Revised: 28 March 2023

REVIEW

Cancer Medicine WILEY

Exploring the anti-cancer potential of dietary phytochemicals for the patients with breast cancer: A comprehensive review

Md Sohel^{1,2} | Suraiya Aktar³ | Partha Biswas⁴ | Md. Al Amin⁵ | Md. Arju Hossain⁵ | Nasim Ahmed⁶ | Md. Imrul Hasan Mim⁶ | Farhadul Islam³ | Abdullah Al Mamun²

¹Department of Biochemistry and Molecular Biology, Primeasia University, Dhaka, Bangladesh

²Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh

³Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi, Bangladesh

⁴Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh

⁵Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh

⁶Department of Pharmacy, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh

Correspondence

Abdullah Al Mamun, Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh.

Email: amamun42@gmail.com

Abstract

Background: The most common and deadly cancer in female is breast cancer (BC) and new incidence and deaths related to this cancer are rising.

Aims: Several issues, that is, high cost, toxicity, allergic reactions, less efficacy, multidrug resistance, and the economic cost of conventional anti-cancer therapies, has prompted scientists to discover innovative approaches and new chemopreventive agents.

Materials: Numerous studies are being conducted on plant-based and dietary phytochemicals to discover new-fangled and more advanced therapeutic approaches for BC management.

Result: We have identified that natural compounds modulated many molecular mechanisms and cellular phenomena, including apoptosis, cell cycle progression, cell proliferation, angiogenesis and metastasis, up-regulation of tumor-suppressive genes, and down-regulation of oncogenes, modulation of hypoxia, mammosphere formation, onco-inflammation, enzymatic regulation, and epigenetic modifications in BC. We found that a number of signaling networks and their components such as PI3K/Akt/mTOR, MMP-2 and 9, Wnt/-catenin, PARP, MAPK, NF-κB, Caspase-3/8/9, Bax, Bcl2, Smad4, Notch1, STAT3, Nrf2, and ROS signaling can be regulated in cancer cells by phytochemicals. They induce up-regulation of tumor inhibitor microRNAs, which have been highlighted as a key player for ani-BC treatments followed by phytochemical supplementation.

Conclusion: Therefore, this collection offers a sound foundation for further investigation into phytochemicals as a potential route for the development of anticancer drugs in treating patients with BC.

KEYWORDS

anti-cancer mechanism, breast cancer, cancer treatment, natural products, phytochemicals, resistance

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2023 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

-WILEY

1 | INTRODUCTION

Breast cancer (BC) is the most common and frequent malignancy among females, and it is the second most frequent carcinoma and a significant cause of cancer-associated death worldwide. This cancer is a multifactorial disease and various factors, including demographic, oxidative stress, bacterial infection, reproductive, hormonal, hereditary, and lifestyle contribute to its occurrence.¹ A number of conventional therapeutic options such as surgical resection, radiotherapy, chemo-radiotherapies (e.g., adjuvant chemotherapies and neoadjuvant therapy), hormonal therapies, monoclonal antibodies, immunotherapy, and small molecular inhibitors are available for the patients with BC.^{2,3} However, these therapeutic modalities have drawbacks, bearing side effects and toxicities. Thus, new approaches and strategies are needed to manage patients with BC effectively to minimize the limitations, such as increasing resistance to conventional therapeutics, side effects, and toxicities of existing treatment modalities. Interestingly, alternative medicines (with fewer side effects) for patients with BC, especially metastatic cancer, have been developed.

Phytochemicals are an essential natural resource for anti-cancer medicine. They are safe, non-toxic, costeffective, and readily available sources from villages to cities and underdeveloped to developed countries.⁴ Currently, medicinal plants or their derivatives account for about 70% of the anti-cancer compounds, thus, playing the lead role in developing anti-cancer drugs.^{5,6} Initially, natural plant extracts have showed higher anti-tumor responses and better pharmacological or bioactivity with less toxicity in patients with advanced BC (Table 1).³⁷⁻⁴⁰ For example, anti-cancer compounds from Curcuma longa, Piper longum, Nigella sativa, Murrayakoenigii, Amora rohituka, Withania somnifera, and Dimocarpus longan possess anti-cancer activity against various cancers, especially anti-BC properties.^{8,25,36,41-44} Latter specific phytochemicals have been identified as a new source of anti-cancer agents from plant extract to decrease the negative effects of cancer chemotherapies in recent research.^{45–48} These natural agents can target several BC-related pathways and provide protective activity against breast malignancies, which play a significant role in preventing and managing patients with BC.^{46,49} Several individual studies exhibited phytochemicals had anti-cancer property through several mechanisms.^{50–52} However, a comprehensive summary on precise anti-cancer mechanisms including apoptosis induction, cell cycle, and cell proliferation regulation, inhibition of angiogenesis and metastasis, regulating hypoxia-inducible factor, suppressed mammosphere formation, onco-inflammation inhibition, controlling enzyme activity, signal transduction regulation, epigenetic

and immune regulation have not been reported collectively. Therefore, in this review, we have discussed various phytochemicals with their major sources, structure, and their possible anti-cancer pathways in the BC, thereby providing an aggregative source of information on potential natural anti-cancer resources.

2 | SOURCE OF ENLISTED DIETARY PHYTOCHEMICAL

Phytochemicals are plant-based compounds founds in vegetables, fruits, beans, grains, and other parts of plants. Bioactive phytochemicals protect cells from cancercausing injury.⁵³ For instance, daidzein, genistein, epigallocatechin gallate (EGCG), epigallocatechin, and formononetin-A are phytoestrogen in nature and found in the form of flavonoids in soy and soy products.^{54–57} Lutein, 3,3-Diindolylmethane, benzyl isothiocyanate, kaempferol, and quercetin are available in green leafy vegetables including spinach, broccoli, peas, and herbs such as dill, chives, onion, leeks, and egg yolks.^{9,58–60} In addition, vegetables such as tomatoes, potatoes, and fruits such as citruses, watermelon, apples, pink guava, pink grapefruit, papaya, passion flower fruit, and dried apricots, are the significant source of 2-hydroxychalcone,⁶¹ lycopene,⁶² naringenin.⁶³ Also, natural compounds such as nimbolide, sanguinarine, withaferin A, α-Mangostin, arctigenin, calycosin, curcumin, and flavopiridol are present abundantly in medicinal plants such as Azadirachta indica (leaves and seed), Sanguinaria canadensis (rhizome), W. somnifera, Tripterygium wilfordix (roots), Garcinia mangostana L.(pericarps), Arctium lappa L. (seeds), Radix astragali (dry root), C. longa (rhizome), and Dysoxylum binectar*iferum* (stem and bark), respectively.^{36,64–68} Furthermore. punicalagin, sesamin, shikonin, silibinin, taiwanin A, and wogonin are found in Punica granatum, Cuscuta palaestina (seed), Sesamum indicum, Lithospermum erythrorhizon (roots), Silybum marianum, Taiwania cryptomerioides (bark), N. sativa (seeds), and Anodendron affine (stems) plants.⁶⁹⁻⁷⁴ EGCG, and epigallocatechin are known catechin phytochemicals, widely distributed in tea with several health benefits.^{75,76} The source and structure of these phytochemicals are presented in Table 2.

3 | PHYTOCHEMICALS TARGETING BC CELLS

Therapeutic strategies against BC include surgery chemoradiotherapies, adjuvant/neoadjuvant therapies, hormonal therapies, monoclonal antibodies, immuno-therapy, nanomedicines, and small molecular inhibitors.⁹⁹

line.
cell
cancer
breast
human
/ in
activity
cancer
nti-
their a
pur
extract a
plants
of
Summary
1
TABLE
_

		Working protocol					
Source/plant	Parts used	Methods	Extract used	Cell line	Anti-cancer mechanism	Efficacy/dose	Ref.
Ailanthus altissima	Bark	Flow cytometry, RT-PCR, western blot	Petroleum, dichloromethane	MCF-7	↓ Cell proliferation ↑ Cell cycle arrest, apoptosis	0.5-8.0μg/mL	٢
Amoora rohituka	Leaf	FTIR analysis, phytochemical screening methods	Petroleum ether, ethyl acetate, methanol	MCF-7	↓ Cell migration ↑ A poptosis ↑ Cytotoxic effect	9.81 mg/mL	œ
Ardisia crispa	Leaves	MTT assay, DPPH, ABTS assay	Ethyl acetate, aqueous	MCF-7, MDA-MB-231	↓ Glucose uptake	57-100μg/mL	6
Baeckea frutescens	Leaves extracts	Cytotoxity, glucose consumption assay	Ethanol, aqueous	MCF-7 MDA-MB-231, MCF10A	↓ Cell viability, cell motility ↑ Cell cycle arrest, apoptosis	53µg/mL	10
Bryonia dioica	Roots	Extracted, flow cytometry, staining, western blot	Aqueous	BL-41	↑ Cell cycle arrest, apoptosis	15-63g/mL	п
Bulbine frutescens	Bulb	Membrane potential, ROS, Notch promoter, western blot	Methanol, hexane	MDA-MB-231, T47D	↑ Cell cycle arrest, DNA repair, scavenge free radical	4.8-28.4μg/mL	12
Butea monosperma	Bark fractions	MTT, clonogenic, neutral comet assay, flow cytometry	Methanol, hexane, chloroform, ethyl acetate	MCF-7	↑ Inhibit proliferation, cell cycle arresting effect	44–213 mg/mL	13
Cimicifuga dahurica	Rizhomes	Extraction NMR, BrdU	70% ethanol	MCF-7	↓ Oncogene expression cell proliferation ↑ Apoptosis induction	30µM	14
Decatropis bicolor	Leaves	MTT assay, cell morphology analysis, western blot	Water, ethanol, acetone, hexane	MDA-MB-231	↑ Apoptosis induction	53.81 μg/mL	15
Fagonia indica	flower	Cytotoxicity, PARP, DNA fragmentation assay	EtOH	MCF-7, MDA-MB-468	† Apoptosis	50-100 µM	16
Garcinia oblongifoli	Fruits, leaves	Cell viability, antioxidant	Methanol	MCF-7	↑ Cytotoxic effect	$1000\mu g/mL$	17
Glycyrrhiza glabra	Root	qRT-PCR, western blots, DNA methylation analysis, immunostaining	Glabridin	Multiple cell line	↑ Anti-tumor activity	0 or 20 mg/kg	18
Hedyotis diffusa	Leaves and shoots	Mitochondrial membrane potential, western blot	Methylanthraquinone	MCF-7	↓ Cell growth ↑ Apoptosis	18.62μM	19
Lawsonia nermis	Leaves	Chromatography, dynamic light scattering, UV-Vis spectroscopy	Alcoholic solution	MCF-7	↑ Apoptosis, autophagy	1.5µM	30
Lotus corniculatus	Leaves	MTT, PCR, wound healing assay	Ethyl acetate, methanol, water	MDA-MB-231, MCF-7	↓ Cell migration, cancer-related enzymatic activity	21.13 mg RE/g	21
Lycium barbarum	Fruit	Signaling mechanism test	NA	MCF-7 cells	↓ Cancer-related signaling, hypoxia condition	0.50 mg/mL	22
Malus domestica	Fruit	Western blot, cell cycle analysis	Acetone	MCF-7, MDA-MB-231	↓ Enzyme activity, cell growth	10-80 mg/mL	23
Morus alba	Leaves	Anti-proliferative radical scavenging assay	Methanol	MCF-7	↑ Morphology change ↓ Cell proliferation	350μg/mL	24
Nigella sativa	Seed	UV-visible spectroscopy, FT-IR, SEM, EDX	Aqueous	MCF-7	↑ Apoptosis ↓ Migration, adhesion, metastasis	1-200μg/mL	25

TABLE 1 (Continued)

		Working protocol					
Source/plant	Parts used	Methods	Extract used	Cell line	Anti-cancer mechanism	Efficacy/dose	Ref.
Platycodon grandiflorus	Root	Cytotoxicity, flow cytometry, western	Platycodin D	MCF-7	↑ Apoptosis	8µg/mL	26
Premna odorata	Leaves	NMR, extraction, molecular modeling, proliferation, migration assay	70% ethanol	MCF-7, BT- 474	↑ Cytotoxicity activity	13.3µM	27
Rabdosiae rubescens	Whole part	Western blot analysis, immunohistochemistry analysis	Ethanol, water extract	MDA-MB-231 In vivo	↓ Growth migration, apoptosis	12μg/mL	28
Salpichroascandens	Aerial parts	Extraction, cytotoxicity assay	Dichloromethane	MCF-7, T47D	↓ Growth, cytotoxic activity	$29-646\mu M$	29
Salvia sclarea	Plant	In vivo mice	n-hexane/ethylacetate/ methanol (1:1:1)	MCF-7, T47D, ZR-75-1	\uparrow Anti-proliferative, cytotoxicity activity	7.85μg/day	30
Salvia species	N/A	Sulforhodamine B assay, chromatography	Ethanol	T47D, ZR-75-1, BT 474	↓ Aromatase enzyme	30µg/mL	31
Schisandra chinensis	Seeds, leaves, and stems	Western blotting, Immunohistochemistry	Schisandrin A	MDA-MB- 231, BT-549	↑ Apoptosis induction, cell cycle arrest, cell cytotoxicity	$134.21\pm6.85\mu M$	32
Scrophularia variegat	Aerial parts	MTT assay, ELISA, annexin V-FITC/PI staining	Ethanol	MCF-7	\uparrow Apoptosis induction, cell cycle arrest	31–299 mg/L	33
Scutellaria baicalensis	Root	HPLC, staining	Ethanol, ethyl acetate, 1-butanol, water	MCF-7	↑ Cytotoxicity ↓ Hypoxic conditions	100 mg/mL	34
Senecio graveolens	Flower, leaves, stems	Extraction, cytotoxic assays, western blot	Ethanol	ZR-75-1, MDA-MB- 231	↑ Cell death, cell cycle arrest ↓ Proliferation	200µg/mL	35
Withania somnifera	N/A	Flow cytometry, microarray data analysis, PCR, invasion assay, western blotting	70% ethanol	MDA-MB- 231, MCF-7	† Apoptosis induction, cell cycle arrest	853.6nM	36

-WILEY-Cancer Medicine

SOHEL ET AL.

TABLE 2 Source and structure of common phytochemicals with anti-cancer properties.

