and Cell Signaling,
respectively. Antimouse and rabbit near-infrared dye conju-
gated secondary antibodies were purchased from LI-COR
biosciences (Lincoln, NA, USA).

Cell Culture

SKBR3 and MB468 cells were obtained from American Type
Culture Collection (Manassas, VA, USA). SKBR3 cells were
cultured in phenol red-free Dulbecco’s modified Eagle’s me-
dium supplemented with 14 mM NaCO3, penicillin/strepto-
mycin/glutamine solution, gentamicin, and 10% certified fetal
bovine serum (FBS) (Gibco, Carlsbad, CA, USA). MB468
cells were cultured in Lebowitz-15 medium supplemented
with 14 mM NaCO3, penicillin/streptomycin/glutamine
solution, gentamicin, and 10% FBS.

Human Breast Cancer Tissues

Deidentified paired normal and malignant human breast
biopsy samples were obtained from the NCI Human Tissue
Network. Samples were handled in accordance with NIH
guidelines approved by The University of Texas office of
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Research Support and Compliance. The characterizations of
the carcinomas are shown in Supplementary Table 1.
Samples were stored at −80°C until use.

Real-Time PCR

An approximately 50 mg tissue sample from the interior of
human tumor samples was excised, minced on ice, and
placed in TRI reagent (Sigma-Aldrich). The sample was
agitated using a handheld homogenizer to lyse the tissue
as much as possible. Alternatively, TRI reagent was added
directly to cell culture dishes. RNA was isolated following
the manufacturer’s instructions. Samples were DNase trea-
ted using a DNA free RNA kit (Zymo Research, Orange,
CA, USA). QRT-PCR was performed on 250 ng DNA-free
RNA using Brilliant II SYBR Green QRT-PCR Mastermix
1-Step (Stratagene, Cedar Creek, TX, USA) on an Eppen-
dorf RealPlex ep2 (Hamburg, Germany) using 100 nM pri-
mers for mPRα, mPRβ, mPRγ, PR, ERα, ERβ, PGRMC1,
CK19, β-actin (see Supplementary Table 2 for primer
sequences), and GAPDH (RealTime Primers, Elkins Park,
PA, USA). The protocol consisted of a 30-min 50°C reverse
transcription incubation and a 10-min 95°C denaturation
followed by a cycling profile of 30 s at 95°C, 60 s at
55°C, and 30 s at 72°C for 40 cycles. Primers for CK19,
PGRMC1, and PR had been designed previously [11, 36,
59]. No template controls were performed for each sample
to confirm the specificity of the reaction. Ct values were
calculated using Eppendorf software, and receptor concen-
trations were normalized to β-actin or GAPDH expression
taking into account primer efficiency as described by Fink
[20].

Preparation of Plasma Membranes

Cells, grown to 70–90% confluence and serum starved
overnight, were collected in ice-cold HAED (25 mM
HEPES, 10 mM NaCl, 1 mM dithioerythritol, 1 mM EDTA,
pH 7.6) with HALT protease inhibitor cocktail (Thermo,
Rockford, IL, USA). Cells were sonicated for 10 s and
centrifuged at 1,000×g for 7 min at 4°C to remove unlysed
cells and nuclei. The supernatant was then centrifuged at
20,000×g at 4°C for 20 min to pellet the membrane fraction,
which was resuspended with buffer for subsequent
experimentation.

Western Blot Analysis

Plasma membranes for mPRα, mPRβ, mPRγ, and integrin
Western blotting were isolated as described above, resus-
pended in PBS with HALT protease inhibitor cocktail and
added in the ratio of 2:1 to 5× Lane Marker Reducing

