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Abstract
Background: The most common and deadly cancer in female is breast cancer 
(BC) and new incidence and deaths related to this cancer are rising.
Aims: Several issues, that is, high cost, toxicity, allergic reactions, less efficacy, 
multidrug resistance, and the economic cost of conventional anti-cancer thera-
pies, has prompted scientists to discover innovative approaches and new chemo-
preventive agents.
Materials: Numerous studies are being conducted on plant-based and dietary 
phytochemicals to discover new-fangled and more advanced therapeutic ap-
proaches for BC management.
Result: We have identified that natural compounds modulated many molecular 
mechanisms and cellular phenomena, including apoptosis, cell cycle progression, 
cell proliferation, angiogenesis and metastasis, up-regulation of tumor-suppressive 
genes, and down-regulation of oncogenes, modulation of hypoxia, mammosphere  
formation, onco-inflammation, enzymatic regulation, and epigenetic modifica-
tions in BC. We found that a number of signaling networks and their components 
such as PI3K/Akt/mTOR, MMP-2 and 9, Wnt/-catenin, PARP, MAPK, NF-κB, 
Caspase-3/8/9, Bax, Bcl2, Smad4, Notch1, STAT3, Nrf2, and ROS signaling can be 
regulated in cancer cells by phytochemicals. They induce up-regulation of tumor 
inhibitor microRNAs, which have been highlighted as a key player for ani-BC 
treatments followed by phytochemical supplementation.
Conclusion: Therefore, this collection offers a sound foundation for further in-
vestigation into phytochemicals as a potential route for the development of anti-
cancer drugs in treating patients with BC.
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1   |   INTRODUCTION

Breast cancer (BC) is the most common and frequent ma-
lignancy among females, and it is the second most frequent 
carcinoma and a significant cause of cancer-associated 
death worldwide. This cancer is a multifactorial disease 
and various factors, including demographic, oxidative 
stress, bacterial infection, reproductive, hormonal, hered-
itary, and lifestyle contribute to its occurrence.1 A number 
of conventional therapeutic options such as surgical resec-
tion, radiotherapy, chemo-radiotherapies (e.g., adjuvant 
chemotherapies and neoadjuvant therapy), hormonal 
therapies, monoclonal antibodies, immunotherapy, and 
small molecular inhibitors are available for the patients 
with BC.2,3 However, these therapeutic modalities have 
drawbacks, bearing side effects and toxicities. Thus, new 
approaches and strategies are needed to manage patients 
with BC effectively to minimize the limitations, such as 
increasing resistance to conventional therapeutics, side 
effects, and toxicities of existing treatment modalities. 
Interestingly, alternative medicines (with fewer side ef-
fects) for patients with BC, especially metastatic cancer, 
have been developed.

Phytochemicals are an essential natural resource 
for anti-cancer medicine. They are safe, non-toxic, cost-
effective, and readily available sources from villages 
to cities and underdeveloped to developed countries.4 
Currently, medicinal plants or their derivatives account 
for about 70% of the anti-cancer compounds, thus, playing 
the lead role in developing anti-cancer drugs.5,6 Initially, 
natural plant extracts have showed higher anti-tumor re-
sponses and better pharmacological or bioactivity with less 
toxicity in patients with advanced BC (Table  1).37–40 For 
example, anti-cancer compounds from Curcuma longa, 
Piper longum, Nigella sativa, Murrayakoenigii, Amora ro-
hituka, Withania somnifera, and Dimocarpus longan pos-
sess anti-cancer activity against various cancers, especially 
anti-BC properties.8,25,36,41–44 Latter specific phytochemi-
cals have been identified as a new source of anti-cancer 
agents from plant extract to decrease the negative effects 
of cancer chemotherapies in recent research.45–48 These 
natural agents can target several BC-related pathways and 
provide protective activity against breast malignancies, 
which play a significant role in preventing and managing 
patients with BC.46,49 Several individual studies exhibited 
phytochemicals had anti-cancer property through several 
mechanisms.50–52 However, a comprehensive summary 
on precise anti-cancer mechanisms including apoptosis 
induction, cell cycle, and cell proliferation regulation, 
inhibition of angiogenesis and metastasis, regulating 
hypoxia-inducible factor, suppressed mammosphere for-
mation, onco-inflammation inhibition, controlling en-
zyme activity, signal transduction regulation, epigenetic 

and immune regulation have not been reported collec-
tively. Therefore, in this review, we have discussed vari-
ous phytochemicals with their major sources, structure, 
and their possible anti-cancer pathways in the BC, thereby 
providing an aggregative source of information on poten-
tial natural anti-cancer resources.

2   |   SOURCE OF ENLISTED 
DIETARY PHYTOCHEMICAL

Phytochemicals are plant-based compounds founds in 
vegetables, fruits, beans, grains, and other parts of plants. 
Bioactive phytochemicals protect cells from cancer-
causing injury.53 For instance, daidzein, genistein, epi-
gallocatechin gallate (EGCG), epigallocatechin, and 
formononetin-A are phytoestrogen in nature and found in 
the form of flavonoids in soy and soy products.54–57 Lutein, 
3,3-Diindolylmethane, benzyl isothiocyanate, kaemp-
ferol, and quercetin are available in green leafy vegeta-
bles including spinach, broccoli, peas, and herbs such as 
dill, chives, onion, leeks, and egg yolks.9,58–60 In addition, 
vegetables such as tomatoes, potatoes, and fruits such as 
citruses, watermelon, apples, pink guava, pink grapefruit, 
papaya, passion flower fruit, and dried apricots, are the 
significant source of 2-hydroxychalcone,61 lycopene,62 
naringenin.63 Also, natural compounds such as nimbolide, 
sanguinarine, withaferin A, α-Mangostin, arctigenin, cal-
ycosin, curcumin, and flavopiridol are present abundantly 
in medicinal plants such as Azadirachta indica (leaves 
and seed), Sanguinaria canadensis (rhizome), W. somnif-
era, Tripterygium wilfordix (roots), Garcinia mangostana 
L.(pericarps), Arctium lappa L. (seeds), Radix astragali 
(dry root), C. longa (rhizome), and Dysoxylum binectar-
iferum (stem and bark), respectively.36,64–68 Furthermore, 
punicalagin, sesamin, shikonin, silibinin, taiwanin A, and 
wogonin are found in Punica granatum, Cuscuta palaes-
tina (seed), Sesamum indicum, Lithospermum erythrorhi-
zon (roots), Silybum marianum, Taiwania cryptomerioides 
(bark), N. sativa (seeds), and Anodendron affine (stems) 
plants.69–74 EGCG, and epigallocatechin are known cat-
echin phytochemicals, widely distributed in tea with sev-
eral health benefits.75,76 The source and structure of these 
phytochemicals are presented in Table 2.

3   |   PHYTOCHEMICALS 
TARGETING BC CELLS

Therapeutic strategies against BC include surgery 
chemoradiotherapies, adjuvant/neoadjuvant therapies, 
hormonal therapies, monoclonal antibodies, immuno-
therapy, nanomedicines, and small molecular inhibitors.99 
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T A B L E  2   Source and structure of common phytochemicals with anti-cancer properties.