Compounds	Structure	Source	Ref.
2-Hydroxychalcone		Tomatoes, potatoes, licorice, citruses, apples (Humulus lupulus L.)	61
3,3-Diindolylmethane		Cruciferous vegetables, that is, brussels sprouts, cauliflower, cabbage, and broccoli	59
Apigenin		Parsley, chamomile, celery, vine-spinach, and oregano	77
Arctigenin		Present in the seeds of Arctium lappa L.	67
Benzyl isothiocyanate		Cruciferous vegetables like 3,3-diindolylmethane source	9
Calycosin	нотори	Dry root extract of Radix astragali	68
Celastrol		The root extract of Tripterygium wilfordi plant	78
Coumestrol		Clover, Kala Chana, Alfalfa sprouts	79
Curcumin	àmb	Rhizome of turmeric (Curcuma longa)	80
Daidzein	HOOOH	Soybeans and soy products, that is, beans, peas, nuts, coffee, tea, and specific herb like red clover	54
EGCG		Green tea	81
Emodin		Herbs, that is, Polygonum cuspidatum, Aloe vera, Rheum palmatum, and Cassia obtusifolia	82
Enterolactone		Flaxseed, sesame seed	
Epigallocatechin		Green tea	83
Flavopiridol		The stem and bark of Dysoxylum binectariferum plant	84
Formononetin	HOLE COL	Red clovers, soya bean, milk vetch (Astragalus mongholicus)	55
Genistein		Soybeans and soy products	56
Ginsenoside Rh1		Red ginseng, root	85
Ginsenosides	- THE	Panax species (roots, leaves, stems, flower, fruits)	86
Isoliquiritigenin		Licorice, extract of Sinofranchetia chinensis	87

TABLE 2 (Continued)

-WILEY

Compounds	Structure	Source	Ref
eompounds V. C. J			60
Kempferol		Green leafy vegetables such as broccoli, spinach, and kale, and herbs such as dill, chives, and tarragon, onion, leeks	00
Lutein	Karangadan	Green leafy vegetables such as broccoli, spinach peas, lettuce, and egg yolks	58
Lycopene		Tomato, watermelon, pink guava, papaya, pink grapefruit, and dried apricots passionflower fruit	62
Naringenin		Fruits like citrus species and tomatoes	63
Nimbolide	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Leaves and flowers of neem (Azadirachta indica)	64
Pharbilignan C	- The	Pharbitidis semen, the seed of morning glory (Pharbitis nil)	88
Pterostilbene		Blueberries, grapes, and tree wood	89
Punicalagin	A A A A A A A A A A A A A A A A A A A	Pomegranate (Punica granatum)	69
Quercetin		Nuts, apples, onions, olive oil green tea, broccoli, red grapes, dark cherries	90
Sanguinarine	and the	Rhizome of bloodroot (Sanguinaria canadensis)	65
Withaferin A		Withania somnifera	36
α-Mangostin		Pericarps of mangosteen	66
Resveratrol		Grapes, peanuts, and soy	57
Rg3	2 Alton	Red ginseng root (Panax ginseng C.A. Meyer)	91
Rosmarinic acid		Boraginaceae species and Nepetoideae of the Lamiaceae subfamily	92
Sesamin		Sesame seeds, Cuscuta palaestina plant extract	48
Shikonin		Roots of Lithospermum erythrorhizon	93

 TABLE 2
 (Continued)

Compounds	Structure	Source	Ref.
Silibinin		Silybum marianum plant	72
Sulforaphane		Broccoli, cauliflower, radish, cabbage and arugula	94
Taiwanin A		Bark of Taiwania cryptomerioides	73
Thymoquinone		Nigella sativa (seeds)	95
Wogonin		Scutellaria baicalensis (dried root), Scutellaria rivularis, Andrographis paniculata (wall, leaves)	74
Oxymatrine		Sophora flavescens (quinazine alkaloid extracted)	96
Jasmonates	2	Camellia sasanqua L., Camellia sinensis L. (anther and pollen)	97
Fisetin		Fragaria ananassa, Malus domestica (fruit)	98

However, limitations such as resistance, compromised efficacy, and side effects of conventional therapies limit their clinical applications. Thus, plant-derived anti-cancer agents with less or no toxic effects can be an alternative chemotherapeutic option. Anti-cancer activity of phyto-chemicals is dependent on their multi-targeted mechanism of action. Since carcinogenesis is a multistep process involving multiple signaling mechanisms, numerous phytochemicals targeting the altered signaling in cancer are considered promising anti-cancer therapeutics.¹⁰⁰ Phytochemicals targeting signaling pathways in cancer are summarized (Table 3). The following sections outline the role of potentially bioactive compounds against BC cells with their possible molecular mechanism.

3.1 | Inhibition of cell proliferation

Cellular proliferation is essential for all multicellular organisms to develop bodies and organs during embryogenesis. However, in the case of cancer, abnormal cell proliferation is due to changing the expression or activity of protein associated with cell proliferation or cell cycle regulation. Phytochemicals and their derivatives can inhibit the growth and expansion of BC cells by targeting cell cycle regulatory proteins.¹⁷² For example, the naturally active compound formononetin (25μ M) suppresses tumor growth and angiogenesis in MCF-7 and MDA-MB-231 tumor models by targeting the

FGFR2-mediated Akt signaling pathway.¹⁰¹ Treatment of MCF-7 cells by silibinin (50-200 µmol) prevented cell proliferation through modulating the expression of apoptosis-related proteins such as Bcl-xl, bak, p53, p21,¹⁰⁷ whereas sesamin (100 µM) could inhibit MCF-7 cell proliferation by down-regulating cyclin D1 expression.¹⁰² Curcumin mediated its anti-proliferative activity against BC (MDA-MB-231 and BT-483) cells by regulating the expression of NF-kB, cyclin D1, CDK4, and MMP1.¹⁰³ Chen et al. noted that Genistein (40-100 µM) exhibited anti-proliferative activity by deactivating the IGF-1R-PI3K/Akt signaling pathway along with increasing Bax/Bcl-2 expressions in MCF-7 cells,¹⁰⁴ whereas lycopene showed similar activities by increasing Bax expression without changing Bcl-xL in MDA-MB-468 cancer cells.¹⁰⁵ Scheckel KA reported that the anti-proliferative activity of rosmarinic acid (20 µmol/L) is associated with a decrease in COX-2 expression and activation of AP-1 and ERK1/2 in MCF-7 cells.¹⁰⁶ Harrison et al. reported that apigenin arrests the cell cycle at the G2/M phase, followed by down-regulation p-Akt in MDA-MB-468 cancer cells.¹⁰⁸ Furthermore, enterolactone (ENL) has been shown to suppress cell proliferation by lowering uPA-mediated plasmin activation and down-regulation of MMP-2 and MMP-9 in MDA-MB-231 cells.¹⁰⁹ Therefore, phytochemicals could act as potent inhibitors of cell proliferation in BC cells by suppressing cell survival signaling, cell cycle regulatory protein, and regulating apoptosis-related proteins.

					51
Phytochemical	Dose	Study type	Target	Macular mechanism	Ref.
Effects of phytochemical	s on cell proliferation				
Formonotin-A	25 μM	MCF-7 and MDA-MB-231	↓ Tumor growth ↓ Angiogenesis	↓ FGFR2-mediated Akt signaling	101
Sesamin	100 µM	MCF-7	↓ Proliferation	↓ Cyclin D1 expression	102
Curcumin	1.25–5 mg/mL	MDA-MB-231 and BT-483 cell	↓ Proliferation	↓ NF-κB, and more importantly cyclin D1, CDK4MMP1 mRNA	103
Genistein	40-100 µM	MCF-7	↓ Proliferation	↓ IGF-1R-PI3K/Akt ↓ Bcl-2/Bax mRNA	45,104
Lycopene	100μΜ	MDA-MB-468	↓ Proliferation ↑ Aboptosis	↓ Akt, mTOR ↑ Bax	105
Rosmarinic acid	20 µmol/L	MCF-7	↓ Proliferation	↓ COX-2 expression, AP-1 activation, and antagonized the ERK1/2 activation	106
Silibinin	50-200 µmol	MCF-7	1 Apoptosis 1. Proliferation	↓ Bcl-xl ↑ n53. n21. BRCA1. Bak. ATM	107
Apigenin	30 µM	MDA-MB-468	↓ Proliferation	↑ ROS production ↓ p-Akt	108
Enterolactone	75 µM	MDA-MB-231	↓ Proliferation ↓ Migration	↓ PA-induced plasmin activation ↓ MMP-2 and MMP-9	109
Effects of phytochemicals	s on apoptosis induction	2			
Ginsenoside Rh1	50µM	In vitro MCF-7, HCC1428	↑ Apoptosis, autophagy	↓ ROS-mediated PI3K/Akt pathway ↑ ROS production ↑ LC3B and cleaved caspase-3	
Daidzein	25-100μM	In vitro MCF-7	↑ Apoptosis	↑ Bax, cyt c, caspases 9 and 3 ↓ Bcl-2	Cance
Nimbolide	1.97–5 µM	In vitro MDA-MB-231 MCF-7	Apoptosis autophagy	↓ Bcl2, mTORp62 Beclin 1, LC3B protein	er Mec
Lycopene	2-16μM	In vitro MCF-7	↓ Proliferation ↑ Apoptosis	↑ p53 and Bax	licine E
Pharbilignan C	5-20 µM	In vitro MDA-MB-231	↑ Apoptosis	↑ Bax, caspases 9 and 3 ↓ Bcl-2	Open Access
EGCG	0-80 µM	In vitro T47D	↑ Apoptosis	↓ Telomerase and P13K/AKT ↑ Bax/Bcl-2, CASP3, CASP9, and PTEN	-₩11 ≈
Sanguinarine	0-1.5 µM	In vitro MDA-MB-231	î Apoptosis	↑ ROS generation ↑ cytochrome c ↑ caspase-3 and caspase-9 ↓ XIAP, cIAP-1	≟EY <u>145</u>
				(Co) (č

TABLE 3 Summary of selected particular phytochemical and their anti-cancer activity in human breast cancer cell line.

(Continued)	
\mathbf{c}	
Ш	
Г	
р	
\triangleleft	
L	

14564	W	ILEY	Car	ncer M	ledicir	IC Open Ac	cess										2	SOHEL E
	Ref.	115	116	117	118	119		120	121	122	123	124	125	126	127	961	128	129 130
	Macular mechanism	↑ p53 and Bax ↓ Anti-apoptotic gene, Bcl-2	↑ PARP cleavage, Bax ↓ Bcl-2	↑ Cleaved caspase-3, PARP, p53 ↑ Bax/Bcl-2 ratio	ROS production, Bax and Bak mitochondrial membrane potential	 TNF-α, caspase-8, caspase-3, PARP cleavage Cellular cIAP1 and cIAP2, FLIP, Bcl-2 		↓ Cdc2-cyclin B1 ↑ p21CIP1/WAF1	† p53, p-p53, p21, p27	\uparrow CDKI p21 and p53	↓ CDK4, cyclin E2, cyclin D1 ↑ p21WAF1/CIP1, p53 p15INK4B	↓ Capthepsin D, cyclin E and cyclin D1 ↑ Bax and p21	↓ Cyclin D1, cyclin E, p27, survivin	↑ p18, p19, p21 ↓ Cdk4, Cdk6, Cdk7, NF-ĸB p65	↓ MMP-9		↓ MMPs 2 and 9, c-erbB-2	↓ VEGF secretion, MMP-9, AP-1 activation ↓ uPA, NF-κB activation
	Target	† Apoptosis ↓ angiogenesis	† Apoptosis	↓ Growth ↑ Apoptosis	† Apoptosis	Apoptosis		↓ Cell cycle progression	↑ DNA damage ↑ Cell cycle arrest at G(2)/M ↑ Apoptosis	↑ G1/S phase arrest	↓ Proliferation	↓ Proliferation ↑ Apoptosis	↓ Proliferation, viability	↓ Cell growth ↑ Cell cycle arrest at S- and G2/M-phases ↑ Apoptotic cell death ↓ Cell survival factors	↓ Migration and invasion)	↓ Metastasis	↓ Migration and invasion↓ Metastasis and migration
	Study type	In vivo BALB/c mice	In vitro MCF-7 cells	In vitro Bcap-37 and ZR-75-30	In vitro MDA-MB-231 and MCF-7	In vitro MDA-MB-231 and MCF-7		In vitro MCF-7	In vitro MCF-7	In vitro MCF-7	In vitro MCF-7	In vitro MCF-7	In vitro MCF-7, T47D, MDA-MB231	In vitro HTB26 and HTB132	<i>netastasis</i> In vitro	MCF-7	MDA-MB-231	MCF-7 and MDA-MB-468 MCF-7
ed)	Dose	N/A	20-80 µM	40 µM	2.5-5μM	1-10 µM	uls on cell cycle regulator	5-20 µM	5 µg/mL	50 µM	100 µM	10-6 µM	100-200 µM	0.05-4µМ	ıls on angiogenesis and n 5μM		70 nM	100µg/mL 20-100µМ
TABLE 3 (Continue	Phytochemical	Lutein	Kaempferol	Emodin	Withaferin A	Celastrol	Effects of phytochemicc	Quercetin	Taiwanin A	Coumestrol	Ginsenosides	Kaempferol	Thymoquinone	Naringenin	Effects of phytochemica Shikonin		Flavopiridol	Silymarin Curcumin

(Continued)
\mathbf{c}
Ш
Γ
В
E

Ref.	AL.	132	109	133	134	135	136	137	138	139		140		137	_Ca	ncer Me	dicine	. <mark>Open Access</mark> — \	NI	143 TE	Y⊥ Y	14565 14565
Macular mechanism	↓ MMP-9, urokinase-type plasminogen activator	↓ MMP-9 ↓ Bcl-2	↓ MMP-2 and MMP-9 expressions ↑ MMPs inhibitor	↓ VEGF, VEGFR2, NFATc3, calcineurin pathway	↓ MMP-2, MMP-9, VEGFA, VEGFB, VEGFC, p62, Beclin-1, P13K, mTOR, Akt and JNK	↓ TNF-α, MMP-2, MMP-9, MMP-13	↓ EGFR phosphorylation VEGF. MMP-9. and COX-2	↓ VEGF, HIF-1α, MMP-2, MMP-9 ↓ p38, Akt, NF-κB, P13K	↑ TGF-b, E-cadherin, cytokeratin 19 ↓ MMP-2, MMP-9, Ysnail, Twist, Smad2, NF-ĸB	↓ VEGF expression ↑ MIF regulation		\downarrow HIF-1 α	↓ NFkB and VEGF expression	\downarrow HIF-1 α	and the second se	 ↓ Furin, glucose transporter-1 ↓ VEGF, enolase-1 ↓ Phosphofructokinase in hypoxic 	↓ HIF-1α mRNA levels	 [↑] HIF-1α degradation [↓] HIF-1α protein aggregation and translation [↓] Hsp90 client proteins EGFR, Cdk4, and survivin [↓] 		↓ CD44, hedgehog, Akt, GSK3b signaling, cyclin D1,	c-Myc ↑β-Catenin	↓ NF-ĸB p65 subunit, p52
Target	↓ Cell migration	↓ Invasive phenotype	↓ Migration and invasion	↓ Angiogenesis	↓ Invasion and angiogenesis	↓ Migration, invasion	↓ Metastasis and migration ⊥ Tumor volume	↓ Migration ↓ Angiogenesis	↓ Migration, invasion	↓ Invasion and angiogenesis		↓ Growth	↓ Migration ↓ Angiogenesis ↓ Proliferation	L Proliferation		↓ Angiogenesis	↓ Angiogenesis	↓ Angiogenesis		↓ bCSCs	↓ Mammospheres	↓ bCSCs ↓ Mammospheres
Study type	MCF-7 and MDA-MB-231	MDA-MB-231	MDA-MB-231 cells	MCF-7	MCF-7	MCF10	MDA-MB-468 xenograft model	MDA-MB-231	MCF7 and MDA-MB-231	MDA-MB-231	actor	In vivo	C57BL/6J mice	In vitro	MDA-MB-231	In vitro MDA-MB-231	In vitro MCF-7	In vitro and vivo MCF-7, MDA-MB-231 Xenograft mouse	nation	MCF-7		SUM-149 and SUM-159 Y
Dose	$10-200\mu M$	4.6–18.1 μM	25-5μM	34 mg/kg	5 mg/kg Rg3, 1 time/2 day	10µM	50 µg/mL	25-50 μM	100µL	N/A	s on hypoxia-inducible f	50-100 mg/kg/day	for 4 weeks	25-50 uM		50µM	0.50 mg/mL	40 µM	s on mammosphere forn	25-50μM		50 mg/kg
Phytochemical	Arctigenin	2-hydroxychalcone and xanthohumol	Enterolactone	Quercetin	Rg3	Sulforaphane	Silibinin	Isoliquiritigenin	Thymoquinone	Punicalagin	Effects of phytochemicals	EGCG		Isoliauiritigenin		3,3-Diindolylmethane	Lyciumbarbarum polysaccharides	Wogonin	Effects of phytochemicals	Pterostilbene		Sulforaphane