Sample Buffer (Thermo) and run on a 10% sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gel
(15 μg protein/lane). Cells were pelleted by centrifugation at
500×g for 5 min for p42/44 MAP kinase and β-actin West-
ern blotting. Pellets were resuspended in PBS containing
protease inhibitor cocktail and lysed by sonication. Crude
cytosolic extracts were obtained by centrifugation for
20 min at 20,000×g and run on a SDS-PAGE gel (20 μg
protein/well). Proteins were transferred onto nitrocellulose
membranes and blocked in TBS-T with 5% non-fat dry
milk. Membranes were incubated with primary antibodies
(dilution mPR antibodies 1:2,500; dilution total and
phospho-ERK1/2- antibodies 1:1,000) in PBS with 5% milk
overnight at 4°C followed by incubation with appropriate
HRP-linked secondary antibodies. Proteins were visualized
using Supersignal WestPico (Thermo) and exposure to
Hyperfilm ECL (Amersham, Piscataway, NJ, USA).

Immunocytochemistry

The immunocytochemistry was conducted as described pre-
viously with few modifications [62]. The specificity of the
immunoreactions was confirmed by incubating cells with
secondary antibody alone. The nucleus was counterstained
DAPI (Invitrogen, Carlsbad, CA, USA), and the slides were
mounted with Prolong Gold antifade reagent (Invitrogen).
The presence of fluorescent-labeled mPR proteins in the
cells was visualized using a Nikon Eclipse E600 fluorescent
microscope.

p42/44 MAP Kinase Activation Assay

Cells, grown in six-well cell culture plates to 70% conflu-
ence and serum starved for 3 days, were incubated with
100 nM progesterone for 5–60 min prior to stopping the
incubation by replacing the media with ice-cold PBS. Cells
were scraped into 1× Lane Marker Reducing Sample Buffer
(Thermo) and Western blotted as described above.

Plasma Membrane Progesterone Receptor Assay

Membrane progesterone receptor competition assays were
conducted as described previously [62].

[35S] GTPγ-S Binding

Cells were grown to confluence and serum starved for 12 h
prior to plasma membrane preparation for the [35S] GTPγ-S
binding assay as described previously [62].
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Immunoprecipitation of [35S] GTPγ-S with G Protein α
Subunit Antibodies

Immunoprecipitation of [35S] GTPγ-S with G protein α sub-
unit antibodies was conducted as described previously [62].

cAMP Measurement

Cells, grown to 70% confluence and serum starved for 36 h,
were pretreated with serum-free media containing 10 μM
IBMX dissolved in DMSO for 20–30 min prior to incubation
with progesterone (100 nM) or vehicle (<0.1%media volume)
for 0, 1, 5, 10, 15, or 30 min. The incubation was stopped by
quickly removing the media and adding 100 μl 0.1 M HCl to
each well. After 20 min HCl treatment the cells were scraped
off the plates, collected, and stored at −20°C until assayed by
ELISA in duplicate according to the manufacturer’s instruc-
tions (Cayman Chemical, Ann Arbor, MI, USA).

Cell Death Assay

Cell death was assayed as described previously [15] follow-
ing the general protocols of earlier studies [44, 45]. Briefly,
cells grown in 25-cm2 flasks until they were 100% confluent
were washed and incubated for 4–7 days in serum-free
media containing various steroid treatments. The incubation
media were removed, and adherent cells and cells in the
incubation media were harvested, washed, pelleted by cen-
trifugation, resuspended in Hank’s saline, and incubated
with filtered trypan blue stain for 5 min. Cells were loaded
onto a hemocytometer, and viability was determined for 500
cells/flask by trypan blue stain exclusion. The mPRα siRNA
transfections for cell death experiments were performed on
MB468 cells as previously described [62], and cells were
treated on the second day following transfection.

TUNEL Assay

Cells, grown in 25 cm2 flasks until they reached 100%
confluence, were washed and incubated in serum-free media
with various steroids for 48 h prior to harvesting in Hank’s
saline as described above. TUNEL assay was performed
according to the manufacturer’s instructions (Clontech,
Mountain View, CA, USA) using the ApoAlert DNA Frag-
mentation Assay kit. Apoptotic nuclei were counted using a
fluorescent microscope as a proportion of total cells in five
random fields of view for each flask.