Compounds Structure Source Ref.

2-Hydroxychalcone Tomatoes, potatoes, licorice, citruses, apples (Humulus lupulus L.) 61

3,3-Diindolylmethane Cruciferous vegetables, that is, brussels sprouts, cauliflower, cabbage, 
and broccoli

59

Apigenin Parsley, chamomile, celery, vine-spinach, and oregano 77

Arctigenin Present in the seeds of Arctium lappa L. 67

Benzyl isothiocyanate Cruciferous vegetables like 3,3-diindolylmethane source 9

Calycosin Dry root extract of Radix astragali 68

Celastrol The root extract of Tripterygium wilfordi plant 78

Coumestrol Clover, Kala Chana, Alfalfa sprouts 79

Curcumin Rhizome of turmeric (Curcuma longa) 80

Daidzein Soybeans and soy products, that is, beans, peas, nuts, coffee, tea, and 
specific herb like red clover

54

EGCG Green tea 81

Emodin Herbs, that is, Polygonum cuspidatum, Aloe vera, Rheum palmatum, 
and Cassia obtusifolia

82

Enterolactone Flaxseed, sesame seed

Epigallocatechin Green tea 83

Flavopiridol The stem and bark of Dysoxylum binectariferum plant 84

Formononetin Red clovers, soya bean, milk vetch (Astragalus mongholicus) 55

Genistein Soybeans and soy products 56

Ginsenoside Rh1 Red ginseng, root 85

Ginsenosides Panax species (roots, leaves, stems, flower, fruits) 86

Isoliquiritigenin Licorice, extract of Sinofranchetia chinensis 87
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Compounds Structure Source Ref.

Kempferol Green leafy vegetables such as broccoli, spinach, and kale, and herbs 
such as dill, chives, and tarragon, onion, leeks

60

Lutein Green leafy vegetables such as broccoli, spinach peas, lettuce, and egg 
yolks

58

Lycopene Tomato, watermelon, pink guava, papaya, pink grapefruit, and dried 
apricots passionflower fruit

62

Naringenin Fruits like citrus species and tomatoes 63

Nimbolide Leaves and flowers of neem (Azadirachta indica) 64

Pharbilignan C Pharbitidis semen, the seed of morning glory (Pharbitis nil) 88

Pterostilbene Blueberries, grapes, and tree wood 89

Punicalagin Pomegranate (Punica granatum) 69

Quercetin Nuts, apples, onions, olive oil green tea, broccoli, red grapes, dark 
cherries

90

Sanguinarine Rhizome of bloodroot (Sanguinaria canadensis) 65

Withaferin A Withania somnifera 36

α-Mangostin Pericarps of mangosteen 66

Resveratrol Grapes, peanuts, and soy 57

Rg3 Red ginseng root (Panax ginseng C.A. Meyer) 91

Rosmarinic acid Boraginaceae species and Nepetoideae of the Lamiaceae subfamily 92

Sesamin Sesame seeds, Cuscuta palaestina plant extract 48

Shikonin Roots of Lithospermum erythrorhizon 93

T A B L E  2   (Continued)

(Continues)
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However, limitations such as resistance, compromised 
efficacy, and side effects of conventional therapies limit 
their clinical applications. Thus, plant-derived anti-cancer 
agents with less or no toxic effects can be an alternative 
chemotherapeutic option. Anti-cancer activity of phyto-
chemicals is dependent on their multi-targeted mecha-
nism of action. Since carcinogenesis is a multistep process 
involving multiple signaling mechanisms, numerous 
phytochemicals targeting the altered signaling in cancer 
are considered promising anti-cancer therapeutics.100 
Phytochemicals targeting signaling pathways in cancer 
are summarized (Table 3). The following sections outline 
the role of potentially bioactive compounds against BC 
cells with their possible molecular mechanism.

3.1  |  Inhibition of cell proliferation

Cellular proliferation is essential for all multicellular 
organisms to develop bodies and organs during em-
bryogenesis. However, in the case of cancer, abnormal 
cell proliferation is due to changing the expression or 
activity of protein associated with cell proliferation or 
cell cycle regulation. Phytochemicals and their deriva-
tives can inhibit the growth and expansion of BC cells by 
targeting cell cycle regulatory proteins.172 For example, 
the naturally active compound formononetin (25 μΜ) 
suppresses tumor growth and angiogenesis in MCF-7 
and MDA-MB-231 tumor models by targeting the 

FGFR2-mediated Akt signaling pathway.101 Treatment 
of MCF-7 cells by silibinin (50–200 μmol) prevented 
cell proliferation through modulating the expression 
of apoptosis-related proteins such as Bcl-xl, bak, p53, 
p21,107 whereas sesamin (100 μM) could inhibit MCF-7 
cell proliferation by down-regulating cyclin D1 expres-
sion.102 Curcumin mediated its anti-proliferative ac-
tivity against BC (MDA-MB-231 and BT-483) cells by 
regulating the expression of NF-κB, cyclin D1, CDK4, 
and MMP1.103 Chen et al. noted that Genistein (40–
100 μM) exhibited anti-proliferative activity by deacti-
vating the IGF-1R-PI3K/Akt signaling pathway along 
with increasing Bax/Bcl-2 expressions in MCF-7 cells,104 
whereas lycopene showed similar activities by increas-
ing Bax expression without changing Bcl-xL in MDA-
MB-468 cancer cells.105 Scheckel KA reported that the 
anti-proliferative activity of rosmarinic acid (20 μmol/L) 
is associated with a decrease in COX-2 expression 
and activation of AP-1 and ERK1/2 in MCF-7 cells.106 
Harrison et al. reported that apigenin arrests the cell 
cycle at the G2/M phase, followed by down-regulation 
p-Akt in MDA-MB-468 cancer cells.108 Furthermore, en-
terolactone (ENL) has been shown to suppress cell pro-
liferation by lowering uPA-mediated plasmin activation 
and down-regulation of MMP-2 and MMP-9 in MDA-
MB-231 cells.109 Therefore, phytochemicals could act 
as potent inhibitors of cell proliferation in BC cells by 
suppressing cell survival signaling, cell cycle regulatory 
protein, and regulating apoptosis-related proteins.

Compounds Structure Source Ref.