(Continued)	
\mathbf{c}	
Щ	
Г	
В	
\mathbf{A}	
E	

Phytochemical	Dose	Study type	Target	Macular mechanism	Ref.
Benzyl isothiocyanate	3 μmol/g	MDA-MB-231, MCF-7 and SUM159	↓ bCSCs ↓ Mammospheres	↓ Ron, sfRon, ALDH1 ↑ SOX-2, Nanog, [Oct-4]	145
Resveratrol	100 mg/kg/day	MCF-7, SUM159	↓ bCSC proliferation↓ Mammospheres	↓ Wnt, β-catenin	146
Curcumin	5μM	MCF-7, MCF10A, SUM149	↓ bCSCs self-renewal	↓ SCD, CD49f, LDH1A3, TP63	147
EGCG	40µM	MDA-MB-231 and MDA-MB436	↓ bCSCs growth	↓ ER-a36, MAPK/ERK, EGFR, PI3K/AKT	148
Effects of phytochemicals	s on inflammation				
Pomegranate juice	20-80 µmol/L	ApoE-KO mice J774.A1 macrophage	↓ Pro-inflammatory state	↓ TNF-α and IL-6 secretion ↑ IL-10	149
Curcumin	10-20 µM	In vitro MCF-7	↓ Inflammation ↓ Cell proliferation ↑ Apoptosis	↑ Blocked the TNF-α-induced NF-κB ↓ Proteasomal activities	150
Resveratrol	10 ppm	In vivo Sprague Dawley rats	↑ Cell cycle arrest at S-G(2)-M phase ↓ Ductal carcinoma	↓ NF-κB, cyclooxygenase-2, and matrix metalloprotease-9 expression	151
Resveratrol, EGCG,	I	In vivo	↑ Pro-inflammatory mediators	\downarrow TNF-α, IL-1β, COX-2, phospho-Akt, phospho-p65,	152
curcumin		Sprague Dawley rats	in macrophage ↓ Stearic acid-mediated activation	NF-kB	
Effects of phytochemicals	s on enzymatic activity				
Curcumin	20μM	In vitro MCF-7	↓ GSTP1 methylation	↑ Glutathione S-transferase Pi 1	153
Resveratrol	25μM	In vitro MCF-7	↑ Enzymatic inhibition	↓ Aromatase mRNA expression ↓ CYP19 promoters activity and II transactivation	154
Sulforaphane	25μM	In vitro MCF10A	Block signaling pathways	↓ COX-2 expression ↓ ERK1/2-IKK and NAK-IKK	155
Rosmarinic acid	10 µmol/L	In vitro MCF10A	 ↓ Pro-inflammatory gene ↓ Cell proliferation 	↑ AP-1 activation ↓ COX-2 expression	106
Silibinin	200 µM	In vitro MCF-7 and MDA-MB231	↓ Cell viability ↓ Tumor inducing genes	↓ COX-2 expression ↓ TPA-arbitrated MMP-9 expression	156
Isoliquiritigenin	10-40μM	In vitro MDA-MB-231, BT-549	↓ Metastasis ↑ Apoptosis	↓ COX-2, CYP 4A activity ↓ PGE2, PLA2 expression and activity	157
Quercetin and epigallocatechin	0.01-500μM and 0.01-1000μM	In vitro MCF-7 and MDA-MB231	↓ Metabolic process	↓ Glucose uptake ↓ Lactate production	158

(Continued)
3
E
Г
В
◄

TABLE 3 (Continued	()				
Phytochemical	Dose	Study type	Target	Macular mechanism	Ref.
Effects of phytochemicals	s on cell signaling path	ways			
Genistein	100µМ	MCF-7 and MCF-7 HER2	Signal inhibition	↓ IκBα, p65 nucleus phosphorylation ↓ NF-SB transcription	159
Formononetin	10-100 µM	MCF-7	↓ Proliferation ↓ Cyclin D1 mRNA expression	↓ IGF1/IGF1R-PI3K/Akt phosphorylation	160
Calycosin	0-100μΜ	MCF-7, T-47D, MDA-231 and MDA-435	↓ Growth and induce apoptosis	↓ IGF-1R, MAPK, (PI3K)/Akt pathways	161
Arctigenin	200 µM	MCF-7, MDA-MB-231	↓ Metastasis	↓ Akt, NF-ĸB phosphorylation ↓ MAPK (ERK 1/2 and JNK 1/2) signaling	
Resveratrol	100 mg/kg	MCF-7	↑ Autophagy ↑ Cytotoxicity	Wnt/β-catenin	146
Apigenin	50 µM	MCF-7/HER2 and MCF-7 vec	↑ Apoptosis ↓ Proliferation	↓ p-JAK1, p-STAT3, NF-ĸB, p-IĸBa	162
Silibinin	50 µM	MDA-MB-231	↑ Apoptosis	↓ ERK, Akt, Notch-1	163
Pterostilbene	0-100 µM	MDA-MB-468	↑ Apoptosis ↓ Proliferation	↑ ERK1/2 ↓ p21, YAkt, mTOR	164
Naringenin	250μM	MCF-7	↑ Apoptosis ↓ Proliferation	↓ P13K, MAPK, ERK1/2, AKT	165
α-Mangostin	30µM	T47D, MDA-MB-468, SKBR3, and AU565	↑ Apoptosis ↓ Proliferation	↓ P13K, ERK1/2, ERa, Akt, ERK1/2, MAPK ↑ p-p38, p-JNK1/2	166
Effects of phytochemicals	s on epigenetic regulato.	L.			
Genistein	80µM	In vitro MDA-MB-231	↑ Epigenetic stability	↑ p21 ^{WAF1} (p21) and p16 ^{INK4a} ↓ BMI1 and c-MYC expression	
Lycopene	3.125μM, 2μm/ week)	In vitro MCF-7 and MDA-MB-468, MCF10A	↑ Epigenetics stability	↑ Demethylases the GSTP1, RARbeta2 and the HIN-1 genes	er Me
Curcumin	40µM	In vitro MDA-MB-361	↓ Cell growth ↑ Repression turnor suppressor gene	↓ Sp1 expression, DLC1 methylation	dicine ∞
EGCG	15μM	In vitro MCF7 and MDA MB 231	↓ Cell viability	↓ RARb2, cyclin D2 methylation, TMS1 methylation, MGMT methylation	Ph Access
Sulforaphane	5 µM	In vitro MDA-MB-231	↑ Cell death ↓ Proliferation	↓ HDAC demethylation	WILE E

(Continues)

3.2 | Apoptosis inductions

Apoptosis, a programmed cell death mechanism, plays a crucial role in cancer pathogenesis and maintenance by regulating cell death and survival based on specific signals.¹⁷³ Apoptosis can be executed via two mechanisms, that is, the extrinsic and intrinsic mitochondrial pathways.¹⁷⁴ Both of these pathways are regulated through several regulatory proteins.¹⁷⁵ The extrinsic pathway, for instance, is associated with the Fas ligand, Fas-associated protein with death domain initiator pro-caspase-8, and many caspases contributing to the cascade amplification.¹⁷⁶ In contrast, the intrinsic pathway involves apoptosis-related proteins such as Bax, Bak, Bcl2, Cyto-c, adaptor protein Apaf-1, and active caspases.¹⁷⁷ Thus, regulating these proteins by phytochemicals could be an alternative for better management of patients with BC. Ginsenoside Rh1 (50µM, 24h) exerted a potential anti-cancer effect against BC (MCF-7 and HCC1428) cells through induction of apoptosis and autophagy.¹¹⁰ Nimbolide (1.97–5 μ M) and pharbilignan C (5–20 μ M) are associated with the down-regulation of Bcl-2/Bax along with up-regulation of caspases (caspases 9 and 3), thereby leading to induced apoptosis of MDA-MB 231 and MCF-7 cells through mitochondrial-dependent intrinsic pathways.^{88,112} Furthermore, nimbolide induces cancer cell autophagy by inhibiting mammalian target of rapamycin (mTOR) and p62 expression and increasing two essential proteins, Beclin 1, and LC3B expression.¹¹² Jin et al. reported that daidzein (25-100 µM) treatment of MCF-7 BC cells caused up-regulation of Bax protein and down-regulation of Bcl-2 protein expression, leading to cytochrome c release, which in turn induced apoptosis via activating caspases-9 and 7.¹¹¹ Choi et al. reported that treatment of BC cells (MDA-MB 231) with sanguinarine (0-1.5µM) caused apoptosis by generating ROS, leading to the transfer of cytochrome-c into cytosol followed by caspase-3 and caspase-9 activation and inactivation of anti-apoptosis factor XIAP and cIAP-1.¹¹⁴ Chew et al. noted that lutein regulated the apoptosis pathway by increasing tumor suppressors (and apoptosis genes) such as p53 and Bax and decreasing anti-apoptosis genes such as Bcl-2 expression in female BALB/c mice.¹¹⁵ Zu et al. reported that emodin (40 µM) inhibits growth by inducing apoptosis through up-regulating cleaved Bax/Bcl2 p53, caspase-3, PARP cleavage in human BC (ZR-75-30 and Bcap-37) cells.¹¹⁷ Another phytochemical, withaferin A (2.5-5 µM) induced apoptosis through ROS production by modulating the expression of Bax/Bak in MDA-MB 231 and MCF-7 BC cells.¹¹⁸ Furthermore, Mi et al. reported that celastrol $(1-10 \mu M)$ induced apoptosis by modulating the expression of TNF- α , caspase-8, caspase-3, and PARP cleavage along with inhibition of anti-apoptotic proteins such as cellular cIAP1 and cIAP2, FLIP, and Bcl-2 expression in MCF-7 and MDA-MB 231 cells.¹¹⁹ Also, lycopene and EGCG induced apoptosis by up-regulating the expression of p53 and Bax/Bcl-2 ratio with down-regulating telomerase and P13K/AKT in MCF-7 and T47D cancer cells.^{83,113} Furthermore, curcumin and resveratrol can induce apoptosis through the regulation of Bax/Bcl2, whereas thymoquinone, apigenin, pterostilbene, and sulforaphane are associated with apoptosis by regulating caspases cascade and signal transduction mechanism in multiple human BC cells.^{144,164,178–181} Therefore, phytochemicals inhibit BC progression by apoptosis induction, which mediates either intrinsic or extrinsic, and sometimes both pathways.

3.3 | Inducing cell cycle arrest

The cell cycle is a principal physiological mechanism regulating tissue homeostasis and development in multicellular organisms. Therefore, alterations in the cell cycle cause cancer. Thus, novel strategies have been developed targeting altered cell cycles or components. Checkpoints in the cell cycle arrest cell cycle progression in the case of DNA damage, allowing time for DNA repair.^{182,183} In numerous breast carcinomas, phytochemicals inhibit the passage of the cell cycle by modulating checkpoints components such as lowering cyclins (D1 and E) levels and cyclin-dependent CDKs etc., and by up-regulating the expression of proteins such as CDK inhibitors (p21 and p27). For example, quercetin halts the cell cycle at the G2/M phase by raising Cdk-inhibitor, especially p21CIP1/WAF1 and its associated protein Cdc2-cyclin B1 complex in MCF-7 cancer cells.¹²⁰ Treatment of coursetrol $(50 \mu M)$ caused cell cycle arrest at the G1/S phase, followed by upregulations of regulatory protein CDKI and p21 and p53 in MCF-7 cells.¹²² Also, taiwanin A treatment was associated with the up-regulation of p21, p27, p53, and p-p53 in MCF-7 cells in a dose-dependent manner.¹²¹ Kim et al. reported that ginsenosides $(100 \,\mu\text{M})$ had arrested the cell cycle at G0/G1 phase via inhibiting Cyclin D1, Cyclin E2, and their associated enzyme CDK4, along with upregulating p15INK4B, p21WAF1/CIP1 and p55 level in MCF-7 cells.¹²³ Another phytochemical, kaempferol, reduced MCF-7 cell growth by down-regulating cathepsin D, cyclin E, and cyclin D1 expressions and up-regulating Bax and p21.¹²⁴ Furthermore, thymoquinone (100-200 µM) significantly inhibited the expression of cyclin D1 and E, resulting in promoting the survival of multiple BC (MCF-7, T47D, and MDA-MB-231) cells.¹²⁵ Moreover, naringenin is an essential plant chemical that can regulate cell cycle checkpoints by suppressing CDK4, CDK6, and CDK7 with up-regulating p18, p19, and p21 in BC (HTB26 and HTB132) cells.¹²⁶ Altogether, phytochemicals halt the

progression of the cell cycle of BC cells by either inhibiting the expression and activity of cyclins (B1, D1, and E) and CDKs (4, 6, 7) or increasing the expression of CDKs inhibitors (p18, p21, p27, and p53).

3.4 | Inhibition of angiogenesis and metastasis

Angiogenesis is closely associated with metastasis. These processes are acquired at a critical density of arteries and occur as the tumors expand, spread, or become less differentiated.¹⁸⁴ Growth factors (VEGF, PDGF, FGF, and EGF), matrix metalloproteinase (MMP-2, MMP-9), intracellular adhesion molecules-1(ICAM-1), etc., are associated with these processes. Thus, they can be a potential target for cancer therapeutics development. It was reported that phytochemicals have significant anti-metastatic and antiangiogenesis effects by inhibiting MMP-9 and MMP-2 and suppressing VEGFR-2 expression, thereby inhibiting the growth and invasiveness and adhesion of cancer cells.^{185,186} Flavopiridol, a phytochemical (70nM), inhibited secretion of metalloproteinase, especially MMPs (MMP 2 and 9) and c-erbB-2 in MDA-MB-231 cells, which is associated with the reduction of cell invasion inhibition.¹²⁸ Nobel phytochemicals such as 2-hydroxy chalcone and xanthohumol exerted potent inhibitory effects on the invasive phenotype of MDA-MB-231 cells by inhibiting MMP-9 expression with Bcl-2 down-regulation and shikonin showed a similar result in MCF-7 cells.^{127,132} The reduced level of MMP-9 and urokinase-type plasminogen activator was observed in MDA-MB-231, TPA-induced MCF-7 cells followed by a lower dose of arctigenin $(10-200 \,\mu\text{M})$ treatment in turn inhibited cells' movement.¹³¹ Similarly, plant-derived silymarin decreased VEGF secretion, blocked PMA-induced inhibition of MMP-9, and blocked AP-1 activation, thus, modulating MAP signaling in MCF-7 and MDA-MB- 468 cells in a dose-dependent manner.¹²⁹ In addition, it could downregulate VEGF activity in MDA-MB-231 cells, inhibiting angiogenesis.¹³⁹ Mali et al. reported that $ENL(2-25 \mu M)$ could downregulate MMP-2 and MMP-9 activity while up-regulating tissue inhibitors, that is, metalloproteinases 1 and 2 (TIMP-1 and TIMP-2), in MDA-MB-231 cells.¹⁰⁹ Another phytochemical Rg3 (5mg/kg/2day) suppressed cell migration and angiogenesis while promoting autophagy through decreasing angiogenesis factors (VEGFA, VEGFB, VEGFC), metastatic factors (MMP-2, MMP-9), signaling molecules (P13K, Akt, mTOR, JNK, p62, and Beclin-1) in MCF-7 cells.¹³⁴ Treatment with guercetin (34 mg/kg) inhibits angiogenesis by reducing the activity of VEGF, VEGFR2, and NFATc3 in human BC xenografted nude mice. Also, it defeats calcineurin activity and its mediated pathway.¹³³ Kil et al. reported that silibinin (50µg/mL) could inhibit _Cancer Medicine

-WILEY

metastasis and migration by inhibiting EGFR phosphorylation and suppressing VEGF, MMP-9, and COX-2 in MDA-MB-468 cells, resulting in decreased tumor volume in the triple-negative BC xenograft model.¹³⁶ Isoliquiritigenin (25-50µM) treatment inhibited signaling molecules such as NF-kB, P13K/Akt, and p38, decreasing MMP-2, MMP-9, VEGF, and HIF-1 α expressions leading to reduce the motility of MDA-MB-231 cancer cells.¹³⁷ Another phytochemical, thymoguinone, could modulate the expression of epithelial markers such as E-cadherin, cytokeratin 19, and mesenchymal markers such as MMP-2, MMP-9, integrin-aV, TGF-b in MCF-7 and MDA-MB-231 cells.¹³⁸ Thus, the suppression of angiogenesis and metastasis in BC cells can be achieved by treating with plant products or plantderived bioactive compounds, which could suppress matrix metalloproteinases, growth factor expressions, and signaling mechanisms (Figure 3).