Caspase 3 Activity

Cells, treated as in the TUNEL assay, were harvested and
caspase 3 activity was determined by fluorescence using
caspase-3 ApoAlert Assay plate (Clontech) according to the

manufacturer’s instructions. Cells were also harvested for im-
munoblot analysis by 30 min incubation at 4°C in RIPA buffer
(50 mM Tris–HCl, pH 7.4, 150 mMNaCl, 0.25% deoxycholic
acid, 1% NP-40, and 1 mM EDTA) containing HALT phos-
phatase inhibitors (Thermo) and protease inhibitors
(EMD Chemicals, Gibbstown, NJ, USA). Protein sam-
ples (20 μg/lane) were analyzed by Western blotting using
the caspase 3 and phospho-caspase 3 antibodies.

Mitochondrial Membrane Potential

Cells were cultured for 1 day in clear, black-sided (Corning,
Wilkes Barre, PA, USA), 96-well plates, washed, and cul-
tured in serum-free media containing treatments for 4 days
with a change of media containing the treatments after
2 days. The cells were washed and incubated in mitochon-
drial membrane buffer (25 mM HEPES, 115 mM NaCl,
5 mM KCl, 1 mM KH2PO4, 1.2 mM MgSO4, 0.5 mM
CaCl2, and 5 mM glucose, pH 7.4) at 37°C for 2 h prior to
20 min dye loading with 150 nM tetramethylrhodamine
methyl ester (AnaSpec Inc., Fremont, CA, USA). Fluores-
cence was measured on a FLUOstar Omega microplate
reader (excitation, 554 nm; emission, 590 nm; bottom reading
with 50 flashes per well). One lane per treatment group
contained 10 μM carbonyl cyanide 3-chlorophenylhydrazone
(CCCP) (Thermo) as a positive control. Data were normalized
to crystal violet (Thermo) as previously described [2].

Akt Activity

Cells were plated in six-well plates and treated for 4 days in
serum-free medium containing 10 nM P4, R5020, or Org
OD 0–02. Cells were harvested and processed as previously
described for caspase 3 Western blot analysis.

Cell Proliferation Assay

Cells, incubated for 1 day in 96-well plates, were washed
and incubated for 2 days in serum-free media containing
treatments. Five milligrams per milliliter (3-(4,5-dimethylth-
iaazol-2-yl)-2,5) diphenyltetrazolium bromide (MTT) (Alfa
Aesar, Ward Hill, MA, USA) was added at 1/10 total
volume of medium and incubated at 37°C for 2 h. Cells
were lysed in equal volume MTT lysis buffer (20% SDS in
50% N,N-dimethylformamide, 0.5% acetic acid, 0.4% 1 N
HCl, pH 4.7) for 4 h and read at 570 nM.

Statistical Analyses

One-way ANOVA with either Dunnett’s or Bonferroni’s
multiple comparison tests were used to determine statistical
differences between control and experimental treatments
using GraphPad Prism (San Diego, CA, USA). Square root
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transformations of the data were used as indicated in order
to remove significant differences in variance.

Results

Identification of mPR and Progesterone Binding

Quantitative RT-PCR detected the presence of mRNAs
encoding all three mPR isoforms (α, β, and γ) in the
MB468 breast cancer cell line (Suppl. Figure 2A). mPRα
mRNA levels were several-fold higher than those of mPRβ
or mPRγ. Full-length PR and truncated PR mRNAs were
not detected in SKBR3 or MB468 cells (data not shown).
Western blotting for the mPRs confirmed the presence of
40 kD mPRα, mPRβ, and mPRγ protein bands in both
SKBR3 and MB468 cell membranes (Fig. 1a), although

the relative protein abundance of each mPR isoform cannot
be inferred from these blots due to the differences in isoform
antibody affinity. Immunocytochemical analysis showed
that the mPRα protein is predominantly localized on the
cell membranes of both MB468 and SKBR3 cells, although
some mPRα protein could also be detected intracellularly
(Suppl. Figure 2B and D). No staining of the cells was
observed when incubated with second antibody alone
(Suppl. Figure 2C and E).