Silibinin Silybum marianum plant 72

Sulforaphane Broccoli, cauliflower, radish, cabbage and arugula 94

Taiwanin A Bark of Taiwania cryptomerioides 73

Thymoquinone Nigella sativa (seeds) 95

Wogonin Scutellaria baicalensis (dried root), Scutellaria rivularis, Andrographis 
paniculata (wall, leaves)

74

Oxymatrine Sophora flavescens (quinazine alkaloid extracted) 96

Jasmonates Camellia sasanqua L., Camellia sinensis L. (anther and pollen) 97

Fisetin Fragaria ananassa, Malus domestica (fruit) 98

T A B L E  2   (Continued)
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3.2  |  Apoptosis inductions

Apoptosis, a programmed cell death mechanism, plays a 
crucial role in cancer pathogenesis and maintenance by reg-
ulating cell death and survival based on specific signals.173 
Apoptosis can be executed via two mechanisms, that is, 
the extrinsic and intrinsic mitochondrial pathways.174 
Both of these pathways are regulated through several reg-
ulatory proteins.175 The extrinsic pathway, for instance, is 
associated with the Fas ligand, Fas-associated protein with 
death domain initiator pro-caspase-8, and many caspases 
contributing to the cascade amplification.176 In contrast, 
the intrinsic pathway involves apoptosis-related proteins 
such as Bax, Bak, Bcl2, Cyto-c, adaptor protein Apaf-1, 
and active caspases.177 Thus, regulating these proteins by 
phytochemicals could be an alternative for better manage-
ment of patients with BC. Ginsenoside Rh1 (50 μM, 24 h) 
exerted a potential anti-cancer effect against BC (MCF-7 
and HCC1428) cells through induction of apoptosis and 
autophagy.110 Nimbolide (1.97–5 μM) and pharbilignan 
C (5–20 μM) are associated with the down-regulation of 
Bcl-2/Bax along with up-regulation of caspases (caspases 9 
and 3), thereby leading to induced apoptosis of MDA-MB 
231 and MCF-7 cells through mitochondrial-dependent 
intrinsic pathways.88,112 Furthermore, nimbolide induces 
cancer cell autophagy by inhibiting mammalian target of 
rapamycin (mTOR) and p62 expression and increasing 
two essential proteins, Beclin 1, and LC3B expression.112 
Jin et al. reported that daidzein (25–100 μM) treatment of 
MCF-7 BC cells caused up-regulation of Bax protein and 
down-regulation of Bcl-2 protein expression, leading to 
cytochrome c release, which in turn induced apoptosis 
via activating caspases-9 and 7.111 Choi et al. reported that 
treatment of BC cells (MDA-MB 231) with sanguinarine 
(0–1.5 μM) caused apoptosis by generating ROS, lead-
ing to the transfer of cytochrome-c into cytosol followed 
by caspase-3 and caspase-9 activation and inactivation 
of anti-apoptosis factor XIAP and cIAP-1.114 Chew et al. 
noted that lutein regulated the apoptosis pathway by in-
creasing tumor suppressors (and apoptosis genes) such as 
p53 and Bax and decreasing anti-apoptosis genes such as 
Bcl-2 expression in female BALB/c mice.115 Zu et al. re-
ported that emodin (40 μM) inhibits growth by inducing 
apoptosis through up-regulating cleaved Bax/Bcl2, p53, 
caspase-3, PARP cleavage in human BC (ZR-75-30 and 
Bcap-37) cells.117 Another phytochemical, withaferin A 
(2.5–5 μM) induced apoptosis through ROS production by 
modulating the expression of Bax/Bak in MDA-MB 231 
and MCF-7 BC cells.118 Furthermore, Mi et al. reported 
that celastrol (1–10 μM) induced apoptosis by modulating 
the expression of TNF-α, caspase-8, caspase-3, and PARP 
cleavage along with inhibition of anti-apoptotic pro-
teins such as cellular cIAP1 and cIAP2, FLIP, and Bcl-2 

expression in MCF-7 and MDA-MB 231 cells.119 Also, 
lycopene and EGCG induced apoptosis by up-regulating 
the expression of p53 and Bax/Bcl-2 ratio with down-
regulating telomerase and P13K/AKT in MCF-7 and T47D 
cancer cells.83,113 Furthermore, curcumin and resveratrol 
can induce apoptosis through the regulation of Bax/Bcl2, 
whereas thymoquinone, apigenin, pterostilbene, and sul-
foraphane are associated with apoptosis by regulating 
caspases cascade and signal transduction mechanism in 
multiple human BC cells.144,164,178–181 Therefore, phyto-
chemicals inhibit BC progression by apoptosis induction, 
which mediates either intrinsic or extrinsic, and some-
times both pathways.

3.3  |  Inducing cell cycle arrest

The cell cycle is a principal physiological mechanism 
regulating tissue homeostasis and development in multi-
cellular organisms. Therefore, alterations in the cell cycle 
cause cancer. Thus, novel strategies have been developed 
targeting altered cell cycles or components. Checkpoints 
in the cell cycle arrest cell cycle progression in the case 
of DNA damage, allowing time for DNA repair.182,183 In 
numerous breast carcinomas, phytochemicals inhibit the 
passage of the cell cycle by modulating checkpoints com-
ponents such as lowering cyclins (D1 and E) levels and 
cyclin-dependent CDKs etc., and by up-regulating the ex-
pression of proteins such as CDK inhibitors (p21 and p27). 
For example, quercetin halts the cell cycle at the G2/M 
phase by raising Cdk-inhibitor, especially p21CIP1/WAF1 
and its associated protein Cdc2-cyclin B1 complex in 
MCF-7 cancer cells.120 Treatment of coumestrol (50 μM) 
caused cell cycle arrest at the G1/S phase, followed by 
upregulations of regulatory protein CDKI and p21 and 
p53 in MCF-7 cells.122 Also, taiwanin A treatment was 
associated with the up-regulation of p21, p27, p53, and  
p-p53 in MCF-7 cells in a dose-dependent manner.121 Kim  
et al. reported that ginsenosides (100 μM) had arrested the 
cell cycle at G0/G1 phase via inhibiting Cyclin D1, Cyclin 
E2, and their associated enzyme CDK4, along with up-
regulating p15INK4B, p21WAF1/CIP1 and p55 level in 
MCF-7 cells.123 Another phytochemical, kaempferol, re-
duced MCF-7 cell growth by down-regulating cathepsin 
D, cyclin E, and cyclin D1 expressions and up-regulating 
Bax and p21.124 Furthermore, thymoquinone (100–
200 μM) significantly inhibited the expression of cyclin 
D1 and E, resulting in promoting the survival of multiple 
BC (MCF-7, T47D, and MDA-MB-231) cells.125 Moreover, 
naringenin is an essential plant chemical that can regulate 
cell cycle checkpoints by suppressing CDK4, CDK6, and 
CDK7 with up-regulating p18, p19, and p21 in BC (HTB26 
and HTB132) cells.126 Altogether, phytochemicals halt the 
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progression of the cell cycle of BC cells by either inhibit-
ing the expression and activity of cyclins (B1, D1, and E) 
and CDKs (4, 6, 7) or increasing the expression of CDKs 
inhibitors (p18, p21, p27, and p53).