3.5 | Inhibition of hypoxia-inducible factor

Tumor hypoxia refers to cells being deprived of normal oxygen due to low oxygen levels in the tumor microenvironment. Hypoxia induces multiple signaling cascades such as MAPK, phosphatidyl-inositol 3-kinase (PI3K), HIF, and NF-KB pathways in cancer cells, leading to feedback loops of both positive and negative, and enhancing or diminishing hypoxic effects.¹⁸⁷ It was also found that hypoxia regulates several cellular phenomena, such as the expression of drug efflux proteins, apoptosis, DNA damage, the efficiency of chemotherapy, angiogenesis, and metastasis.¹⁸⁷ Therefore, targeting hypoxia-inducible factor 1 (HIF-1), a crucial component of hypoxia, could be a potential strategy against hypoxia-induced cancer cell growth and progression. Several phytochemicals can directly inhibit HIF-1-related genes, including GLUT-1, CDKN1A, and VEGF. This inhibition ultimately results in a decrease in tumor angiogenesis, migration, and chemotaxis. According to Wang et al. isoliquiritigenin (25-50 µM) treatment suppressed P13K/Akt, NF-kB signaling pathways via modulating the expression of VEGF, HIF-1 α , and MMP-2, MMP-9 expressions, leading to limit the migration of MDA-MB-231 cells.¹³⁷ Riby et al. demonstrated that 3,3-diindolylmethane (50 µM) exhibited anti-cancer activity by decreasing the expression of hypoxia-responsive factors such as furin, and glucose transporter-1, VEGF, enolase-1, and phosphofructokinase in hypoxic specific MDA-MB-231 cells.¹⁴¹ In addition, lyciumbarbarum polysaccharides inhibit HIF-1 α protein aggregation by altering mRNA levels and VEGF mRNA expression leading to inhibit the nuclear translocation of HIF-1 α in MCF-7 cells.¹⁴² Another study showed that EGCG (50µg/mL) inhibits

WILEY-Cancer Medicine

breast tumor formation, proliferation, migration, and angiogenesis by inhibiting HIF-1 α in MCF-7 and MDA-MB-231 cells.¹⁴⁰ Wang et al. noted that shikonin (10 μ M) suppresses the expression of HIF-1 α in MDA-MB-231 cells in hypoxic conditions.¹⁸⁸ Thus, phytochemicals inhibit cancer progression by regulating hypoxia-inducible factors by aggregation or degradation (Figure 3).

3.6 | Inhibition of oxidative stress and redox signaling

Reactive oxygen species (ROS) such as hydroxyl radical, superoxide anion radical, hydrogen peroxide, oxygen singlet, nitric oxide radical, and peroxynitrite extreme play essential roles in the initiation and development of tumors.¹⁸⁹ These species contribute to harmful genomic material, making them genetically unstable. Also, they act as intercessors in mitogenic and survival signaling using adhesion molecules and receptors of growth factors. Enzymes involved in an antioxidant system, such as catalase (CAT), superoxide dismutase (SOD), peroxiredoxins (PRXs), glutathione peroxidase (GPX) and glutathione reductase, are essential for maintaining cellular redox system.¹⁹⁰ However, it is not easy to mitigate the excessive production of ROS by cellular antioxidant enzymes.¹⁹¹ It was noted that phytochemicals could modulate oxidative stress and redox signaling by regulating the expression of these enzymes. For example, Singh et al. reported protective roles of resveratrol via increasing Nrf-2 expression, which could up-regulate the expression of antioxidant genes such as SOD3, NQO1, and 8-oxoguanine DNA glycosylase 1 (OGG1).¹⁹² In addition, biochanin A ($500 \mu g/g$) has shown anti-cancer activity in oxidative stress-mediated cancer by up-regulating CAT, DT-diaphorase, GST, GPx, and SOD, along with the reduction of lipid peroxidation and lactate dehydrogenase activities significantly.¹⁹³ Nadal-Serrano et al. reported the protective effects of Genistein on oxidative stress, redox signaling, and mitochondria, followed by upregulation of ER β in T47D BC cells.¹⁹⁴ Moreover, Fan et al. reported that 3,3'-diindolylmethane (1µmol/L) protects BC cells against oxidative stress by stimulating the expression of nuclear factor erythroid 2 in BC cells.¹⁹⁵ Therefore, phytochemicals regulate oxidative-mediated cancer progression by controlling potent oxidative markers, including Nrf-2 expression and antioxidant gene expression in both in vitro and in vivo models.

3.7 | Inhibition of mammosphere formation

The formation of the mammosphere is an essential characteristic of cancer progression, mainly cancer stem cells

(CSCs). Several studies reported that BC cells, including non-adherent, non-differentiating CSC, form the mammosphere.¹⁹⁶ CSCs are believed to be associated with cancer reappearance, metastasis, and resistance to anticancer drugs. Thus, targeting breast CSCs by inhibiting mammosphere formation can be an alternative approach for managing BC. Naturally occurring plant-based compounds can prevent cancer cells and CSCs by decreasing mammosphere formation.¹⁹⁷ For example, Wu et al. demonstrated that pterostilbene suppressed mammosphere formation BCSCs growth by reducing CD44⁺ surface antigen expression and stimulating β-catenin phosphorylation.¹⁴³ The pterostilbene also modulates the hedgehog/ Akt/GSK3b signaling pathway via the down-regulation of cyclin D1 with c-Myc expression.¹⁴³ Another phytochemical, sulforaphane (SFN), reduced the number and size of ALDH1-positive (BCSC) cells, resulting in the inhibition of mammospheres formation in both in vitro and in vivo models.¹⁹⁸ In addition, SFN-pretreated ALDH⁺ cells showed enhanced sensitivity to taxane, thereby blocking mammospheres formation significantly.¹⁴⁴ Fu et al. noted that resveratrol (100 mg/kg/day) treatment against BCSCs induces autophagy by suppressing the Wnt/β-catenin signaling pathway in MCF-7 and SUM159 cells.¹⁴⁶ Colacino et al. found that curcumin downregulates the expression of CD49f, ALDH1A3, PROM1, and TP6 in MCF-7, MCF10A, SUM149-derived stem cells' growth and proliferation.¹⁴⁷ Benzyl isothiocyanate (3µmol BITC/g) treatment suppressed the expression of both Ron and sfRon in cultured MCF-7 derived stem cells and tumor xenografts, indicating that benzyl isothiocyanate treatment caused inhibition bCSCs in vitro and in vivo.¹⁴⁵ Piperine $(10 \,\mu M)$ significantly decreased mammosphere formations in stem cells derived from BC.¹⁹⁹ Therefore, phytochemicals showed anti-cancer activities by inhibiting mammosphere formation in multiple breast carcinomas by suppressing signaling pathways or their components (Figure 3).

3.8 | Inhibition of inflammation

Inflammation is a biological reaction to cellular injury produced due to infections, chronic irritation, and other inflammatory responses.²⁰⁰ Information suggests that inflammatory cells, including neutrophils, macrophages, dendritic cells, eosinophils, and lymphocytes were associated with tumor formation, development, angiogenesis, and progression.^{201,202} Interestingly, significant research demonstrated that natural compounds prevent inflammation by regulating antioxidant defence mechanisms via modulating Phase I, and Phase II enzymes or inflammatory cells or factors in cancer.²⁰³ An in vitro study reported the therapeutic advantage of polyphenols on the inflammatory phenotype of macrophages.¹⁴⁹ In this study, supplemented pomegranate juice polyphenols reduced M1-macrophages mediated pro-inflammatory stimulation in the J774.A1 macrophage-like cells in a dose-depended manner.¹⁴⁹ Curcumin also exhibited anti-cancer properties against inflammation-associated carcinogenesis by inhibiting TNF- α mediated NF- κ B activation and inhibiting the proteasomal activity of IkB kinase in MCF-7 cells.¹⁵⁰ Synergistically, using Sprague Dawley rats, curcumin with resveratrol inhibits inflammation by lowering NF-kB and reducing inflammatory markers such as COX-2 and MMP-8 expression animal model.¹⁵¹ In addition, Dharmappa et al. reported that genistein had anti-inflammatory properties in cancer by inhibiting sPLA activity in a concentrationdependent manner.²⁰⁴ Furthermore, multiple dietary polyphenols combination from zyflamend, (e.g., resveratrol, curcumin, and EGCG), decreased the expression of pro-inflammatory markers such as COX-2, IL-1 β , TNF- α , phospho-Akt, phosphor-p65, and NF-kB-binding activity in C57BL/6J female mouse model.¹⁵² Therefore, natural phytochemicals are potent oncogenic inhibitors by regulating inflammation through regulating TNF- α mediated NF- κ B, I κ B kinase, COX-2 and MMP-8, IL-1 β , TNF- α , phospho-Akt, phosphor-p65, and NF-κB-binding activity in numerous cancer models.

3.9 | Enzymatic inhibition

Interfering the enzymatic functionality associated with cancer pathogenesis potentially prevents BC development. Phytochemical treatment could inhibit Phase I enzymes, inducible nitric oxide synthase, cyclooxygenase-2, xanthine oxide, aromatase, and many more in cancer.²⁰⁵ Supplementation of curcumin (20µM) is associated with reversing hypermethylation of the Glutathione S-Transferase Pi1 (GSTP1) gene, resulting in reactivation via modulation of epigenetics mechanism in MCF-7 cells.¹⁵³ It is also reported that curcumin (35 µM) inhibited MCF-7 cell proliferation by Nrf2 arbitrated Flap endonuclease-1 (Fen1) expression,²⁰⁶ whereas resveratrol (25mM) inactivates the aromatase enzyme by removing the CYP19 promoters I.3 and II transactivation.¹⁵⁴ Furthermore, resveratrol regulates other cancer-associated enzymes such as COX-2, NOO-2, and GSTP 1.²⁰⁷ In addition, Barbara E reported that cabbage juice inhibits BC (MCF10 and MDA-MB-231) cells by inhibiting aromatase expression.²⁰⁸ Similarly, rosmarinic acid (10µM) acts as an essential COX-2 inhibitor through AP-1 activation in MCF-7 cells in a dose-dependent manner.¹⁰⁶ Furthermore, another natural product, isoliquiritigenin (10-40 µM), showed chemopreventive actions by targeting metabolic enzymes such as COXs, PLA2s, LOXs, and PGE2, cytochrome P450 _Cancer Medicine

-WILEY

4 (CYP 4A) activity in MDA-MB-231, BT-549 BC cells.¹⁵⁷ Quercetin and epigallocatechin could decrease glucose consumption and lactate production in MCF-7 and MDA-MB231 cells, inhibiting cancer-related metabolic pathways.¹⁵⁸ Thus, phytochemicals showed anti-cancer efficacy through regulation of enzymatic functions, that is, by regulating estrogen synthesizing enzymes such aromatase, estrogen metabolizing enzymes CYP 4A, CYP19 suppressing COX-2 expression, or regulating GSTP1 in BC cells. Therefore, natural phytochemicals are potent oncogenic inhibitors by regulating several enzymes, including hypermethylation of the GSTP1, Flap endonuclease-1, aromatase expression, CYP19 promoters I.3 and II transactivation, and numerous enzymes in different cell lines.

3.10 | Natural compounds targeting cell signaling pathways

mTOR, PI3K, protein kinase B (Akt), MAPK/ERK, Wnt, Notch, and hedgehog signaling pathways are associated with the regulation of cell proliferation, differentiation, survival, apoptosis, invasion, migration, angiogenesis, and metastatic spread of cancer cells.^{209,210} Phytochemicals elicit anti-cancer actions by regulating these pathways or components.¹⁵⁹ For example, Seo et al. reported that genistein (100 µM) inhibited IkBa phosphorylation and maintained its association with p65-p50 heterodimer, which blocked their nuclear translocations, and p65 phosphorylation, which in turn prevented the transcription of NF-kB targeted genes.¹⁵⁹ Also, genistein inhibited MAPK signaling by suppressing MEK5, ERK5, and p-ERK5 levels in MDA-MB231 cells,²¹¹ whereas apigenin inhibited ERK 1/2 and JNK 1/2 phosphorylation via inhibiting MAPK signaling in MCF-7 cells.¹³¹ Calycosin and formononetin, two phytochemicals, regulated PI3K/Akt pathways through IGF-1R protein expression along with the inhibition of Akt phosphorylation in T47D and MCF-7 cells.^{160,161} In addition, Fu et al. reported that resveratrol (100 mg/kg) down-regulates Wnt/β-catenin signaling, inducing autophagy in MCF-7 cells¹⁴⁶ and inhibiting cell proliferation of SKBR-3 BC cells through down-regulation of various signaling pathways such as p-Akt, PI3K, Akt, mTOR.²¹² Apigenin inhibited MCF-7 cells by inducing apoptosis by inhibiting NF-κB, STAT3, and p53 signaling.¹⁶² Silibinin is associated with the death of MDA-MB-231 cells by regulating Notch-1 signaling pathways.¹⁶³ Pterostilbene regulates ERK1/2 activation, decreased cyclin D1, p-AKT, mTOR, and increased p21, Bax protein, but not Bcl-xL.¹⁶⁴ Hatkevich showed that naringenin inhibits PI3K, thus disrupting proliferation signaling in MCF-7 cells through ERK1/2, AKT, and MAPK signaling pathways, ¹⁶⁵ whereas α-Mangostin mediated its anti-tumor effect through

WILEY_Cancer Medicine

decreasing HER2, Akt, and P13K along with increasing p-p38 and p-JNK1/2 phosphorylation.¹⁶⁶ Therefore, phytochemicals inhibit NF- κ B, PI3K/Akt, MAPK/ERK, pmTOR, Wnt, Notch-1, and hedgehog signaling pathways by modulating their components or upkeep/downstream molecules in BCs (Figure 4).

3.11 | Natural compounds targeting epigenetic control

Accumulating information suggests that previous studies have shown that phytochemicals can modulate the epigenetics of cancer cells by regulating the methylation of DNA via DNA methyltransferase activity and histone modifications, resulting in inhibiting the oncogenic miRNA expression and increasing tumor-suppressing miRNA expression.^{213–215} Studies have shown that genistein could inhibit primary breast carcinogenesis by increasing some tumor suppressor protein i,e and p16, p16 (INK4a), p21, p21 (WAF1) expression, along with decreasing expression oncogene, that is, BMI1, and c-MYC in estrogen negative MDA-MB-231 cell line.¹⁶⁷ Moreover, genistein attributed its anti-cancer activity in BC cells by demethylating and reactivating methylation-silenced tumor suppressor genes via direct contact with inhibition of both DNA methyltransferase 1 (DNMT1) catalytic domain activation and DNMT1 expression.²¹³ Furthermore, genistein decreased the oncogenic miR-155 expression with increasing expression of miR-155 targets such as Forkhead box O3 and casein kinase, p27, phosphatase, and tensin homolog (PTEN), which in turn that promote apoptosis and antiproliferation of MDA-MB-435 cells.^{162,216} Lycopene up-regulated glutathione S-transferase pi gene (GSTP1) expression and demethylases the GSTP1 in MCF-7, MDA-MB-468 cells, whereas induced RARbeta2 and HIN-1 genes demethylation in BC (MCF10A) cells in a dosedependent manner.¹⁶⁸ Similarly, SFN (5µM) significantly inhibits HDAC through demethylation in MDA-MB-231 cells.¹⁷¹ Liu et al. reported that curcumin activated the promoter of deleted in liver cancer 1 by suppressing methvlation status, with the help of down-regulating the Sp1 transcription factor in MDA-MB-361 cells.¹⁶⁹ Also, EGCG $(15 \mu M)$ treatment is associated with epigenetic changes that can increase DNMTs transcripts expressions such as DNMT1, DNMT3a, and DNMT3b in both MCF-7 and MDA-MB-361 cells.¹⁷⁰ Thus, phytochemicals have the potential to modulate the epigenetic make-up of BC cells via regulating DNA methylation and histone modification; therefore, they could control the expression of oncogenes and tumor suppression genes in BC cells. The summary of phytochemicals that act against epigenetics regulation is summarized in Figure 2.