Previous saturation and Scatchard analyses have demon-
strated the presence of high affinity, limited capacity, single
progesterone binding sites on SKBR3 and MB468 cell mem-
branes [16, 49]. Single point competitive binding assays
showed that 50 nM progesterone displaced most of the
[3H]-progesterone binding to SKBR3 plasma membranes,
and the synthetic progestins, Org OD 02-0 and Org OD 13-0,
which have high binding affinities for recombinant human
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Fig. 1 mPR protein detection, G
protein activation, and second
messenger signaling in SKBR3
and MB468 cells in response to
progesterone treatment. a
Detection of mPR proteins in
plasma cell membranes by
Western blot analysis. b, c
Immunoprecipitation of [35S]-
GTPγS in response to a 30-min
100 nM progesterone treatment
by G protein antibodies in
SKBR3 (b) and MB468 (c) cell
membranes. Data represent mean
percent of the specific [35S]-
GTPγS binding of vehicle con-
trols. n05, *p<0.05, **p<0.001
compared to vehicle (Veh) control
by one-way ANOVA and Dun-
nett’s multiple comparison test. d.
Time-course of cAMP concen-
trations in whole SKBR3 cells in
response to 100 nM progesterone
treatment. Data represent mean
percent of the cAMP concentra-
tion at 0 min normalized to
protein ± SEM. n05, *p<0.05,
compared to 0 min by one-way
ANOVA and Dunnett’s multiple
comparison test. e, f ERK 1/2
activation by 100 nM progester-
one in SKBR3 (e) andMB468 (f)
cells at 5, 10, 15, 30, and 60 min.
A 10-min 20 nM EGF treatment
used as positive control. Repre-
sentative blot and densitometry
from four separate experiments
shown. Data represent mean
phospho ERK 1/2 (p-ERK) band
density normalized to total ERK
1/2 (ERK) band density ± SEM.
*p<0.05, n04
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mPRα [30], were also relatively effective competitors at this
concentration (Suppl. Figure 3A). Testosterone (50 nM)
caused slight displacement of [3H]-progesterone binding,
whereas the nuclear progesterone receptor ligands, R5020
and RU486, cortisol and estrogen were ineffective as compet-
itors of [3H]-progesterone binding to SKBR3 membranes
(Suppl. Figure 3A). Org OD 02-0 was also an effective com-
petitor for [3H]-progesterone binding to the receptor on
MB468 cells (Suppl. Figure 3B). The specificity of binding
by other steroids to the progestin receptor on MB468 cells has
been reported previously and is similar to that observed with
SKBR3 cells [49].

Progesterone Activation of G Proteins and Induction
of Intracellular Signaling

Progesterone treatment (20,100 nM) caused significant
increases in [35S]-GTPγS binding to SKBR3 cell mem-
branes compared to vehicle controls (Suppl. Figure 3C),
similar to that observed with MB468 cells after progesterone
treatment [49].The amount of [35S]-GTPγ-S immunopreci-
pitated from solubilized SKBR3 and MB468 membranes by
antibodies directed against inhibitory G proteins was signif-
icantly increased after progesterone exposure, whereas the
[35S]-GTPγ-S immunoprecipitated by antibodies directed
against stimulatory G proteins was unchanged (Fig. 1b, c),
indicating selective progesterone activation of an inhibitory
G protein.

Exposure of SKBR3 cells to 100 nM progesterone resulted
in a significant reduction in intracellular cAMP levels com-
pared to the control no treatment values at 5, 10, and 30 min
(Fig. 1d). Progesterone also caused a transient, significant
increase in p42/44 MAPK activation in SKBR3 and in
MB468 cells between 5 and 10 min exposure, which had
returned to baseline values by 60 min (Fig. 1e, f).