3.4  |  Inhibition of angiogenesis  
and metastasis

Angiogenesis is closely associated with metastasis. These 
processes are acquired at a critical density of arteries and 
occur as the tumors expand, spread, or become less differ-
entiated.184 Growth factors (VEGF, PDGF, FGF, and EGF), 
matrix metalloproteinase (MMP-2, MMP-9), intracellu-
lar adhesion molecules-1(ICAM-1), etc., are associated 
with these processes. Thus, they can be a potential target 
for cancer therapeutics development. It was reported that 
phytochemicals have significant anti-metastatic and anti-
angiogenesis effects by inhibiting MMP-9 and MMP-2 and 
suppressing VEGFR-2 expression, thereby inhibiting the 
growth and invasiveness and adhesion of cancer cells.185,186 
Flavopiridol, a phytochemical (70nM ), inhibited secretion 
of metalloproteinase, especially MMPs (MMP 2 and 9) and 
c-erbB-2 in MDA-MB-231 cells, which is associated with 
the reduction of cell invasion inhibition.128 Nobel phyto-
chemicals such as 2-hydroxy chalcone and xanthohumol 
exerted potent inhibitory effects on the invasive phenotype 
of MDA-MB-231 cells by inhibiting MMP-9 expression 
with Bcl-2 down-regulation and shikonin showed a simi-
lar result in MCF-7 cells.127,132 The reduced level of MMP-9 
and urokinase-type plasminogen activator was observed 
in MDA-MB-231, TPA-induced MCF-7 cells followed by 
a lower dose of arctigenin (10–200 μM) treatment in turn 
inhibited cells' movement.131 Similarly, plant-derived sily-
marin decreased VEGF secretion, blocked PMA-induced 
inhibition of MMP-9, and blocked AP-1 activation, thus, 
modulating MAP signaling in MCF-7 and MDA-MB- 468 
cells in a dose-dependent manner.129 In addition, it could 
downregulate VEGF activity in MDA-MB-231 cells, inhibit-
ing angiogenesis.139 Mali et al. reported that ENL (2–25 μM) 
could downregulate MMP-2 and MMP-9 activity while 
up-regulating tissue inhibitors, that is, metalloproteinases 
1 and 2 (TIMP-1 and TIMP-2), in MDA-MB-231 cells.109 
Another phytochemical Rg3 (5 mg/kg/2 day) suppressed 
cell migration and angiogenesis while promoting autophagy 
through decreasing angiogenesis factors (VEGFA, VEGFB, 
VEGFC), metastatic factors (MMP-2, MMP-9), signaling 
molecules (P13K, Akt, mTOR, JNK, p62, and Beclin-1) in 
MCF-7 cells.134 Treatment with quercetin (34 mg/kg) inhib-
its angiogenesis by reducing the activity of VEGF, VEGFR2, 
and NFATc3 in human BC xenografted nude mice. Also, it 
defeats calcineurin activity and its mediated pathway.133 
Kil et al. reported that silibinin (50 μg/mL) could inhibit 

metastasis and migration by inhibiting EGFR phosphoryla-
tion and suppressing VEGF, MMP-9, and COX-2 in MDA-
MB-468 cells, resulting in decreased tumor volume in the 
triple-negative BC xenograft model.136 Isoliquiritigenin 
(25–50 μM) treatment inhibited signaling molecules such 
as NF-κB, P13K/Akt, and p38, decreasing MMP-2, MMP-
9, VEGF, and HIF-1α expressions leading to reduce the 
motility of MDA-MB-231 cancer cells.137 Another phyto-
chemical, thymoquinone, could modulate the expression 
of epithelial markers such as E-cadherin, cytokeratin 19, 
and mesenchymal markers such as MMP-2, MMP-9, inte-
grin-aV, TGF-b in MCF-7 and MDA-MB-231 cells.138 Thus, 
the suppression of angiogenesis and metastasis in BC cells 
can be achieved by treating with plant products or plant-
derived bioactive compounds, which could suppress matrix 
metalloproteinases, growth factor expressions, and signal-
ing mechanisms (Figure 3).

3.5  |  Inhibition of hypoxia-inducible  
factor

Tumor hypoxia refers to cells being deprived of normal 
oxygen due to low oxygen levels in the tumor microen-
vironment. Hypoxia induces multiple signaling cascades 
such as MAPK, phosphatidyl-inositol 3-kinase (PI3K), 
HIF, and NF-κB pathways in cancer cells, leading to feed-
back loops of both positive and negative, and enhancing 
or diminishing hypoxic effects.187 It was also found that 
hypoxia regulates several cellular phenomena, such as 
the expression of drug efflux proteins, apoptosis, DNA 
damage, the efficiency of chemotherapy, angiogenesis, 
and metastasis.187 Therefore, targeting hypoxia-inducible 
factor 1 (HIF-1), a crucial component of hypoxia, could 
be a potential strategy against hypoxia-induced cancer 
cell growth and progression. Several phytochemicals can 
directly inhibit HIF-1-related genes, including GLUT-1, 
CDKN1A, and VEGF. This inhibition ultimately results in 
a decrease in tumor angiogenesis, migration, and chemot-
axis. According to Wang et al. isoliquiritigenin (25–50 μM) 
treatment suppressed P13K/Akt, NF-κB signaling path-
ways via modulating the expression of VEGF, HIF-1α, and 
MMP-2, MMP-9 expressions, leading to limit the migra-
tion of MDA-MB-231 cells.137 Riby et al. demonstrated that 
3,3-diindolylmethane (50 μM) exhibited anti-cancer activ-
ity by decreasing the expression of hypoxia-responsive 
factors such as furin, and glucose transporter-1, VEGF, 
enolase-1, and phosphofructokinase in hypoxic specific 
MDA-MB-231 cells.141 In addition, lyciumbarbarum poly-
saccharides inhibit HIF-1α protein aggregation by altering 
mRNA levels and VEGF mRNA expression leading to in-
hibit the nuclear translocation of HIF-1α in MCF-7 cells.142 
Another study showed that EGCG (50 μg/mL) inhibits 
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breast tumor formation, proliferation, migration, and 
angiogenesis by inhibiting HIF-1α in MCF-7 and MDA-
MB-231 cells.140 Wang et al. noted that shikonin (10 μM) 
suppresses the expression of HIF-1α in MDA-MB-231 cells 
in hypoxic conditions.188 Thus, phytochemicals inhibit 
cancer progression by regulating hypoxia-inducible fac-
tors by aggregation or degradation (Figure 3).