3.12 | Natural compounds targeting the immune system

Phytochemicals include substances found in nature that can be bioactive and possess an immune systemstimulating effect.²¹⁷ For example, curcumin, a clinically naturally occurring compound, has immunomodulatory properties that suppress PHA-induced T cell proliferation, IL-2, NO, and NF-κB while increasing NK cell cytotoxicity in mouse macrophage cells RAW.264.7.²¹⁸ A study involving C57BL/6 mice found that apigenin may influence the alteration of dendritic cells and other immune cell functions.²¹⁹ Daidzein, has a modulatory function on nonspecific immunity in Swiss mice when given in high doses since it enhances the phagocytic response of peritoneal macrophages.²²⁰ Additionally, in male Kunming mice exposed to 60Coy radiation, EGCG significantly reduced immune system destruction by inducing macrophage phagocytosis, boosting the activity of the antioxidant enzymes, that is, SOD and GSH-Px (glutathione peroxidase), raising glutathione level, and preventing lipid peroxidation.²²¹ Conversly, genistein regulates immunological response in female Sprague Dawley, promoting IL-4 synthesis while inhibiting IFN- γ release and balancing Th1/ Th2 cells.²²² Furthermore, kaempferol had immunesuppressive effects on cold-stressed, 6-7-week-old SPF mice, decreasing the levels of activated pro-inflammatory cytokines like IL-9 and IL-13, CD8⁺ T cells and raising anti-inflammatory cytokines and CD4⁺ T cells.²²³ Therefore, selected phytochemicals have the potential to activate immune system including numerous immune cells including NK cell, CD8⁺ T, CD4⁺ T and cytokines like IL-9 and IL-13 to fight against BC cells. A summary of the anti-cancer mechanism of phytochemicals in BC treatment is presented in Table 3 and Figures 1-4.

4 | THE ABILITY OF PHYTOCHEMICALS TO ALLEVIATE THE RESISTANCE OF ANTI-CANCER DRUGS

Due to numerous significant challenges, such as multidrug resistance, treating cancer patients is becoming more difficult.²²⁴ Drug efflux, drug inactivation, drug detoxification, drug target modification, involvement of CSCs, miRNA dysregulation, epigenetic alteration, and other numerous irregular DNA damage/repair mechanisms, tumor microenvironment, and ROS modulation are just a few potential defensive processes that could result in this resistance mechanism.^{40,225,226} P glycoprotein (P-GP), MRP 1, MRP 1–9, BCRP, and changes in beta-tubulin are a few proteins that are connected to

FIGURE 1 Breast cancer management by dietary phytochemicals through apoptosis and cell cycle: Phytochemicals activate caspase-8 through modulating TRAIL- and FAS-associated receptors. Activated caspase-8 mediated activation of some effector caspase-3 and caspase-7 attributed to the extrinsic pathway of apoptosis. Moreover, the anti-apoptotic protein BCL2 mediates activation of BAK, BAX. These powerful mechanisms increase cytosolic Ca^{2+} , cytochrome *c*, and reactive oxygen species (ROS). Cytochrome *c* sequentially activates caspase-9, which is simultaneously activated by effector caspase-3 and caspase-7 attribute to apoptosis. Activation of tumor suppressor protein (p21CIP1/W, p27, p53, pRB, and AF1) and suppression of cyclin (cyclin B, D1, E1) with associating enzymes (CDK 2, 4) by phytochemicals regulated cell cycle and cell proliferation.

drug resistance in cancer.²²⁷ The multi-drug resistance protein P-glycoprotein (P-gp) is overexpressed in the membrane of cancer cells, where it commonly increases drug efflux and contributes to the emergence of treatment resistance in malignancies.²²⁸ Hence, inhibiting MDR-efflux proteins may help improve cancer therapy's effectiveness. For example, Biochanin A exhibits this type of action. Soo et al. demonstrated that Biochanin A treatment increased [3H]-DNM accumulation by reducing DNM efflux and caused MDR to be reversed by suppressing P-gp activity in MCF-7/ADR BC cells.²²⁵ The effects of phloretin on P-gp activity were examined (HTB26) by measuring the uptake of rhodamine 123 in a variety of cancer cells, including human MDR1 genetransfected mouse lymphoma cells (L1210) and human BC cells MDA-MB-231 expressing the MRP1 pump.²²⁶

FIGURE 3 Control of breast cancer by dietary phytochemicals targeting multiple patways: Targeting the multiple signal transduction, phytochemicals can suppress some cell signaling pathways, that is, PI3k/Akt/mTOR, MAPK/ERK, NF-κB, HIF-1α, leading to a decrease cancer cell metastasis, angiogenesis, and survival. Followed by the signal transductions, phytochemicals can mitigate important metastatic and angiogenic factors including EGFR, VEGF, VEGFR2, NF-κB, MMP2, MMP9, COX-2, and ERK in breast cancer cell line.

FIGURE 4 Phytochemicals targeted signaling pathways associated with breast cancer treatment: The schematic diagram represents the overview of molecular mechanisms of phytochemicals mediated inhibition of breast cancer cell growth through the Notch, MAPK, NF-κB, and Akt pathways.

Genistein indirectly raises intracellular drug concentration, including doxorubicin concentration, but does not directly alter P-gp activity in a BC cell lines. In a study, Castro and Altenberg reported that genistein reduced the photo-affinity labeling of P-gp with [3H] azidopine, a P-gp substrate, indicating that genistein might suppress rhodamine123 efflux in human MCF-7 cells by directly interacting with P-gp to impede P-gp-mediated drug efflux.²²⁹ The other component that stimulates the formation of BC is human epidermal growth factor receptor 2 (HER2), a tyrosine kinase (TK) receptor that belongs to the EGFR family. Curcumin was reported to have the capacity to alter the EGFR signaling pathway, which is linked to the growth, differentiation, adhesion, and migration of cancer cells.^{230,231} According to Chandrika et al. hesperetin at 10-500 μ M promotes apoptosis in MDA-MB-231 and SKBR3 BC cells and inhibits their ability to proliferate. Dietary flavonoid hesperetin reduces the development of MDA-MB-231 BC cells by inhibiting the activity of HER2 Tyrosine Kinase (HER2-TK), causing MMP loss, chromatin condensation, and activating caspase-8 and-3, which causes cell cycle arrest at the G2 phase.²³² Sesamin inhibited cell migration at the same dosage and cells by delaying the G1 phase and down-regulating PDL-1, MMP-9, and MMP-2. Sesamin's ability to inhibit cell proliferation was demonstrated by Yokota et al. in BC cells. They discovered that sesamin inhibited growth at doses of 1-100 M by increasing retinoblastoma protein dephosphorylation and decreasing cyclin D1 gene expression, which mediates cyclin D1 degradation.¹⁰² The co-treatment of resistant (MCF-7R) cells with Apigenin, which reduced MDR1 expression at the mRNA and protein levels in both resistant and nonresistant cells, significantly reduced DOX resistance in the MCF-7 cell line. In both the MCF-7 and MCF-7R cell lines, apigenin strongly inhibited the phosphorylation and activation of the JAK2 and STAT3 proteins.²³³ By lowering Bcl-2, Nimbolide induces the expression of the proteins Bax and caspases with a modulation of the expression of HDAC-2 and H3K27Ac, and stopping the progression of the cell cycle, as well as reduced the growth of MDA-MB-231 and MCF-7 cells. Increasing Beclin 1 and LC3B and decreasing p62 and mTOR protein expression in BC cells. Nimbolide also activated autophagy signaling.¹¹² Combining Sanguinarine with TRAIL therapy may break BC cells' resistance caused by overexpression of Akt or Bcl-2. In human BC MDA-231 cells, Sanguinarine triggered apoptosis, which resulted in decreased pro-caspase-3, Bcl-2, cIAP2, XIAP, and c-FLIPs protein levels and increased ROS production.²³⁴ When Emodin was applied to the BC cells Bcap-37 and ZR-75-30, it was shown to suppress proliferation, induce apoptosis, and decrease Bcl-2 while increasing levels of cleaved caspase-3, PARP, p53, and Bax.¹¹⁷ In MCF-7 and MDA-MB-231 cells, Isoliquiritigenin lowered cell survival and clonogenic potential, triggered apoptosis, suppressed mRNA expression of many AA-metabolizing enzymes, including PLA2, COX-2, and CYP-4A, and reduced production of PGE2 and 20-HETE. Moreover, it reduced the expression of phospho-PI3K, phospho-PDK, phospho-Akt, phospho-Bad, and Bcl-xL, triggering caspase cascades that ultimately led to the cleavage of PARP.²³⁵ The expression pattern of β -catenin in BC tissue are high than the normal tissue. EGCG thus decreased the viability of MDA-MB-231 cells by lowering the levels of β -catenin, cyclin D1, and p-AKT. Moreover, pretreatment of MDA-MB-231 cells with PI3 kinase inhibitors, such wortmannin or LY294002, enhanced the suppressive effect of EGCG, given after 24 h, on the production of β -catenin.²³⁶ By transfecting the plasmid and inducing cytotoxicity and autophagy in BCSCs derived from MCF-7 and SUM159, Resveratrol inhibits the Wnt/ β-catenin signaling pathway and excessive production of the β -catenin protein.¹⁴⁶ The impact of Wogonin supplementation on cell survival and proliferation has been shown to be effective against a variety of BC cell lines, including TNBC and its related cell lines, BT-549 and MDA-MB-231. Additionally, wogonin inhibits the cell cycle of cancer cell lines by inhibiting the expression

Cancer Medicine

-WILEY

of cyclin D1, cyclin B1, and CDK1, inducing apoptosis, improving the Bax/Bcl-2 ratio, and increasing caspase-3 cleavage.²³⁷ In ER-positive BC cells like MCF-7 and T-47D cells, Calycosin tends to suppress proliferation and trigger apoptosis. This effect is caused by ER-induced inhibition of IGF-1R as well as the targeted control of the MAPK and (PI3K)/Akt pathways.¹⁶¹

5 | LIMITATIONS AND PROSPECTS OF PHYTOCHEMICALS IN BREAST CANCER THERAPY DEVELOPMENT

Several factors interfere with the conventional therapeutic options used to treat BC. Phytochemicals offer a broad spectrum of pharmacological effects, which might benefit the clinical management of patients with BC. Phytochemicals are an effective therapeutic agent due to their several biological properties. Though phytochemicals have enormous benefits, there are significant constraints in achieving the actual effectiveness of phytochemicalsbased therapeutic for the management of patients with BC due to the lack of systematic and proper information in this field. In addition, to develop a clinically useful drug, a series of preclinical and clinical it must pass in vitro, in vivo, and clinical trials (Phase I-IV) studies must be accomplished with clinical benefit. Furthermore, long-term studies are still required to determine therapeutic interactions, in vivo pharmacokinetic attributes, effective doses, suitable administration routes, and defined mass and/or nanoformulation of these phytochemicals. To estimate bioactivities, the structure-activity relationship must be established. Gathering additional information regarding phytochemicals' synergistic actions when combined with other phytochemicals, it is possible to boost their activity and prevent the anti-cancer profile by modifying conventional medications. Moreover, these phytochemicals could be used in computational chemistry research, such as docking, neural networking, and pharmacophore-based virtual screening programs for the drug development sector. Therefore, these phytochemicals could potentially become a potent chemotherapeutic anti-cancerous substance in managing BCs, at least at the cellular level and could be formulated for clinical applications if all of the strategies are accomplished.

6 | CONCLUSION

Although the complete molecular mechanisms for BC pathogenesis are yet to be established, whereas the mortality rates associated with this cancer are still rising WILEY-Cancer Medicine

worldwide. Thus, developing an effective therapeutic, especially from natural resources, that is, phytochemicalbased therapeutic, could provide significant clinical benefit in the management of patients with BC. The details mechanism of anti-cancer activity from in vitro, preclinical and clinical studies suggested that phytochemicals mediate their anti-cancer efficacy through targeting apoptosis proteins, including anti-apoptotic proteins (Bcl-2) and apoptotic proteins (Bax, Bak, Bad, and Caspase), arresting cell cycle and proliferation. They modulate the expression of growth-related genes, for instance, inhibiting expression and activity of cyclins (B1, D1, E) and CDKs (4, 6, 7) or increasing the expression of CDKs inhibitors (p18, p21, p27, and p53). Inhibits metastasis and angiogenesis by controlling the expression of MMP-2,8 and 9, Wnt/-catenin, PARP, oxidative markers, including Nrf-2, antioxidantrelated gene, inhibiting mammosphere formation, regulating inflammation via modulating TNF-α, NF-κB, IκB kinase, COX-2, IL-1β, TNF-α, phospho-Akt, phospho-p65. Also, regulation enzymatic functions (i.e., aromatase, estrogen metabolizing enzymes CYP 4A, CYP19 suppressing COX-2 expression, or regulating GSTP1), targeting cell signaling (NF-KB, PI3K/Akt, MAPK/ERK, p-mTOR, Wnt, Notch-1, hedgehog), epigenetics control (regulating DNA methylation and histone modification), activate immune system (NK cell, CD8⁺ T, CD4⁺ T, cytokines like IL-9 and IL-13) in BC cell lines.

To conclude, phytochemicals may be used as an alternative and complementary therapeutic option in BC treatments due to their therapeutic benefits. However, further studies are needed to conduct before taking phytochemicals as a food supplement to manage and prevent BC until clinically proven standard drugs are not available in pharma-markets.

AUTHOR CONTRIBUTIONS

Md Sohel: Conceptualization (supporting); data curation (lead); resources (lead); validation (lead); visualization (supporting); writing-original draft (lead); writingreview and editing (supporting). Suraiya Aktar: Resources (supporting); writing-original draft (supporting). Partha Biswas: Resources (supporting); visualization (supporting). Md. Al Amin: Resources (supporting); writing—original draft (supporting). Md. Arju Hossain: Data curation (supporting); resources (supporting). Nasim Ahmed: Resources (supporting); writingoriginal draft (supporting). Md. Imrul Hasan Mim: Visualization (supporting). Farhadul Islam: Supervision (supporting); validation (supporting); writing—review and editing (supporting). Md. Abdullah Al Mamun: Conceptualization (lead); resources (supporting); supervision (lead); validation (supporting); visualization (lead);

writing—original draft (supporting); writing—review and editing (lead).

FUNDING INFORMATION

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

CONFLICT OF INTEREST STATEMENT

The authors have declared that there are no conflicts of interest.

DATA AVAILABILITY STATEMENT

Data included in article/supplementary material/referenced in article.

ORCID

Farhadul Islam [®] https://orcid.org/0000-0001-5262-4702 Abdullah Al Mamun [®] https://orcid. org/0000-0003-3839-9603

REFERENCES

- 1. Sun YS, Zhao Z, Yang ZN, et al. Risk factors and preventions of breast cancer. *Int J Biol Sci.* 2017;13:1387-1397.
- 2. Karpuz M, Silindir-Gunay M, Ozer AY. Current and future approaches for effective cancer imaging and treatment. *Cancer Biother Radiopharm.* 2018;33:39-51.
- 3. Nobili S, Lippi D, Witort E, et al. Natural compounds for cancer treatment and prevention. *Pharmacol Res.* 2009;59:365-378.
- Rodriguez EB, Flavier ME, Rodriguez-Amaya DB, Amaya-Farfán J. Phytochemicals and functional foods. Current situation and prospect for developing countries. *Segur Aliment Nutr*. 2015;13:1-22. doi:10.20396/san.v13i1.1841
- Cragg GM, Grothaus PG, Newman DJ. Impact of natural products on developing new anti-cancer agents. *Chem Rev.* 2009;109:3012-3043.
- 6. Sharma SB, Gupta R. Drug development from natural resource: a systematic approach. *Min Rev Med Chem*. 2015;15:52-57.
- Wang R, Li YLH, et al. Antitumor activity of the *Ailanthus altissima* bark phytochemical ailanthone against breast cancer MCF-7 cells. *Oncol Lett.* 2018;15:6022-6028.
- Singh RK, Ranjan A, Srivastava AK, et al. Cytotoxic and apoptotic inducing activity of *Amoora rohituka* leaf extracts in human breast cancer cells. *J Ayurveda Integr Med*. 2020;11:383-390.
- Nakamura Y, Yoshimoto M, Murata Y, et al. Papaya seed represents a rich source of biologically active isothiocyanate. J Agric Food Chem. 2007;55:4407-4413.
- Shahruzaman SH, Mustafa MF, Ramli S, Maniam S, Fakurazi S, Maniam S. The cytotoxic properties of *Baeckea frutescens* branches extracts in eliminating breast cancer cells. *Evid Based Complement Alternat Med.* 2019;2019:1-9.
- Benarba B, Meddah B, Aoues A. *Bryonia dioica* aqueous extract induces apoptosis through mitochondrial intrinsic pathway in BL41 Burkitt's lymphoma cells. *J Ethnopharmacol.* 2012;141:510-516.