Progestin Inhibition of Serum Starvation-Induced Cell
Death and DNA Fragmentation

Significant decreases (approximately 14–15% ) in serum
starvation-induced death assessed by trypan blue exclusion
were observed in SKBR3 cells (Fig. 2a) and MB468 cells
(Fig. 2b) after exposure to 10 nM progesterone, which were
not replicated by the PR agonist R5020, the PR antagonist
RU486, dexamethasone, or 17β-estradiol. Moreover, the
progesterone-induced decrease in cell death in SKBR3 cells
appeared to be concentration-dependent over the concentration
range of 10–1,000 nM (Fig. 2c), whereas there were no
concentration-dependent effects of progesterone on cell death
in MB468 cells, in which cell death was inhibited ~20% with
1 nM progesterone, the lowest concentration investigated
(Fig. 2d). Treatment of MB468 cells with 1 and 10 nM proges-
terone or 10 and 100 nM of the selective mPR agonist Org OD

02-0, but not with 10 nMR5020 or cortisol, resulted in 40–55%
decreases (compared to ethanol controls) in DNA condensation
detected by TUNEL staining (Fig. 2e, f). Treatment with 10, 50,
or 100 nMprogesterone or R5020 did not alter cell proliferation
measured byMTT (Suppl. Figure 4). These results suggest that
progesterone inhibition of serum starvation-induced cell death
is due to inhibition of apoptosis through an mPR-dependent
mechanism and is not associated with a proliferative effect.

Effect of mPRα siRNA Treatment on Progestin-Induced
Cell Death

In order to further examine mPRα involvement in progestin-
mediated cell survival, siRNA directed against mPRα was
used to knock down mPRα expression in MB468 cells
(Fig. 3b). Cells with reduced mPRα expression did not
show increased survival upon progestin treatment, whereas
cells with endogenous mPRα levels (control siRNA or
untransfected) responded to progesterone treatment with a
significant decrease in cell death (Fig. 3a). Similar to previous
experiments, cells did not respond to R5020, confirming a
lack of PR involvement.

Progestin Effect on Caspase 3 Activity

Treatment of serum starved MB468 cells with 1–100 nM
progesterone or 10 nM R5020 was ineffective in altering
caspase 3 activity detected by either caspase 3 EIA (Fig. 3c)
or phosphorylation detected by immunoblot analysis
(Fig. 3d), indicating that decreases in DNA fragmentation
by progestins are not associated with caspase 3 inhibition.

Progestin Effect on Mitochondrial Membrane Potential

Progesterone and Org OD 02-0 both at 10 and 100 nM
significantly increased mitochondrial membrane potential
(MMP) in serum starved MB468 cells, while R5020 was
ineffective (Fig. 3e). Cells were also treated with CCCP,
which depolarizes the mitochondrial membrane as a positive
control for MMP (data not shown). This indicates that
progesterone and mPR-selective ligands hyperpolarize mi-
tochondrial membrane potential, which is associated with
inhibition of apoptosis [58].

Progestin Effects on Akt Activity

PI3K/Akt pathway activation is associated with cell survival
pathways and inhibition of pro-apoptotic Bcl-2 family mem-
bers [1]. Therefore, we measured Akt activity via Western
blot analysis using phospho-Akt antibody in serum-starved
MB468 cells treated with progesterone, R5020 and Org OD
02-0. Progesterone and Org OD 02-0, but not R5020,
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increased phospho-Akt compared to control groups, suggest-
ing that mPRs are mediating this response (Fig. 3f).

mPR Expression in Normal and Malignant Breast Biopsies

mPRα mRNAwas two to three times more abundant in both
normal and malignant tissues than either mPRβ or mPRγ,
suggesting that mPRα is the primary mPR expressed in
breast tissue. However, overall, the expression levels of
the mPRs were two to five times lower than other steroid
receptors measured (Fig. 4). The mPRα, mPRβ, and mPRγ
mRNAs were detected in all 26 breast tissue biopsies exam-
ined, and on average, their mRNA levels were slightly
upregulated in malignant tissue over normal tissue from
the same breast. Ratios of malignant to normal gene expres-
sion ranged from 0.01 to over 100. In order to simplify the
data, upregulation was defined as greater than a 1.2:1 ratio