3.6  |  Inhibition of oxidative stress and 
redox signaling

Reactive oxygen species (ROS) such as hydroxyl radical, su-
peroxide anion radical, hydrogen peroxide, oxygen singlet, 
nitric oxide radical, and peroxynitrite extreme play essential 
roles in the initiation and development of tumors.189 These 
species contribute to harmful genomic material, making 
them genetically unstable. Also, they act as intercessors in 
mitogenic and survival signaling using adhesion molecules 
and receptors of growth factors. Enzymes involved in an 
antioxidant system, such as catalase (CAT), superoxide 
dismutase (SOD), peroxiredoxins (PRXs), glutathione per-
oxidase (GPX) and glutathione reductase, are essential for 
maintaining cellular redox system.190 However, it is not easy 
to mitigate the excessive production of ROS by cellular anti-
oxidant enzymes.191 It was noted that phytochemicals could 
modulate oxidative stress and redox signaling by regulating 
the expression of these enzymes. For example, Singh et al. 
reported protective roles of resveratrol via increasing Nrf-2 
expression, which could up-regulate the expression of anti-
oxidant genes such as SOD3, NQO1, and 8-oxoguanine DNA 
glycosylase 1 (OGG1).192 In addition, biochanin A (500 μg/g) 
has shown anti-cancer activity in oxidative stress-mediated 
cancer by up-regulating CAT, DT-diaphorase, GST, GPx, and 
SOD, along with the reduction of lipid peroxidation and lac-
tate dehydrogenase activities significantly.193 Nadal-Serrano 
et al. reported the protective effects of Genistein on oxidative 
stress, redox signaling, and mitochondria, followed by up-
regulation of ERβ in T47D BC cells.194 Moreover, Fan et al. 
reported that 3,3′-diindolylmethane (1 μmol/L) protects BC 
cells against oxidative stress by stimulating the expression 
of nuclear factor erythroid 2 in BC cells.195 Therefore, phy-
tochemicals regulate oxidative-mediated cancer progression 
by controlling potent oxidative markers, including Nrf-2 
expression and antioxidant gene expression in both in vitro 
and in vivo models.

3.7  |  Inhibition of mammosphere  
formation

The formation of the mammosphere is an essential char-
acteristic of cancer progression, mainly cancer stem cells 

(CSCs). Several studies reported that BC cells, including 
non-adherent, non-differentiating CSC, form the mam-
mosphere.196 CSCs are believed to be associated with 
cancer reappearance, metastasis, and resistance to anti-
cancer drugs. Thus, targeting breast CSCs by inhibiting 
mammosphere formation can be an alternative approach 
for managing BC. Naturally occurring plant-based com-
pounds can prevent cancer cells and CSCs by decreasing 
mammosphere formation.197 For example, Wu et al. dem-
onstrated that pterostilbene suppressed mammosphere 
formation BCSCs growth by reducing CD44+ surface an-
tigen expression and stimulating β-catenin phosphoryla-
tion.143 The pterostilbene also modulates the hedgehog/
Akt/GSK3b signaling pathway via the down-regulation of 
cyclin D1 with c-Myc expression.143 Another phytochemi-
cal, sulforaphane (SFN), reduced the number and size 
of ALDH1-positive (BCSC) cells, resulting in the inhibi-
tion of mammospheres formation in both in vitro and in 
vivo models.198 In addition, SFN-pretreated ALDH+ cells 
showed enhanced sensitivity to taxane, thereby blocking 
mammospheres formation significantly.144 Fu et al. noted 
that resveratrol (100 mg/kg/day) treatment against BCSCs 
induces autophagy by suppressing the Wnt/β-catenin sign-
aling pathway in MCF-7 and SUM159 cells.146 Colacino 
et al. found that curcumin downregulates the expres-
sion of CD49f, ALDH1A3, PROM1, and TP6 in MCF-7, 
MCF10A, SUM149-derived stem cells' growth and prolif-
eration.147 Benzyl isothiocyanate (3 μmol BITC/g) treat-
ment suppressed the expression of both Ron and sfRon in 
cultured MCF-7 derived stem cells and tumor xenografts, 
indicating that benzyl isothiocyanate treatment caused 
inhibition bCSCs in vitro and in vivo.145 Piperine (10 μM) 
significantly decreased mammosphere formations in 
stem cells derived from BC.199 Therefore, phytochemicals 
showed anti-cancer activities by inhibiting mammosphere 
formation in multiple breast carcinomas by suppressing 
signaling pathways or their components (Figure 3).

3.8  |  Inhibition of inflammation

Inflammation is a biological reaction to cellular injury 
produced due to infections, chronic irritation, and other 
inflammatory responses.200 Information suggests that in-
flammatory cells, including neutrophils, macrophages, 
dendritic cells, eosinophils, and  lymphocytes were asso-
ciated with tumor formation, development, angiogenesis, 
and progression.201,202 Interestingly, significant research 
demonstrated that natural compounds prevent inflam-
mation by regulating antioxidant defence mechanisms 
via modulating Phase I, and Phase II enzymes or inflam-
matory cells or factors in cancer.203 An in vitro study re-
ported the therapeutic advantage of polyphenols on the 
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inflammatory phenotype of macrophages.149 In this study, 
supplemented pomegranate juice polyphenols reduced 
M1-macrophages mediated pro-inflammatory stimulation 
in the J774.A1 macrophage-like cells in a dose-depended 
manner.149 Curcumin also exhibited anti-cancer proper-
ties against inflammation-associated carcinogenesis by in-
hibiting TNF-α mediated NF-κB activation and inhibiting 
the proteasomal activity of IκB kinase in MCF-7 cells.150 
Synergistically, using Sprague Dawley rats, curcumin with 
resveratrol inhibits inflammation by lowering NF-κB and 
reducing inflammatory markers such as COX-2 and MMP-8 
expression animal model.151 In addition, Dharmappa et al. 
reported that genistein had anti-inflammatory properties 
in cancer by inhibiting sPLA activity in a concentration-
dependent manner.204 Furthermore, multiple dietary 
polyphenols combination from zyflamend, (e.g., resvera-
trol, curcumin, and EGCG), decreased the expression of 
pro-inflammatory markers such as COX-2, IL-1β, TNF-α, 
phospho-Akt, phosphor-p65, and NF-κB-binding activity 
in C57BL/6J female mouse model.152 Therefore, natural 
phytochemicals are potent oncogenic inhibitors by regu-
lating inflammation through regulating TNF-α mediated 
NF-κB, IκB kinase, COX-2 and MMP-8, IL-1β, TNF-α, 
phospho-Akt, phosphor-p65, and NF-κB-binding activity 
in numerous cancer models.

3.9  |  Enzymatic inhibition

Interfering the enzymatic functionality associated with 
cancer pathogenesis potentially prevents BC develop-
ment. Phytochemical treatment could inhibit Phase I en-
zymes, inducible nitric oxide synthase, cyclooxygenase-2, 
xanthine oxide, aromatase, and many more in cancer.205 
Supplementation of curcumin (20 μM) is associated 
with reversing hypermethylation of the Glutathione S-
Transferase Pi 1 (GSTP1) gene, resulting in reactivation via 
modulation of epigenetics mechanism in MCF-7 cells.153 
It is also reported that curcumin (35 μM) inhibited MCF-7 
cell proliferation by Nrf2 arbitrated Flap endonuclease-1 
(Fen1) expression,206 whereas resveratrol (25 mM) inac-
tivates the aromatase enzyme by removing the CYP19 
promoters I.3 and II transactivation.154 Furthermore, res-
veratrol regulates other cancer-associated enzymes such 
as COX-2, NQO-2, and GSTP 1.207 In addition, Barbara 
E reported that cabbage juice inhibits BC (MCF10 and 
MDA-MB-231) cells by inhibiting aromatase expression.208 
Similarly, rosmarinic acid (10 μM) acts as an essential 
COX-2 inhibitor through AP-1 activation in MCF-7 cells 
in a dose-dependent manner.106 Furthermore, another 
natural product, isoliquiritigenin (10–40 μM), showed 
chemopreventive actions by targeting metabolic enzymes 
such as COXs, PLA2s, LOXs, and PGE2, cytochrome P450 

4 (CYP 4A) activity in MDA-MB-231, BT-549 BC cells.157 
Quercetin and epigallocatechin could decrease glu-
cose consumption and lactate production in MCF-7 and 
MDA-MB231 cells, inhibiting cancer-related metabolic 
pathways.158 Thus, phytochemicals showed anti-cancer 
efficacy through regulation of enzymatic functions, that 
is, by regulating estrogen synthesizing enzymes such aro-
matase, estrogen metabolizing enzymes CYP 4A, CYP19 
suppressing COX-2 expression, or regulating GSTP1 in BC 
cells. Therefore, natural phytochemicals are potent onco-
genic inhibitors by regulating several enzymes, including 
hypermethylation of the GSTP1, Flap endonuclease-1, 
aromatase expression, CYP19 promoters I.3 and II trans-
activation, and numerous enzymes in different cell lines.