Cancer Medicine

- 12. Kushwaha PP, Vardhan PS, Kapewangolo P, et al. Bulbine frutescens phytochemical inhibits notch signaling pathway and induces apoptosis in triple negative and luminal breast cancer cells. *Life Sci.* 2019;234:116783.
- Kaur V, Kumar M, Kumar A, Kaur S. Butea monosperma (Lam.) Taub. bark fractions protect against free radicals and induce apoptosis in MCF-7 breast cancer cells via cellcycle arrest and ROS-mediated pathway. Drug Chem Toxicol. 2020;43:398-408.
- 14. Huyen CTT, Luyen BTT, Khan GJ, et al. Chemical constituents from *Cimicifuga dahurica* and their anti-proliferative effects on MCF-7 breast cancer cells. *Molecules*. 2018;23:1083.
- Estanislao Gómez CC, Aquino Carreño A, Pérez Ishiwara DG, et al. *Decatropis bicolor* (Zucc.) Radlk essential oil induces apoptosis of the MDA-MB-231 breast cancer cell line. *BMC Complement Altern Med*. 2016;16:266.
- 16. Beier BA. A revision of the desert shrub Fagonia (Zygophyllaceae). Syst Biodivers. 2005;3:221-263.
- Li P, AnandhiSenthilkumar H, Wu S-b, et al. Comparative UPLC-QTOF-MS-based metabolomics and bioactivities analyses of *Garcinia oblongifolia*. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1011:179-195.
- Jiang F, Li Y, Mu J, et al. Glabridin inhibits cancer stem celllike properties of human breast cancer cells: an epigenetic regulation of miR-148a/SMAd2 signaling. *Mol Carcinog.* 2016;55:929-940.
- Liu Z, Liu M, Liu M, Li J. Methylanthraquinone from *Hedyotis* diffusa WILLD induces Ca²⁺-mediated apoptosis in human breast cancer cells. *Toxicol In Vitro*. 2010;24:142-147.
- Barani M, Mirzaei M, Torkzadeh-Mahani M, Nematollahi MH. Lawsone-loaded niosome and its antitumor activity in MCF-7 breast cancer cell line: a nano-herbal treatment for cancer. DARU. 2018;26:11-17.
- Yerlikaya S, Baloglu MC, Diuzheva A, Jekő J, Cziáky Z, Zengin G. Investigation of chemical profile, biological properties of *Lotus corniculatus* L. extracts and their apoptotic-autophagic effects on breast cancer cells. *J Pharm Biomed Anal*. 2019;174:286-299.
- Huang X, Zhang QY, Jiang QY, Kang XM, Zhao L. Polysaccharides derived from *Lycium barbarum* suppress IGF-1-induced angiogenesis via PI3K/HIF-1α/VEGF signalling pathways in MCF-7 cells. *Food Chem.* 2012;131:1479-1484.
- 23. Sun J, Rui HL. Apple phytochemical extracts inhibit proliferation of estrogen-dependent and estrogen-independent human breast cancer cells through cell cycle modulation. *J Agric Food Chem.* 2008;56:11661-11667.
- Chon SU, Kim YM, Park YJ, Heo BG, Park YS, Gorinstein S. Antioxidant and antiproliferative effects of methanol extracts from raw and fermented parts of mulberry plant (*Morus alba* L.). *Eur Food Res Technol*. 2009;230:231-237.
- Rohini B, Akther T, Waseem M, Khan J, Kashif M, Hemalatha S. AgNPs from *Nigella sativa* control breast cancer: an in vitro study. *J Environ Pathol Toxicol Oncol.* 2019;38:185-194.
- Yu JS, Kim AK. Platycodin D induces apoptosis in MCF-7 human breast cancer cells. *J Med Food*. 2010;13:298-305.
- Elmaidomy AH, Mohyeldin MM, Ibrahim MM, et al. Acylated iridoids and rhamnopyranoses from *Premna odorata* (Lamiaceae) as novel mesenchymal–epithelial transition factor receptor inhibitors for the control of breast cancer. *Phytother Res.* 2017;31:1546-1556.

- 28. Sartippour MR, Seeram NP, Heber D, et al. Rabdosia rubescens inhibits breast cancer growth and angiogenesis. *Int J Oncol.* 2005;26:121-127.
- 29. Basso AV, Leiva González S, Barboza GE, et al. Phytochemical study of the genus *Salpichroa* (Solanaceae), chemotaxonomic considerations, and biological evaluation in prostate and breast cancer cells. *Chem Biodivers*. 2017;14:e1700118.
- Noori S, Hassan ZM, Mohammadi M, Habibi Z, Sohrabi N, Bayanolhagh S. Sclareol modulates the Treg intra-tumoral infiltrated cell and inhibits tumor growth in vivo. *Cell Immunol*. 2010;263:148-153.
- 31. Abu-Dahab R, Afifi F, Kasabri V, Majdalawi L, Naffa R. Comparison of the antiproliferative activity of crude ethanol extracts of nine salvia species grown in Jordan against breast cancer cell line models. *Pharmacogn Mag.* 2012;8:319-324.
- 32. Xu X, Rajamanicham V, Xu S, et al. Schisandrin a inhibits triple negative breast cancer cells by regulating Wnt/ER stress signaling pathway. *Biomed Pharmacother*. 2019;115:108922.
- Azadmehr A, Hajiaghaee R, Baradaran B, Haghdoost-Yazdi H. Apoptosis cell death effect of *Scrophularia variegata* on breast cancer cells via mitochondrial intrinsic pathway. *Adv Pharm Bull.* 2015;5:443-446.
- Wang CZ, Li XL, Wang QF, Mehendale SR, Yuan CS. Selective fraction of *Scutellaria baicalensis* and its chemopreventive effects on MCF-7 human breast cancer cells. *Phytomedicine*. 2010;17:63-68.
- Echiburú-Chau C, Alfaro-Lira S, Brown N, et al. The selective cytotoxicity elicited by phytochemical extract from *Senecio graveolens* (Asteraceae) on breast cancer cells is enhanced by hypoxia. *Int J Oncol.* 2014;44:1357-1364.
- 36. Xiao X, Wu ZC, Chou KC. A multi-label classifier for predicting the subcellular localization of gram-negative bacterial proteins with both single and multiple sites. *PLoS ONE*. 2011;6:e20592. doi:10.1371/journal.pone.0020592
- Yousif MG, Al-Mayahi MH. Phylogenetic characterization of staphylococcus aureus isolated from the women breast abscess in Al-Qadisiyah governorate, Iraq. *J Pharm Sci Res.* 2019;11:1001-1005.
- Watkins R, Wu L, Zhang C, Davis RM, Xu B. Natural productbased nanomedicine: recent advances and issues. *Int J Nanomedicine*. 2015;10:6055-6074.
- Vemuri SK, Banala RR, Subbaiah GPV, Srivastava SK, Reddy AVG, Malarvili T. Anti-cancer potential of a mix of natural extracts of turmeric, ginger and garlic: a cell-based study. *Egypt J Basic Appl Sci.* 2017;4:332-344.
- 40. Sohel M, Sultana H, Sultana T, et al. Chemotherapeutic potential of hesperetin for cancer treatment, with mechanistic insights: a comprehensive review. *Heliyon*. 2022;8:1-15.
- Roy M, Mukherjee S, Sarkar R, Biswas J. Curcumin sensitizes chemotherapeutic drugs via modulation of PKC, telomerase, NF-κB and HDAC in breast cancer. *Ther Deliv.* 2011;2:1275-1293.
- Fan XJ, Wang Y, Wang L, Zhu M. Salidroside induces apoptosis and autophagy in human colorectal cancer cells through inhibition of PI3K/Akt/mTOR pathway. *Oncol Rep.* 2016;36:3559-3567.
- 43. Das M, Kandimalla R, Gogoi B, et al. Mahanine, a dietary phytochemical, represses mammary tumor burden in rat and inhibits subtype regardless breast cancer progression through suppressing self-renewal of breast cancer stem cells. *Pharmacol Res.* 2019;146:104330.

-ΨΠΕγ

WILEY_Cancer Medicine

- Paul P, Biswas P, Dey D, et al. Exhaustive plant profile of "Dimocarpus longan lour" with significant phytomedicinal properties: a literature based-review. Processes. 2021;9:1803. doi:10.3390/pr9101803
- Sohel M, Biswas P, Al Amin M, et al. Genistein, a potential phytochemical against breast cancer treatment-insight into the molecular mechanisms. *Processes*. 2022;10:415. doi:10.3390/ pr10020415
- 46. Biswas P, Dey D, Biswas PK, et al. A comprehensive analysis and anti-cancer activities of quercetin in ROS-mediated cancer and cancer stem cells. *Int J Mol Sci.* 2022;23:11746.
- Dey D, Hasan MM, Biswas P, et al. Investigating the anticancer potential of salvicine as a modulator of topoisomerase II and ROS signaling cascade. *Front Oncol.* 2022;12:899009
- Sohel M, Islam MN, Hossain MA, et al. Pharmacological properties to pharmacological insight of sesamin in breast cancer treatment: a literature-based review study. *Int J Breast Cancer*. 2022;2022:1-13. doi:10.1155/2022/2599689
- Somasundaram S, Edmund NA, Moore DT, Small GW, Shi YY, Orlowski RZ. Dietary curcumin inhibits chemotherapyinduced apoptosis in models of human breast cancer. *Cancer Res.* 2002;62:3868-3875.
- 50. Morrissey C, Watson RWG. Phytoestrogens and prostate cancer. *Curr Drug Targets*. 2005;4:231-241.
- 51. Torrens-Mas M, Roca P. Phytoestrogens for cancer prevention and treatment. *Biology*. 2020;9:1-19.
- Sohel M, Sultana H, Sultana T, et al. Chemotherapeutics activities of dietary phytoestrogens against prostate cancer: from observational to clinical studies. *Curr Pharm Des*.2022;28:156 1-1580
- 53. Liu RH. Potential synergy of phytochemicals in cancer prevention: mechanism of action. *J Nutr.* 2004;134:3479S-3485S.
- Ammar NS, Elhaes H, Ibrahim HS, El Hotaby W, Ibrahim MA. A novel structure for removal of pollutants from wastewater. Spectrochim Acta A Mol Biomol Spectrosc. 2014;121:216-223. doi:10.1016/j.saa.2013.10.063
- Jiang D, Rasul A, Batool R, et al. Potential anticancer properties and mechanisms of action of Formononetin. *Biomed Res Int.* 2019;2019:1-11.
- Tuli HS, Tuorkey MJ, Thakral F, et al. Molecular mechanisms of action of genistein in cancer: recent advances. *Front Pharmacol.* 2019;10:1-16.
- Burns J, Yokota T, Ashihara H, Lean MEJ, Crozier A. Plant foods and herbal sources of resveratrol. *J Agric Food Chem*. 2002;50:3337-3340.
- Abdel-Aal ESM, Akhtar H, Zaheer K, Ali R. Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. *Nutrients*. 2013;5:1169-1185.
- Amare DE. Anti-cancer and other biological effects of a dietary compound 3,3'-diindolylmethane supplementation: a systematic review of human clinical trials. *Nutr Diet Suppl.* 2020;12:123-137.
- 60. Dabeek WM, Marra MV. Dietary quercetin and kaempferol: bioavailability and potential cardiovascular-related bioactivity in humans. *Nutrients*. 2019;11:2088.
- Orlikova B, Tasdemir D, Golais F, Dicato M, Diederich M. Dietary chalcones with chemopreventive and chemotherapeutic potential. *Genes Nutr.* 2011;6:125-147.
- Mourvaki E, Stefania G, Rossi R, Rufini S. Passionflower fruit-a "new" source of lycopene? *J Med Food*. 2005;8:104-106.

- 63. Salehi B, Fokou P, Sharifi-Rad M, et al. The therapeutic potential of naringenin: a review of clinical trials. *Pharmaceuticals*. 2019;12:11.
- 64. Gupta SC, Prasad S, Sethumadhavan DR, Nair MS, Mo YY, Aggarwal BB. Nimbolide, a limonoid triterpene, inhibits growth of human colorectal cancer xenografts by suppressing the proinflammatory microenvironment. *Clin Cancer Res.* 2013;19:4465-4476.
- Basu P, Kumar GS. Sanguinarine and its role in chronic diseases. Adv Exp Med Biol. 2016;928:155-172.
- Zhang KJ, Gu QL, Yang K, Ming XJ, Wang JX. Anticarcinogenic effects of α -mangostin: a review. *Planta Med.* 2017;83:188-202.
- Sun Y, Tan YJ, Lu ZZ, et al. Arctigenin inhibits liver cancer tumorigenesis by inhibiting gankyrin expression via C/EBPα and PPARα. *Front Pharmacol.* 2018;9:1-12.
- 68. Gao J, Liu ZJ, Chen T, Zhao D. Pharmaceutical properties of calycosin, the major bioactive isoflavonoid in the dry root extract of *Radix astragali*. *Pharm Biol*. 2014;52:1217-1222.
- 69. Cao K, Xu J, Pu W, et al. Punicalagin, an active component in pomegranate, ameliorates cardiac mitochondrial impairment in obese rats via AMPK activation. *Sci Rep.* 2015;5:1-12.
- Peñalvo JL, Heinonen SM, Aura AM, Adlercreutz H. Dietary sesamin is converted to enterolactone in humans. J Nutr. 2005;135:1056-1062.
- 71. Abu-Lafi S, Makhamra S, Rayan I, et al. Sesamin from *Cuscuta palaestina* natural plant extracts: directions for new prospective applications. *PLoS ONE*. 2018;13:e0195707.
- 72. Pashaei-Asl F, Pashaei-Asl R, Khodadadi K, Akbarzadeh A, Ebrahimie E, Pashaiasl M. Enhancement of anticancer activity by silibinin and paclitaxel combination on the ovarian cancer. *Artif Cells Nanomed Biotechnol.* 2018;46:1483-1487.
- 73. Harn HJ, Chuang HM, Chang LF, et al. Taiwanin a targets nonsteroidal anti-inflammatory drug-activated gene-1 in human lung carcinoma. *Fitoterapia*. 2014;99:227-235.
- Tai MC, Tsang SY, Chang LYF, Xue H. Therapeutic potential of wogonin: a naturally occurring flavonoid. *CNS Drug Rev.* 2005;11:141-150.
- Fujiki H, Yoshizawa S, Horiuchi T, et al. Anticarcinogenic effects of (–)-epigallocatechin gallate. *Prev Med.* 1992;21:503-509.
- 76. Jin P, Li M, Xu G, et al. Role of (-)-epigallocatechin-3-gallate in the osteogenic differentiation of human bone marrow mesenchymal stem cells: an enhancer or an inducer? *Exp Ther Med*. 2015;10:828-834.
- Shankar E, Goel A, Gupta K, Gupta S. Plant flavone apigenin: an emerging anticancer agent. *Curr Pharmacol Rep.* 2017;3:423-446.
- 78. Liu J, Lee J, Hernandez MAS, Mazitschek R, Ozcan U. Treatment of obesity with celastrol. *Cell*. 2015;161:999-1011.
- Bhagwat S, Haytowitz DB, Holden JM. USDA database for the isoflavone content of selected foods, release 2.0. Vol 15. U.S. Department of Agriculture; 2008.
- 80. Hewlings SJ, Kalman DS. Curcumin: a review of its effects on human health. *Foods*. 2017;6:92. doi:10.3390/foods6100092
- Aires V, Limagne E, Cotte AK, Latruffe N, Ghiringhelli F, Delmas D. Resveratrol metabolites inhibit human metastatic colon cancer cells progression and synergize with chemotherapeutic drugs to induce cell death. *Mol Nutr Food Res.* 2013;57:1170-1181.
- Dong X, Fu J, Yin X. Emodin: a review of its pharmacology, toxicity and pharmacokinetics. *Phytother Res.* 2016;30:1207-1218.