of expression in malignant tissue to normal tissue, which
corresponds to a 20% increase in gene transcription
(Table 1). This ratio was selected following a literature
review [39, 40, 65]. Of the 13 paired biopsies examined,
mPRα was upregulated in six cases (46%), mPRβ was
upregulated in five (38%), and mPRγ was upregulated in
nine (70%, Table 1). Overall mPRγ was upregulated in a
higher percentage of patients with malignant breast tissue
(70%), than any of the other receptors (PR, 54%; ERα,
46%; ERβ, 38%; PGRMC1, 38%). The parallel regulation
of mPRα, mPRγ, and PR in breast cancer tissues suggests
the possibility of an interaction between progesterone
receptors, with potentially important implications in breast
cancer biology. Linear regression determined a positive
relationship between PR and mPRγ with a slope of 14.42
±3.846, p<0.005, indicating a slope significantly different
from 0 with an r200.5609.
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Fig. 2 Effects of steroid
treatments on serum starvation-
induced death of SKBR3 (a, c)
and MB468 (b, d) cells and on
TUNEL staining of nuclei (e, f).
a, b Effects of treatment with
10 nM of various steroids on
percent cell death after 5–7 days
starvation/treatment. c, d
Effects of treatment with dif-
ferent progesterone concentra-
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cell death after 4–5 days star-
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tween vehicle control and
steroid treatment determined
by one way ANOVA and
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Discussion

The results of the present study provide the first evidence
that progesterone inhibits apoptosis in PR-negative breast
cancer cell lines through mPRα. PR-negative SKBR3 and
MB468 cells express predominantly mPRα and lesser
amounts of mPRβ and mPRγ and display the typical pro-
gestin membrane binding and signaling characteristics of
mPRs. The finding that treatment with low concentrations
of progesterone and the specific mPR agonist Org OD 02-0
attenuated cell death and DNA condensation induced by
serum-starvation implicates mPRs in the antiapoptotic
actions of progesterone in breast cancer cells. mPR agonists
also activate MAPK p42/44 and Akt signaling pathways,
which are both incorporated in the apoptotic signaling

pathway. The demonstration that down-regulation of mPRα
expression by treatment with siRNAs abrogates the protec-
tive effects of progesterone on cell death indicates that
mPRα mediates at least part of this progesterone action. In
addition, preliminary evidence was obtained for upregulation
of the three mPRs in human breast cancer tissues. Taken
together, these results suggest a role for mPRs in progestin
promotion of breast cancer cell survival through inhibition of
cell death.

Although mPRα, mPRβ, and mPRγ have been detected in
human breast tissue [60], the expression of the three mPR
subtypes in breast cancer tissues and cell lines has not been
described previously. The finding that the mPRα subtype is
the predominant mPR transcript in human breast cancer cell
lines and normal and malignant breast tissues is in agreement
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with previous findings [16, 60]. PR expression is not neces-
sary for mPR expression as both cell lines used in the present
study are PR-negative [34], corroborating findings that sug-
gest the mPRs are expressed and regulated in tissues indepen-
dent of PR [29]. Several lines of evidence indicate that
functional mPRs are present on SKBR3 and MB468 cell
membranes. The Western blot analyses and immunocyto-
chemistry results indicate the mPRs are localized to the plas-
mamembranes of both cell types, consistent with their roles as
membrane receptors. The binding affinities of progesterone to
SKBR3 (Kd010.6 nM) and MB468 (Kd06.03 nM) cell
membranes [16, 49] are within the range reported previously
for recombinant mPRs [62, 66]. The progesterone binding to
MB468 cells is associated with expression of both mPRα and
mPRβ, because siRNA directed against either mPR results in
decreased membrane [3H]-progesterone binding [49]. Steroid
specificity studies also indicate the progestin receptors on
these cells are mPRs. The membrane progesterone receptor
on SKBR3 cells displays high steroid specificity for proges-
terone with low affinity for testosterone and no affinity for

17β-estradiol, cortisol, the PR agonist R5020, or the PR
antagonist RU486, similar to the results with MB468 cells
and with recombinant human mPRα [49, 62, 66]. Addition-
ally, the specific human mPR agonist, Org OD 02-0 [30],
shows high affinity binding to SKBR3 and MB468 cell
membranes.