3.10  |  Natural compounds targeting cell 
signaling pathways

mTOR, PI3K, protein kinase B (Akt), MAPK/ERK, Wnt, 
Notch, and hedgehog signaling pathways are associated 
with the regulation of cell proliferation, differentiation, 
survival, apoptosis, invasion, migration, angiogenesis, and 
metastatic spread of cancer cells.209,210 Phytochemicals 
elicit anti-cancer actions by regulating these pathways or 
components.159 For example, Seo et al. reported that gen-
istein (100 μM) inhibited IκBα phosphorylation and main-
tained its association with p65–p50 heterodimer, which 
blocked their nuclear translocations, and p65 phosphoryl-
ation, which in turn prevented the transcription of NF-κB 
targeted genes.159 Also, genistein inhibited MAPK signal-
ing by suppressing MEK5, ERK5, and p-ERK5 levels in 
MDA-MB231 cells,211 whereas apigenin inhibited ERK 1/2 
and JNK 1/2 phosphorylation via inhibiting MAPK signal-
ing in MCF-7 cells.131 Calycosin and formononetin, two 
phytochemicals, regulated PI3K/Akt pathways through 
IGF-1R protein expression along with the inhibition of 
Akt phosphorylation in T47D and MCF-7 cells.160,161 In 
addition, Fu et al. reported that resveratrol (100 mg/kg) 
down-regulates Wnt/β-catenin signaling, inducing au-
tophagy in MCF-7 cells146 and inhibiting cell proliferation 
of SKBR-3 BC cells through down-regulation of various 
signaling pathways such as p-Akt, PI3K, Akt, mTOR.212 
Apigenin inhibited MCF-7 cells by inducing apoptosis by 
inhibiting NF-κB, STAT3, and p53 signaling.162 Silibinin 
is associated with the death of MDA-MB-231 cells by 
regulating Notch-1 signaling pathways.163 Pterostilbene 
regulates ERK1/2 activation, decreased cyclin D1, p-AKT, 
mTOR, and increased p21, Bax protein, but not Bcl-xL.164 
Hatkevich showed that naringenin inhibits PI3K, thus 
disrupting proliferation signaling in MCF-7 cells through 
ERK1/2, AKT, and MAPK signaling pathways,165 whereas 
α-Mangostin mediated its anti-tumor effect through 
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decreasing HER2, Akt, and P13K along with increasing 
p-p38 and p-JNK1/2 phosphorylation.166 Therefore, phy-
tochemicals inhibit NF-κB, PI3K/Akt, MAPK/ERK, p-
mTOR, Wnt, Notch-1, and hedgehog signaling pathways 
by modulating their components or upkeep/downstream 
molecules in BCs (Figure 4).

3.11  |  Natural compounds targeting 
epigenetic control

Accumulating information suggests that previous studies 
have shown that phytochemicals can modulate the epige-
netics of cancer cells by regulating the methylation of DNA 
via DNA methyltransferase activity and histone modi-
fications, resulting in inhibiting the oncogenic miRNA 
expression and increasing tumor-suppressing miRNA 
expression.213–215 Studies have shown that genistein could 
inhibit primary breast carcinogenesis by increasing some 
tumor suppressor protein i,e and p16, p16 (INK4a), p21, 
p21 (WAF1) expression, along with decreasing expression 
oncogene, that is, BMI1, and c-MYC in estrogen nega-
tive MDA-MB-231 cell line.167 Moreover, genistein attrib-
uted its anti-cancer activity in BC cells by demethylating 
and reactivating methylation-silenced tumor suppres-
sor genes via direct contact with inhibition of both DNA 
methyltransferase 1 (DNMT1) catalytic domain activation 
and DNMT1 expression.213 Furthermore, genistein de-
creased the oncogenic miR-155 expression with increas-
ing expression of miR-155 targets such as Forkhead box 
O3 and casein kinase, p27, phosphatase, and tensin ho-
molog (PTEN), which in turn that promote apoptosis and 
antiproliferation of MDA-MB-435 cells.162,216 Lycopene 
up-regulated glutathione S-transferase pi gene (GSTP1) 
expression and demethylases the GSTP1 in MCF-7, MDA-
MB-468 cells, whereas induced RARbeta2 and HIN-1 
genes demethylation in BC (MCF10A) cells in a dose-
dependent manner.168 Similarly, SFN (5 μM) significantly 
inhibits HDAC through demethylation in MDA-MB-231 
cells.171 Liu et al. reported that curcumin activated the 
promoter of deleted in liver cancer 1 by suppressing meth-
ylation status, with the help of down-regulating the Sp1 
transcription factor in MDA-MB-361 cells.169 Also, EGCG 
(15 μM) treatment is associated with epigenetic changes 
that can increase DNMTs transcripts expressions such 
as DNMT1, DNMT3a, and DNMT3b in both MCF-7 and 
MDA-MB-361 cells.170 Thus, phytochemicals have the po-
tential to modulate the epigenetic make-up of BC cells via 
regulating DNA methylation and histone modification; 
therefore, they could control the expression of oncogenes 
and tumor suppression genes in BC cells. The summary of 
phytochemicals that act against epigenetics regulation is 
summarized in Figure 2.