- Moradzadeh M, Hosseini A, Erfanian S, Rezaei H. Epigallocatechin-3-gallate promotes apoptosis in human breast cancer T47D cells through down-regulation of PI3K/AKT and telomerase. *Pharmacol Rep.* 2017;69:924-928.
- Sedlacek HH, Czech J, Naik R, et al. Flavopiridol (L86 8275; NSC 649890), a new kinase inhibitor for tumor therapy. *Int J Oncol.* 1996;9:1143-1168. doi:10.3892/ijo.9.6.1143
- Lyu X, Xu X, Song A, Guo J, Zhang Y, Zhang Y. Ginsenoside Rh1 inhibits colorectal cancer cell migration and invasion in vitro and tumor growth in vivo. *Oncol Lett.* 2019;18:4160-4166.
- Christensen LP. Chapter 1 Ginsenosides. Chemistry, biosynthesis, analysis, and potential health effects. *Adv Food Nutr Res.* 2008;55:1-99.
- Kong LD, Zhang Y, Pan X, Tan RX, Cheng CHK. Inhibition of xanthine oxidase by liquiritigenin and isoliquiritigenin isolated from *Sinofranchetia chinensis*. *Cell Mol Life Sci.* 2000;57: 500-505.
- Park YJ, Choi CI, Chung KH, Kim KH. Pharbilignan C induces apoptosis through a mitochondria-mediated intrinsic pathway in human breast cancer cells. *Bioorg Med Chem Lett.* 2016;26:4645-4649.
- McCormack D, McFadden D. Pterostilbene and cancer: current review. J Surg Res. 2012;173:e53-e61.
- Anand David AV, Arulmoli R, Parasuraman S. Overviews of biological importance of quercetin: a bioactive flavonoid. *Pharmacogn Rev.* 2016;10:84-89.
- Popovich DG, Kitts DD. Generation of ginsenosides Rg3 and Rh2 from North American ginseng. *Phytochemistry*. 2004;65: 337-344.
- Petersen M, Simmonds MSJ. Rosmarinic acid. *Phytochemistry*. 2003;62:121-125.
- Fujita Y. Shikonin: production by plant (*Lithospermum erythrorhizon*) cell cultures. In Bajaj Y.P.S. eds. *Medicinal and Aromatic Plants I.* Springer; 1988:225-236.
- Herr I, Lozanovski V, Houben P, Schemmer P, Büchler MW. Sulforaphane and related mustard oils in focus of cancer prevention and therapy. *Wien Med Wochenschr*. 2013;163:80-88.
- Goyal SN, Prajapati CP, Gore PR, et al. Therapeutic potential and pharmaceutical development of thymoquinone: a multitargeted molecule of natural origin. *Front Pharmacol.* 2017;8:1-19.
- Guzman JR, Koo JS, Goldsmith JR, Mühlbauer M, Narula A, Jobin C. Oxymatrine prevents NF-κB nuclear translocation and ameliorates acute intestinal inflammation. *Sci Rep.* 2013;3:1629.
- Flescher E. Jasmonates in cancer therapy. *Cancer Lett.* 2007;245: 1-10.
- Grynkiewicz G, Demchuk OM. New perspectives for fisetin. Front Chem. 2019;7:1-10.
- Majeed W, Aslam B, Javed I, et al. Breast cancer: major risk factors and recent developments in treatment. *Asian Pac J Cancer Prev.* 2014;15:3353-3358.
- 100. Catalano E. Role of phytochemicals in the chemoprevention of tumors. arXiv Prepr. arXiv1605.04519 2016.
- 101. Wu XY, Xu H, Wu ZF, et al. Formononetin, a novel FGFR2 inhibitor, potently inhibits angiogenesis and tumor growth in preclinical models. *Oncotarget*. 2015;6:44563-44578.
- 102. Yokota T, Matsuzaki Y, Koyama M, et al. Sesamin, a lignan of sesame, down-regulates cyclin D1 protein expression in human tumor cells. *Cancer Sci.* 2007;98:1447-1453.
- 103. Liu Q, Loo WTY, Sze SCW, Tong Y. Curcumin inhibits cell proliferation of MDA-MB-231 and BT-483 breast cancer cells

mediated by down-regulation of NF κ B, cyclinD and MMP-1 transcription. *Phytomedicine*. 2009;16:916-922.

- 104. Chen J, Duan Y, Zhang X, Ye Y, Ge B, Chen J. Genistein induces apoptosis by the inactivation of the IGF-1R/p-Akt signaling pathway in MCF-7 human breast cancer cells. *Food Funct*. 2015;6:995-1000.
- 105. Takeshima M, Ono M, Higuchi T, Chen C, Hara T, Nakano S. Anti-proliferative and apoptosis-inducing activity of lycopene against three subtypes of human breast cancer cell lines. *Cancer Sci.* 2014;105:252-257.
- 106. Scheckel KA, Degner SC, Romagnolo DF. Rosmarinic acid antagonizes activator protein-1-dependent activation of cyclooxygenase-2 expression in human cancer and nonmalignant cell lines. J Nutr. 2008;138:2098-2105.
- 107. Pirouzpanah MB, Sabzichi M, Pirouzpanah S, Chavoshi H, Samadi N. Silibilin-induces apoptosis in breast cancer cells by modulating p53, p21, bak and bcl-xl pathways. *Asian Pac J Cancer Prev.* 2015;16:2087-2092.
- 108. Harrison ME, Power Coombs MR, Delaney LM, Hoskin DW. Exposure of breast cancer cells to a subcytotoxic dose of apigenin causes growth inhibition, oxidative stress, and hypophosphorylation of Akt. *Exp Mol Pathol.* 2014;97:211-217.
- 109. Mali AV, Joshi AA, Hegde MV, Kadam SS. Enterolactone suppresses proliferation, migration and metastasis of MDA-MB-231 breast cancer cells through inhibition of uPA induced plasmin activation and MMPs-mediated ECM remodeling. *Asian Pac J Cancer Prev.* 2017;18:905-915.
- 110. Huynh DTN, Jin Y, Myung CS, Heo KS. Ginsenoside rh1 induces mcf-7 cell apoptosis and autophagic cell death through ros-mediated akt signaling. *Cancers*. 2021;13:1892.
- 111. Jin S, Zhang QY, Kang XM, Wang JX, Zhao WH. Daidzein induces MCF-7 breast cancer cell apoptosis via the mitochondrial pathway. *Ann Oncol.* 2010;21:263-268.
- 112. Pooladanda V, Bandi S, Mondi SR, Gottumukkala KM, Godugu C. Nimbolide epigenetically regulates autophagy and apoptosis in breast cancer. *Toxicol In Vitro*. 2018;51:114-128.
- 113. Peng SJ, Li J, Zhou Y, et al. In vitro effects and mechanisms of lycopene in MCF-7 human breast cancer cells. *Genet Mol Res.* 2017;16:13.
- 114. Choi WY, Kim GY, Lee WH, Choi YH. Sanguinarine, a benzophenanthridine alkaloid, induces apoptosis in MDA-MB-231 human breast carcinoma cells through a reactive oxygen speciesmediated mitochondrial pathway. *Chemotherapy*. 2008;54:279-287.
- 115. Chew BP, Brown CM, Park JS, Mixter PF. Dietary lutein inhibits mouse mammary tumor growth by regulating angiogenesis and apoptosis. *Anticancer Res.* 2003;23:3333-3339.
- 116. Yi X, Zuo J, Tan C, et al. Kaempferol, a flavonoid compound from gynura medica induced apoptosis and growth inhibition in MCF-7 breast cancer cell. *Afr J Tradit Complement Altern Med.* 2016;13:210-215.
- 117. Zu C, Zhang M, Xue H, et al. Emodin induces apoptosis of human breast cancer cells by modulating the expression of apoptosis-related genes. *Oncol Lett.* 2015;10:2919-2924.
- 118. Hahm ER, Moura MB, Kelley EE, Van Houten B, Shiva S, Singh SV. Withaferin A-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species. *PLoS ONE*. 2011;6:e23354.
- 119. Mi C, Shi H, Ma J, et al. Celastrol induces the apoptosis of breast cancer cells and inhibits their invasion via downregulation of MMP-9. *Oncol Rep.* 2014;32:2527-2532.

-WILEY

WILEY-Cancer Medicine

- 120. Choi JA, Kim JY, Lee JY, et al. Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. *Int J Oncol.* 2001;19:837-844.
- 121. Shyur LF, Lee SH, Chang ST, Lo CP, Kuo YH, Wang SY. Taiwanin a inhibits MCF-7 cancer cell activity through induction of oxidative stress, upregulation of DNA damage checkpoint kinases, and activation of p53 and FasL/Fas signaling pathways. *Phytomedicine*. 2010;18:16-24.
- 122. Zafar A, Singh S, Naseem I. Cytotoxic activity of soy phytoestrogen coumestrol against human breast cancer MCF-7 cells: insights into the molecular mechanism. *Food Chem Toxicol*. 2017;99:149-161.
- 123. Kim SJ, Kim AK. Anti-breast cancer activity of fine black ginseng (*Panax ginseng* Meyer) and ginsenoside Rg5. *J Ginseng Res.* 2015;39:125-134.
- 124. Kim SH, Hwang KA, Choi KC. Treatment with kaempferol suppresses breast cancer cell growth caused by estrogen and triclosan in cellular and xenograft breast cancer models. *J Nutr Biochem.* 2016;28:70-82.
- 125. Rajput S, Kumar BNP, Dey KK, Pal I, Parekh A, Mandal M. Molecular targeting of Akt by thymoquinone promotes G1 arrest through translation inhibition of cyclin D1 and induces apoptosis in breast cancer cells. *Life Sci.* 2013;93:783-790.
- 126. Abaza MSI, Orabi KY, Al-Quattan E, Al-Attiyah RJ. Growth inhibitory and chemo-sensitization effects of naringenin, a natural flavanone purified from *Thymus vulgaris*, on human breast and colorectal cancer. *Cancer Cell Int.* 2015;15:46.
- 127. Jang SY, Lee JK, Jang EH, Jeong SY, Kim JH. Shikonin blocks migration and invasion of human breast cancer cells through inhibition of matrix metalloproteinase-9 activation. *Oncol Rep.* 2014;31:2827-2833.
- 128. Li Y, Bhuiyan M, Alhasan S, Senderowicz AM, Sarkar FH. Induction of apoptosis and inhibition of c-erbB-2 in breast cancer cells by flavopiridol. *Clin Cancer Res.* 2000;6:223-229.
- 129. Jiang C, Agarwal R, Lü J. Anti-angiogenic potential of a cancer chemopreventive flavonoid antioxidant, silymarin: inhibition of key attributes of vascular endothelial cells and angiogenic cytokine secretion by cancer epithelial cells. *Biochem Biophys Res Commun.* 2000;276:371-378.
- 130. Zong H, Wang F, Fan QX, Wang LX. Curcumin inhibits metastatic progression of breast cancer cell through suppression of urokinase-type plasminogen activator by NF-kappa B signaling pathways. *Mol Biol Rep.* 2012;39:4803-4808.
- 131. Maxwell T, Chun SY, Lee KS, Kim S, Nam KS. The antimetastatic effects of the phytoestrogen arctigenin on human breast cancer cell lines regardless of the status of ER expression. *Int J Oncol.* 2017;50:727-735.
- 132. Kim SY, Lee IS, Moon A. 2-Hydroxychalcone and xanthohumol inhibit invasion of triple negative breast cancer cells. *Chem Biol Interact.* 2013;203:565-572.
- 133. Zhao X, Wang Q, Yang S, et al. Quercetin inhibits angiogenesis by targeting calcineurin in the xenograft model of human breast cancer. *Eur J Pharmacol.* 2016;781:60-68.
- 134. Zhang Y, Liu QZ, Xing SP, Zhang JL. Inhibiting effect of Endostar combined with ginsenoside Rg3 on breast cancer tumor growth in tumor-bearing mice. *Asian Pac J Trop Med.* 2016;9:180-183.
- 135. Bao C, Ko J, Park HC, et al. Sulforaphane inhibited tumor necrosis factor-α induced migration and invasion in estrogen receptor negative human breast cancer cells. *Food Sci Biotechnol*. 2015;24:347-351.

- 136. Kil WH, Kim SM, Lee JE, Park KS, Nam SJ. Anticancer effect of silibinin on the xenograft model using MDA-MB-468 breast cancer cells. *Ann Surg Treat Res.* 2014;87:167-173.
- 137. Wang KL, Hsia SM, Chan CJ, et al. Inhibitory effects of isoliquiritigenin on the migration and invasion of human breast cancer cells. *Expert Opin Ther Targets*. 2013;17:337-349.
- 138. Rajput S, Kumar BNP, Banik P, Parida S, Mandal M. Thymoquinone restores radiation-induced TGF-β expression and abrogates EMT in chemoradiotherapy of breast cancer cells. *J Cell Physiol*. 2015;230:620-629.
- 139. Toi M, Bando H, Ramachandran C, et al. Preliminary studies on the anti-angiogenic potential of pomegranate fractions in vitro and in vivo. *Angiogenesis*. 2003;6:121-128.
- 140. Gu JW, Makey KL, Tucker KB, et al. EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1 α and NF κ B, and VEGF expression. *Vasc Cell.* 2013;5:1-10.
- 141. Riby JE, Firestone GL, Bjeldanes LF. 3,3'-Diindolylmethane reduces levels of HIF-1 α and HIF-1 activity in hypoxic cultured human cancer cells. *Biochem Pharmacol.* 2008;75:1858-1867.
- 142. Song X, Yao J, Wang F, et al. Wogonin inhibits tumor angiogenesis via degradation of HIF-1α protein. *Toxicol Appl Pharmacol*. 2013;271:144-155.
- 143. Wu CH, Hong BH, Ho CT, Yen GC. Targeting cancer stem cells in breast cancer: potential anticancer properties of 6-shogaol and pterostilbene. *J Agric Food Chem.* 2015;63:2432-2441.
- 144. Burnett JP, Lim G, Li Y, et al. Sulforaphane enhances the anticancer activity of taxanes against triple negative breast cancer by killing cancer stem cells. *Cancer Lett.* 2017;394:52-64.
- 145. Kim SH, Sehrawat A, Singh SV. Dietary chemopreventative benzyl isothiocyanate inhibits breast cancer stem cells in vitro and in vivo. *Cancer Prev Res.* 2013;6:782-790.
- 146. Fu Y, Chang H, Peng X, et al. Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/βcatenin signaling pathway. *PLoS ONE*. 2014;9:e102535.
- 147. Colacino JA, McDermott SP, Sartor MA, Wicha MS, Rozek LS. Transcriptomic profiling of curcumin-treated human breast stem cells identifies a role for stearoyl-coa desaturase in breast cancer prevention. *Breast Cancer Res Treat*. 2016;158: 29-41.
- 148. Pan X, Zhao B, Song Z, Han S, Wang M. Estrogen receptor-α36 is involved in epigallocatechin-3-gallate induced growth inhibition of ER-negative breast cancer stem/progenitor cells. *J Pharmacol Sci.* 2016;130:85-93.
- 149. Aharoni S, Lati Y, Aviram M, Fuhrman B. Pomegranate juice polyphenols induce a phenotypic switch in macrophage polarization favoring a M2 anti-inflammatory state. *Biofactors*. 2015;41:44-51.
- 150. Yoon H, Rui HL. Effect of selected phytochemicals and apple extracts on NF-κB activation in human breast cancer MCF-7 cells. *J Agric Food Chem.* 2007;55:3167-3173.
- 151. Banerjee S, Bueso-Ramos C, Aggarwal BB. Suppression of 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: role of nuclear factor-κB, cyclooxygenase 2, and matrix metalloprotease 9. *Cancer Res.* 2002;62:4945-4954.
- 152. Subbaramaiah K, Sue E, Bhardwaj P, et al. Dietary polyphenols suppress elevated levels of proin flammatory mediators and aromatase in the mammary gland of obese mice. *Cancer Prev Res.* 2013;6:886-897.