The current results showing that progesterone activates
an inhibitory G protein in both SKBR3 and MB468 breast
cancer cells is consistent with previous findings with mPRα
and mPRβ in a variety of cells, including human myome-
trial cells [29], a human T-cell leukemia (Jurkat) cell line
[13], a rodent GnRH neuronal (GT1-7) cell line [57], and
teleost ovarian follicle cells and oocytes [15, 48]. As pre-
dicted, progesterone activation of an inhibitory G protein
was associated with similar decreases in intracellular cAMP
levels in SKBR3 cells and in MB468 cells [49] to those
observed in other cells expressing mPRs [15, 47, 57]. Sim-
ilarly, the progestin-induced MAPK activation in SKBR3
and MB468 cells has previously been observed in human
myometrial cells [29] as well as in mammalian cells express-
ing teleost mPRα [24, 67] and teleost oocytes [47] and
granulosa/theca cells [15]. Moreover, progestins have been
shown to activate Akt in the teleost oocyte and granulosa/
theca cells, which express mPRα and also in MB468 cells
during EMT transition [15, 48, 68]. Thus, the current results
on progestin binding and intracellular signaling initiated in
these PR-negative breast cancer cell lines are consistent with
mPRα activation and signaling observed previously in other
vertebrate cells.

Of particular importance in the development and/or pro-
gression of breast cancer is the major finding that mPRs
mediate progestin inhibition of cell death and apoptosis in
human breast cancer cells. Clear evidence in support of this
was obtained via trypan blue exclusion and TUNEL staining
experiments showing that treatment with low nanomolar

Table 1 Comparison of gene
regulation between paired nor-
mal and malignant human breast
samples: (+) denotes a ratio of
malignant to normal gene ex-
pression greater than 1.2; (−)
denotes a ratio of malignant to
normal gene expression <0.8

Biopsy Designation CK19 mPRα mPRβ mPRγ ERα ERβ PR PGRMC1

1 − + + + + − + −

2 + + − + − − + +

3 + + − + + − + −

4 + − − − − − − −

5 + + + + + − + −

6 + + − + + − + −

7 + − − − − − − −

8 + + + + + + + +

9 − − + − + − − +

10 + − − + − + − +

11 + − − + − − − +

12 + − + + − − + −

13 − − − − − − − −
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Fig. 4 Average gene to actin ratio in normal and malignant human
breast biopsies. Data represent average ± SEM gene to actin ratio for
all measured genes grouped according to disease state. n013
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concentrations of progesterone inhibited serum starvation-
induced cell death of both SKBR3 and MB468 cells, where-
as R5020, RU486, 17β-estradiol, or dexamethasone were
ineffective. While trypan blue staining does not distinguish
between cell morbidity and cell mortality, the results from
trypan blue exclusion experiments agree with the results
from TUNEL staining, a more robust measure of cells
undergoing a regulated cell death process, indicating that
progestin acting through mPR inhibits cell death. The PR
agonist, R5020, displays low binding affinity for mPRs and
does not activate them at low nanomolar concentrations [29,
49, 62]. Thus, the failure of R5020 to protect against cell
death further indicates that the protective effects of proges-
terone in these breast cancer cells are not mediated through
any form of PR. On the other hand, the observation that the
specific mPR agonist, Org OD 02-0, mimicked the actions
of progesterone on apoptosis and mitochondrial membrane
potential further indicates involvement of mPRs. Finally, the
mPRα siRNA experiments showing that progesterone no
longer inhibited cell death in MB468 cells in which mPRα
expression was reduced provide further direct evidence that
these antiapoptotic progesterone actions are mediated
through mPRs. A similar degree of impairment of apoptosis
after progesterone treatment has been observed in other PR-
negative breast cancer cell lines [45] and in the ovarian
follicle [15, 18]. There is substantial evidence that proges-
tins inhibit apoptosis of breast cancer cells [3, 5, 44–46, 63],
while other studies indicate progestins can promote apopto-
sis in multiple cell lines [21, 22, 27, 28]. Thus, the role of
progesterone in the development and progression of breast
cancer is often confusing, although progesterone and estro-
gen have consistently been shown to regulate the prolifera-
tion and differentiation of normal mammary tissue [19, 42,
56]. A recent study has shown that the epithelial to mesen-
chymal transition (EMT) of breast cancer cells, an important
event in cancer metastasis, is reversed by progesterone
treatment through mPRα [68]. While the magnitude of
progestin inhibition of apoptosis via mPR activation is rel-
atively small, it may be sufficient to enable cancer cells
undergoing EMT/mesenchymal to epithelial transition
(MET) to survive in adverse environments and establish
metastatic disease. While there is no direct evidence sup-
porting this hypothesis, our data, taken with data from other
groups, suggest that mPRs are intermediaries in a variety of
progestin actions in breast cancer cells that modulate cancer
survival, progression, or metastasis.