3.12  |  Natural compounds targeting the 
immune system

Phytochemicals include substances found in nature 
that can be bioactive and possess an immune system-
stimulating effect.217 For example, curcumin, a clinically 
naturally occurring compound, has immunomodulatory 
properties that suppress PHA-induced T cell proliferation, 
IL-2, NO, and NF-κB while increasing NK cell cytotoxicity 
in mouse macrophage cells RAW.264.7.218 A study involv-
ing C57BL/6 mice found that apigenin may influence the 
alteration of dendritic cells and other immune cell func-
tions.219 Daidzein, has a modulatory function on nonspe-
cific immunity in Swiss mice when given in high doses 
since it enhances the phagocytic response of peritoneal 
macrophages.220 Additionally, in male Kunming mice 
exposed to 60Coγ radiation, EGCG significantly reduced 
immune system destruction by inducing macrophage 
phagocytosis, boosting the activity of the antioxidant en-
zymes, that is, SOD and GSH-Px (glutathione peroxidase), 
raising glutathione level, and preventing lipid peroxida-
tion.221 Conversly, genistein regulates immunological 
response in female Sprague Dawley, promoting IL-4 syn-
thesis while inhibiting IFN-γ release and balancing Th1/
Th2 cells.222 Furthermore, kaempferol had immune-
suppressive effects on cold-stressed, 6-7-week-old SPF 
mice, decreasing the levels of activated pro-inflammatory 
cytokines like IL-9 and IL-13, CD8+ T cells and rais-
ing anti-inflammatory cytokines and CD4+ T cells.223 
Therefore, selected phytochemicals have the potential to 
activate immune system including numerous immune 
cells including NK cell, CD8+ T, CD4+ T and cytokines 
like IL-9 and IL-13 to fight against BC cells. A summary of 
the anti-cancer mechanism of phytochemicals in BC treat-
ment is presented in Table 3 and Figures 1–4.

4   |   THE ABILITY OF 
PHYTOCHEMICALS TO ALLEVIATE 
THE RESISTANCE OF  
ANTI- CANCER DRUGS

Due to numerous significant challenges, such as multi-
drug resistance, treating cancer patients is becoming 
more difficult.224 Drug efflux, drug inactivation, drug 
detoxification, drug target modification, involvement of 
CSCs, miRNA dysregulation, epigenetic alteration, and 
other numerous irregular DNA damage/repair mecha-
nisms, tumor microenvironment, and ROS modulation 
are just a few potential defensive processes that could 
result in this resistance mechanism.40,225,226 P glycopro-
tein (P-GP), MRP 1, MRP 1–9, BCRP, and changes in 
beta-tubulin are a few proteins that are connected to 
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drug resistance in cancer.227 The multi-drug resistance 
protein P-glycoprotein (P-gp) is overexpressed in the 
membrane of cancer cells, where it commonly increases 
drug efflux and contributes to the emergence of treat-
ment resistance in malignancies.228 Hence, inhibiting 
MDR-efflux proteins may help improve cancer therapy's 
effectiveness. For example, Biochanin A exhibits this 
type of action. Soo et al. demonstrated that Biochanin 

A treatment increased [3H]-DNM accumulation by re-
ducing DNM efflux and caused MDR to be reversed by 
suppressing P-gp activity in MCF-7/ADR BC cells.225 
The effects of phloretin on P-gp activity were examined 
(HTB26) by measuring the uptake of rhodamine 123 in 
a variety of cancer cells, including human MDR1 gene-
transfected mouse lymphoma cells (L1210) and human 
BC cells MDA-MB-231 expressing the MRP1 pump.226 

F I G U R E  1   Breast cancer management by dietary phytochemicals through apoptosis and cell cycle: Phytochemicals activate caspase-8 
through modulating TRAIL- and FAS-associated receptors. Activated caspase-8 mediated activation of some effector caspase-3 and 
caspase-7 attributed to the extrinsic pathway of apoptosis. Moreover, the anti-apoptotic protein BCL2 mediates activation of BAK, BAX. 
These powerful mechanisms increase cytosolic Ca2+, cytochrome c, and reactive oxygen species (ROS). Cytochrome c sequentially activates 
caspase-9, which is simultaneously activated by effector caspase-3 and caspase-7 attribute to apoptosis. Activation of tumor suppressor 
protein (p21CIP1/W, p27, p53, pRB, and AF1) and suppression of cyclin (cyclin B, D1, E1) with associating enzymes (CDK 2, 4) by 
phytochemicals regulated cell cycle and cell proliferation.

F I G U R E  2   Breast cancer 
management by dietary phytochemicals 
through enzymatic control of epigenetics 
factors: Breast cancer can regulate 
epigenetics factors. The key epigenetic 
regulatory protein R1MGMTARb2, TMS 
methylation, BMI1, c-MYC, HDAC1 
methylation, histone modification can 
be regulated by dietary phytochemicals; 
leading to show anti-cancer effect.
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Genistein indirectly raises intracellular drug concentra-
tion, including doxorubicin concentration, but does not 
directly alter P-gp activity in a BC cell lines. In a study, 
Castro and Altenberg reported that genistein reduced 
the photo-affinity labeling of P-gp with [3H] azidopine, a 
P-gp substrate, indicating that genistein might suppress 
rhodamine123 efflux in human MCF-7 cells by directly 
interacting with P-gp to impede P-gp-mediated drug ef-
flux.229 The other component that stimulates the forma-
tion of BC is human epidermal growth factor receptor 2 
(HER2), a tyrosine kinase (TK) receptor that belongs to 
the EGFR family. Curcumin was reported to have the 
capacity to alter the EGFR signaling pathway, which 

is linked to the growth, differentiation, adhesion, and 
migration of cancer cells.230,231 According to Chandrika 
et al. hesperetin at 10-500 μM promotes apoptosis in 
MDA-MB-231 and SKBR3 BC cells and inhibits their abil-
ity to proliferate. Dietary flavonoid hesperetin reduces 
the development of MDA-MB-231 BC cells by inhibit-
ing the activity of HER2 Tyrosine Kinase (HER2-TK), 
causing MMP loss, chromatin condensation, and acti-
vating caspase-8 and-3, which causes cell cycle arrest 
at the G2 phase.232 Sesamin inhibited cell migration at 
the same dosage and cells by delaying the G1 phase and 
down-regulating PDL-1, MMP-9, and MMP-2. Sesamin's 
ability to inhibit cell proliferation was demonstrated by 

F I G U R E  3   Control of breast cancer 
by dietary phytochemicals targeting 
multiple patways: Targeting the multiple 
signal transduction, phytochemicals can 
suppress some cell signaling pathways, 
that is, PI3k/Akt/mTOR, MAPK/ERK, 
NF-κB, HIF-1α, leading to a decrease 
cancer cell metastasis, angiogenesis, 
and survival. Followed by the signal 
transductions, phytochemicals can 
mitigate important metastatic and 
angiogenic factors including EGFR, 
VEGF, VEGFR2, NF-κB, MMP2, MMP9, 
COX-2, and ERK in breast cancer cell line.