The present results showing that progesterone activates
MAPK and Akt are consistent with mPR’s antiapoptotic
actions in these PR-negative breast cancer cell lines, as both
MAPK and Akt are directly and indirectly involved in
inhibiting apoptosis. Activated MAP kinases have been
shown to upregulate the expression of antiapoptotic mem-
bers [38] and to inactivate the proapoptotic members [55] of

the Bcl-2 family of proteins. Activated Akt inhibits BAD
[12], a proapoptotic member of the Bcl-2 family, and cas-
pase 9 [8], a mediator of apoptosis. Apoptotic signaling
pathways are also associated with both mitochondrial-
dependent and mitochondrial-independent events, which in-
volve activation of caspases. Caspase 3 activity is often
regulated in association with DNA fragmentation [51], but
in the present study, the antiapoptotic actions of progesterone
are not associated with alterations of caspase 3 activity. The
role of the mitochondria in cell death is highly dependent upon
MMP integrity. A decrease in MMP associated with an apo-
ptotic event leads to the rupture and subsequent release of
proapoptotic proteins sequestered within the mitochondria
[54]. We show that progesterone and the mPR-selective
agonist Org OD 02-0 increases MMP, which correlates
with increased cell survival.

The current study is also the first to describe the expres-
sion patterns of three mPR mRNA isoforms in human breast
cancer biopsies. While the transcript levels of mPRs are
somewhat lower compared to nuclear steroid receptors, this
is not unexpected as relatively few membrane localized
mPR molecules are needed to send a cell wide signal via
activation of second messengers. mPRγ appears to be upre-
gulated in 70% of the tumors examined, which is similar to
the proportion of tumors defined as steroid receptor positive
[64]. We show that the mPRs are widely expressed in breast
tumors with at least one mPR isoform upregulated in 85% of
the tumors examined. The mPRα protein has been detected
in the majority of human breast cancer cell lines examined
in human breast cancer biopsies [68]. These data are
suggestive of a role for mPRs in breast tumor formation
or progression, but due to the limited sample number, it
is difficult to draw any definitive conclusions. Addition-
al studies examining mPR protein expression on a large
number of breast tumors via immunohistochemistry are
warranted.

The role of progesterone in breast cancer is difficult to
define [35]; the presence of mPRs in both PR-positive and
PR-negative breast tumors and breast cancer cell lines may
add an additional level of complexity in identifying the role
of progestins in breast tumor development, progression, and
metastasis. While there are currently no data on the expres-
sion patterns of the mPRs in relation to treatment response
or prognosis, the activity of mPRs in breast cancer cells
suggests that further study of mPRs in relation to breast
cancer treatment and prognosis is warranted.
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