F I G U R E  4   Phytochemicals targeted 
signaling pathways associated with breast 
cancer treatment: The schematic diagram 
represents the overview of molecular 
mechanisms of phytochemicals mediated 
inhibition of breast cancer cell growth 
through the Notch, MAPK, NF-κB, and 
Akt pathways.
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Yokota et al. in BC cells. They discovered that sesamin 
inhibited growth at doses of 1–100 M by increasing ret-
inoblastoma protein dephosphorylation and decreasing 
cyclin D1 gene expression, which mediates cyclin D1 
degradation.102 The co-treatment of resistant (MCF-7R) 
cells with Apigenin, which reduced MDR1 expression at 
the mRNA and protein levels in both resistant and non-
resistant cells, significantly reduced DOX resistance in 
the MCF-7 cell line. In both the MCF-7 and MCF-7R 
cell lines, apigenin strongly inhibited the phosphoryla-
tion and activation of the JAK2 and STAT3 proteins.233 
By lowering Bcl-2, Nimbolide induces the expression 
of the proteins Bax and caspases with a modulation of 
the expression of HDAC-2 and H3K27Ac, and stopping 
the progression of the cell cycle, as well as reduced the 
growth of MDA-MB-231 and MCF-7 cells. Increasing 
Beclin 1 and LC3B and decreasing p62 and mTOR pro-
tein expression in BC cells. Nimbolide also activated 
autophagy signaling.112 Combining Sanguinarine with 
TRAIL therapy may break BC cells' resistance caused by 
overexpression of Akt or Bcl-2. In human BC MDA-231 
cells, Sanguinarine triggered apoptosis, which resulted 
in decreased pro-caspase-3, Bcl-2, cIAP2, XIAP, and c-
FLIPs protein levels and increased ROS production.234 
When Emodin was applied to the BC cells Bcap-37 and 
ZR-75-30, it was shown to suppress proliferation, induce 
apoptosis, and decrease Bcl-2 while increasing levels of 
cleaved caspase-3, PARP, p53, and Bax.117 In MCF-7 
and MDA-MB-231 cells, Isoliquiritigenin lowered cell 
survival and clonogenic potential, triggered apoptosis, 
suppressed mRNA expression of many AA-metabolizing 
enzymes, including PLA2, COX-2, and CYP-4A, and re-
duced production of PGE2 and 20-HETE. Moreover, 
it reduced the expression of phospho-PI3K, phospho-
PDK, phospho-Akt, phospho-Bad, and Bcl-xL, trigger-
ing caspase cascades that ultimately led to the cleavage 
of PARP.235 The expression pattern of β-catenin in BC 
tissue are high than the normal tissue. EGCG thus de-
creased the viability of MDA-MB-231 cells by lowering 
the levels of β-catenin, cyclin D1, and p-AKT. Moreover, 
pretreatment of MDA-MB-231 cells with PI3 kinase in-
hibitors, such wortmannin or LY294002, enhanced the 
suppressive effect of EGCG, given after 24 h, on the pro-
duction of β-catenin.236 By transfecting the plasmid and 
inducing cytotoxicity and autophagy in BCSCs derived 
from MCF-7 and SUM159, Resveratrol inhibits the Wnt/
β-catenin signaling pathway and excessive production 
of the β-catenin protein.146 The impact of Wogonin sup-
plementation on cell survival and proliferation has been 
shown to be effective against a variety of BC cell lines, 
including TNBC and its related cell lines, BT-549 and 
MDA-MB-231. Additionally, wogonin inhibits the cell 
cycle of cancer cell lines by inhibiting the expression 

of cyclin D1, cyclin B1, and CDK1, inducing apoptosis, 
improving the Bax/Bcl-2 ratio, and increasing caspase-3 
cleavage.237 In ER-positive BC cells like MCF-7 and T-
47D cells, Calycosin tends to suppress proliferation and 
trigger apoptosis. This effect is caused by ER-induced 
inhibition of IGF-1R as well as the targeted control of 
the MAPK and (PI3K)/Akt pathways.161

5   |   LIMITATIONS AND 
PROSPECTS OF PHYTOCHEMICALS 
IN BREAST CANCER THERAPY 
DEVELOPMENT

Several factors interfere with the conventional thera-
peutic options used to treat BC. Phytochemicals offer a 
broad spectrum of pharmacological effects, which might 
benefit the clinical management of patients with BC. 
Phytochemicals are an effective therapeutic agent due to 
their several biological properties. Though phytochemicals 
have enormous benefits, there are significant constraints 
in achieving the actual effectiveness of phytochemicals-
based therapeutic for the management of patients with BC 
due to the lack of systematic and proper information in 
this field. In addition, to develop a clinically useful drug, 
a series of preclinical and clinical it must pass in vitro, in 
vivo, and clinical trials (Phase I–IV) studies must be ac-
complished with clinical benefit. Furthermore, long-term 
studies are still required to determine therapeutic interac-
tions, in vivo pharmacokinetic attributes, effective doses, 
suitable administration routes, and defined mass and/or 
nanoformulation of these phytochemicals. To estimate 
bioactivities, the structure–activity relationship must be 
established. Gathering additional information regarding 
phytochemicals' synergistic actions when combined with 
other phytochemicals, it is possible to boost their activity 
and prevent the anti-cancer profile by modifying conven-
tional medications. Moreover, these phytochemicals could 
be used in computational chemistry research, such as 
docking, neural networking, and pharmacophore-based 
virtual screening programs for the drug development sec-
tor. Therefore, these phytochemicals could potentially 
become a potent chemotherapeutic anti-cancerous sub-
stance in managing BCs, at least at the cellular level and 
could be formulated for clinical applications if all of the 
strategies are accomplished.

6   |   CONCLUSION

Although the complete molecular mechanisms for BC 
pathogenesis are yet to be established, whereas the mor-
tality rates associated with this cancer are still rising 
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worldwide. Thus, developing an effective therapeutic, 
especially from natural resources, that is, phytochemical-
based therapeutic, could provide significant clinical ben-
efit in the management of patients with BC. The details 
mechanism of anti-cancer activity from in vitro, preclini-
cal and clinical studies suggested that phytochemicals me-
diate their anti-cancer efficacy through targeting apoptosis 
proteins, including anti-apoptotic proteins (Bcl-2) and ap-
optotic proteins (Bax, Bak, Bad, and Caspase), arresting 
cell cycle and proliferation. They modulate the expression 
of growth-related genes, for instance, inhibiting expres-
sion and activity of cyclins (B1, D1, E) and CDKs (4, 6, 7) 
or increasing the expression of CDKs inhibitors (p18, p21, 
p27, and p53). Inhibits metastasis and angiogenesis by con-
trolling the expression of MMP-2,8 and 9, Wnt/-catenin, 
PARP, oxidative markers, including Nrf-2, antioxidant-
related gene, inhibiting mammosphere formation, regu-
lating inflammation via modulating TNF-α, NF-κB, IκB 
kinase, COX-2, IL-1β, TNF-α, phospho-Akt, phospho-p65. 
Also, regulation enzymatic functions (i.e., aromatase, es-
trogen metabolizing enzymes CYP 4A, CYP19 suppress-
ing COX-2 expression, or regulating GSTP1), targeting cell 
signaling (NF-κB, PI3K/Akt, MAPK/ERK, p-mTOR, Wnt, 
Notch-1, hedgehog), epigenetics control (regulating DNA 
methylation and histone modification), activate immune 
system (NK cell, CD8+ T, CD4+ T, cytokines like IL-9 and 
IL-13) in BC cell lines.

To conclude, phytochemicals may be used as an al-
ternative and complementary therapeutic option in BC 
treatments due to their therapeutic benefits. However, 
further studies are needed to conduct before taking phy-
tochemicals as a food supplement to manage and prevent 
BC until clinically proven standard drugs are not available 
in pharma-markets.
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