_Cancer Medicine

14581

-WILEY

- 153. Kumar U, Sharma U, Rathi G. Reversal of hypermethylation and reactivation of glutathione S-transferase pi 1 gene by curcumin in breast cancer cell line. *Tumour Biol.* 2017;39:1010428317692258.
- 154. Wang Y, Lee KW, Chan FL, Chen S, Leung LK. The red wine polyphenol resveratrol displays bilevel inhibition on aromatase in breast cancer cells. *Toxicol Sci.* 2006;92:71-77.
- 155. Kim HN, Kim DH, Kim EH, et al. Sulforaphane inhibits phorbol ester-stimulated IKK-NF-κB signaling and COX-2 expression in human mammary epithelial cells by targeting NF-κB activating kinase and ERK. *Cancer Lett.* 2014;351:41-49.
- 156. Kim S, Kim SH, Hur SM, et al. Silibinin prevents TPA-induced MMP-9 expression by down-regulation of COX-2 in human breast cancer cells. *J Ethnopharmacol.* 2009;126:252-257.
- 157. Zheng H, Li Y, Wang Y, et al. Downregulation of COX-2 and CYP 4A signaling by isoliquiritigenin inhibits human breast cancer metastasis through preventing anoikis resistance, migration and invasion. *Toxicol Appl Pharmacol.* 2014;280:10-20.
- 158. Moreira L, Araújo I, Costa T, et al. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism. *Exp Cell Res.* 2013;319:1784-1795.
- 159. Seo HS, Choi HS, Choi HS, et al. Phytoestrogens induce apoptosis via extrinsic pathway, inhibiting nuclear factor-κB signaling in HER2-overexpressing breast cancer cells. *Anticancer Res.* 2011;31:3301-3313.
- 160. Chen J, Zeng J, Xin M, Huang W, Chen X. Formononetin induces cell cycle arrest of human breast cancer cells via IGF1/ PI3K/Akt pathways in vitro and in vivo. *Horm Metab Res.* 2011;43:681-686.
- 161. Chen J, Hou R, Zhang X, Ye Y, Wang Y, Tian J. Calycosin suppresses breast cancer cell growth via ERβ-dependent regulation of IGF-1R, p38 MAPK and PI3K/Akt pathways. *PLoS ONE*. 2014;9:e91245.
- 162. Scherbakov AM, Andreeva OE. Apigenin inhibits growth of breast cancer cells: the role of ERα and HER2/neu. *Acta Nat.* 2015;7:133-139.
- 163. Kim TH, Woo JS, Kim YK, Kim KH. Silibinin induces cell death through reactive oxygen species-dependent downregulation of Notch-1/ERK/Akt signaling in human breast cancer cells. J Pharmacol Exp Ther. 2014;349:268-278.
- 164. Wakimoto R, Ono M, Takeshima M, Higuchi T, Nakano S. Differential anticancer activity of pterostilbene against three subtypes of human breast cancer cells. *Anticancer Res.* 2017;37:6153-6159.
- 165. Hatkevich T, Ramos J, Santos-Sanchez I, Patel YM. A naringenin-tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells. *Exp Cell Res.* 2014;327:331-339.
- 166. Kritsanawong S, Innajak S, Imoto M, Watanapokasin R. Antiproliferative and apoptosis induction of α -mangostin in T47D breast cancer cells. *Int J Oncol.* 2016;48:2155-2165.
- 167. Li Y, Chen H, Hardy TM, Tollefsbol TO. Epigenetic regulation of multiple tumor-related genes leads to suppression of breast tumorigenesis by dietary genistein. *PLoS ONE*. 2013;8: e54369.
- 168. King-Batoon A, Leszczynska JM, Klein CB. Modulation of gene methylation by genistein or lycopene in breast cancer cells. *Environ Mol Mutagen*. 2008;49:36-45.

- 169. Liu Y, Zhou J, Hu Y, Wang J, Yuan C. Curcumin inhibits growth of human breast cancer cells through demethylation of DLC1 promoter. *Mol Cell Biochem*. 2017;425:47-58.
- 170. Mirza S, Sharma G, Parshad R, Gupta SD, Pandya P, Ralhan R. Expression of DNA methyltransferases in breast cancer patients and to analyze the effect of natural compounds on DNA methyltransferases and associated proteins. *J Breast Cancer*. 2013;16:23-31.
- 171. Meeran SM, Patel SN, Li Y, Shukla S, Tollefsbol TO. Bioactive dietary supplements reactivate ER expression in ER-negative breast cancer cells by active chromatin modifications. *PLoS ONE*. 2012;7:e37748.
- 172. Delazar A, Asnaashari S, Nikkhah E, Asgharian P. Phytochemical analysis and antiproliferative activity of the aerial parts of Scrophularia subaphylla. *Res Pharm Sci.* 2019;14:263-272.
- 173. Parrish AB, Freel CD, Kornbluth S. Cellular mechanisms controlling caspase activation and function. *Cold Spring Harb Perspect Biol.* 2013;5:1-24.
- 174. Safarzadeh E, Shotorbani SS, Baradaran B. Herbal medicine as inducers of apoptosis in cancer treatment. *Adv Pharm Bull*. 2014;4:421-427.
- 175. Papaliagkas V, Anogianaki A, Anogianakis G, Ilonidis G. The proteins and the mechanisms of apoptosis: a mini-review of the fundamentals. *Hippokratia*. 2007;11:108-113.
- 176. Elmore S. Apoptosis: a review of programmed cell death. *Toxicol Pathol.* 2007;35:495-516.
- 177. Hongmei Z. Extrinsic and intrinsic apoptosis signal pathway review. Apoptosis and Medicine. Molecular Genetics; 2012. doi:10.5772/50129
- 178. Lv ZD, Liu XP, Zhao WJ, et al. Curcumin induces apoptosis in breast cancer cells and inhibits tumor growth in vitro and in vivo. *Int J Clin Exp Pathol.* 2014;7:2818-2824.
- 179. Venkatadri R, Muni T, Iyer AKV, Yakisich JS, Azad N. Role of apoptosis-related miRNAs in resveratrol-induced breast cancer cell death. *Cell Death Dis.* 2016;7:e2104.
- 180. Şakalar Ç, İzgi K, İskender B, et al. The combination of thymoquinone and paclitaxel shows anti-tumor activity through the interplay with apoptosis network in triple-negative breast cancer. *Tumor Biol.* 2016;37:4467-4477.
- 181. Seo HS, Ku JM, Choi HS, et al. Induction of caspase-dependent apoptosis by apigenin by inhibiting STAT3 signaling in HER2overexpressing MDA-MB-453 breast cancer cells. *Anticancer Res.* 2014;34:2869-2882.
- 182. Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. *Nature*. 2004;432:316-323.
- Barnum KJ, O'Connell MJ. Cell cycle regulation by checkpoints. *Methods Mol Biol.* 2014;1170:29-40.
- 184. Horak ER, Klenk N, Leek R, et al. Angiogenesis, assessed by platelet/endothelial cell adhesion molecule antibodies, as indicator of node metastases and survival in breast cancer. *Lancet*. 1992;340:1120-1124.
- 185. Way TD, Lin JK. Role of HER2/HER3 co-receptor in breast carcinogenesis. *Future Oncol.* 2005;1:841-849.
- 186. Papi A, Guarnieri T, Storci G, et al. Nuclear receptors agonists exert opposing effects on the inflammation dependent survival of breast cancer stem cells. *Cell Death Differ*. 2012;19:1208-1219.
- 187. Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. *Hypoxia*. 2015;3:83-92.

WILEY-Cancer Medicine

- 188. Wang W, Dai M, Zhu C, et al. Synthesis and biological activity of novel shikonin analogues. *Bioorg Med Chem Lett.* 2009;19:735-737.
- 189. Ríos-Arrabal S, Artacho-Cordón F, León J, et al. Involvement of free radicals in breast cancer. *Springerplus*. 2013;2:1-12.
- 190. Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. *Physiol Rev.* 2014;94:329-354.
- 191. Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. *Int J Biomed Sci.* 2008;4:89-96.
- 192. Singh B, Shoulson R, Chatterjee A, et al. Resveratrol inhibits estrogen-induced breast carcinogenesis through induction of NRF2-mediated protective pathways. *Carcinogenesis*. 2014;35: 1872-1880.
- 193. Mishra P, Kale RK, Kar A. Chemoprevention of mammary tumorigenesis and chemomodulation of the antioxidative enzymes and peroxidative damage in prepubertal Sprague Dawley rats by Biochanin A. *Mol Cell Biochem*. 2008;312:1-9.
- 194. Nadal-Serrano M, Pons DG, Sastre-Serra J, Blanquer-Rosselló MM, Roca P, Oliver J. Genistein modulates oxidative stress in breast cancer cell lines according to ERa/ERβ ratio: effects on mitochondrial functionality, sirtuins, uncoupling protein 2 and antioxidant enzymes. *Int J Biochem Cell Biol.* 2013;45: 2045-2051.
- 195. Fan S, Meng Q, Saha T, Sarkar FH, Rosen EM. Low concentrations of diindolylmethane, a metabolite of indole-3-carbinol, protect against oxidative stress in a BRCA1-dependent manner. *Cancer Res.* 2009;69:6083-6091.
- 196. Manuel Iglesias J, Beloqui I, Garcia-Garcia F, et al. Mammosphere formation in breast carcinoma cell lines depends upon expression of E-cadherin. *PLoS ONE*. 2013;8:e77281.
- 197. Dandawate PR, Subramaniam D, Jensen RA, Anant S. Targeting cancer stem cells and signaling pathways by phytochemicals: novel approach for breast cancer therapy. *Seminars in Cancer Biology*. Elsevier; 2016; Vol 40-41:192-208.
- 198. Li Y, Zhang T, Korkaya H, et al. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. *Clin Cancer Res.* 2010;16:2580-2590.
- 199. Kakarala M, Brenner DE, Korkaya H, et al. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. *Breast Cancer Res Treat.* 2010;122:777-785.
- 200. Chen L, Deng H, Cui H, et al. Inflammatory responses and inflammation-associated diseases in organs. *Oncotarget*. 2018;9: 7204-7218.
- 201. Lin EY, Pollard JW. Role of infiltrated leucocytes in tumour growth and spread. *Br J Cancer*. 2004;90:2053-2058.
- 202. Xu L, Yi HG, Wu Z, et al. Activation of mucosal mast cells promotes inflammation-related colon cancer development through recruiting and modulating inflammatory CD11b+Gr1+ cells. *Cancer Lett.* 2015;364:173-180.
- 203. Issa AY, Volate SR, Wargovich MJ. The role of phytochemicals in inhibition of cancer and inflammation: new directions and perspectives. *J Food Compos Anal.* 2006;19:405-419.
- 204. Dharmappa KK, Mohamed R, Shivaprasad HV, Vishwanath BS. Genistein, a potent inhibitor of secretory phospholipase A2: a new insight in down regulation of inflammation. *Inflammopharmacology*. 2010;18:25-31.
- 205. Meybodi NM, Mortazavian AM, Monfared AB, Sohrabvandi S, Meybodi FA. Phytochemicals in cancer prevention: a review of the evidence. *Iran J Cancer Prev.* 2017;10:e7219.

- 206. Chen B, Zhang Y, Wang Y, Rao J, Jiang X, Xu Z. Curcumin inhibits proliferation of breast cancer cells through Nrf2-mediated down-regulation of Fen1 expression. *J Steroid Biochem Mol Biol.* 2014;143:11-18.
- 207. Sinha D, Sarkar N, Biswas J, Bishayee A. Resveratrol for breast cancer prevention and therapy: preclinical evidence and molecular mechanisms. *Semin Cancer Biol.* 2016;40-41:209-232.
- 208. Licznerska BE, Szaefer H, Murias M, Bartoszek A, Baer-Dubowska W. Modulation of CYP19 expression by cabbage juices and their active components: Indole-3-carbinol and 3,3'-diindolylmethene in human breast epithelial cell lines. *Eur J Nutr.* 2013;52:1483-1492.
- 209. Chamcheu JC et al. Role and therapeutic targeting of the PI3K/ Akt/mTOR signaling pathway in skin cancer: a review of current status and future trends on natural and synthetic agents therapy. *Cell.* 2019;8:1-13.
- 210. Chestnut C, Subramaniam D, Dandawate P, et al. Targeting major signaling pathways of bladder cancer with phytochemicals: a review. *Nutr Cancer*. 2020;73:2249-2271. doi:10.1080/016 35581.2020.1856895
- 211. Li Z, Li J, Mo B, et al. Genistein induces cell apoptosis in MDA-MB-231 breast cancer cells via the mitogen-activated protein kinase pathway. *Toxicol In Vitro*. 2008;22:1749-1753.
- 212. Khan A, Aljarbou AN, Aldebasi YH, Faisal SM, Khan MA. Resveratrol suppresses the proliferation of breast cancer cells by inhibiting fatty acid synthase signaling pathway. *Cancer Epidemiol.* 2014;38:765-772.
- 213. Xie Q, Bai Q, Zou LY, et al. Genistein inhibits DNA methylation and increases expression of tumor suppressor genes in human breast cancer cells. *Genes Chromosomes Cancer*. 2014;53:422-431.
- Rice JC, Allis CD. Histone methylation versus histone acetylation: new insights into epigenetic regulation. *Curr Opin Cell Biol.* 2001;13:263-273.
- 215. Ergün S, Ulasli M, Igci YZ, et al. The association of the expression of miR-122-5p and its target ADAM10 with human breast cancer. *Mol Biol Rep.* 2015;42:497-505.
- 216. De La Parra C, Castillo-Pichardo L, Cruz-Collazo A, et al. Soy isoflavone genistein-mediated downregulation of miR-155 contributes to the anticancer effects of genistein. *Nutr Cancer*. 2016;68:154-164.
- 217. Venkatalakshmi P, Vadivel V, Brindha P. Role of phytochemicals as immunomodulatory agents: a review. *Int J Green Pharm*. 2016;10:1-18.
- 218. Yadav VS, Mishra KP, Singh DP, Mehrotra S, Singh VK. Immunomodulatory effects of curcumin. *Immunopharmacol Immunotoxicol*. 2005;27:485-497.
- 219. Ginwala R, McTish E, Raman C, et al. Apigenin, a natural flavonoid, attenuates EAE severity through the modulation of dendritic cell and other immune cell functions. *J Neuroimmune Pharmacol.* 2016;11:36-47.
- 220. Zhang R, Li Y, Wang W. Enhancement of immune function in mice fed high doses of soy daidzein. *Nutr Cancer*. 1997;29:24-28.
- 221. Yi J, Chen C, Liu X, et al. Radioprotection of EGCG based on immunoregulatory effect and antioxidant activity against 60Coγ radiation-induced injury in mice. *Food Chem Toxicol*. 2020;135:111051.
- 222. Wang J, Zhang Q, Jin S, He D, Zhao S, Liu S. Genistein modulate immune responses in collagen-induced rheumatoid arthritis model. *Maturitas*. 2008;59:405-412.

Cancer Medicine

14583

- 223. Jia Z, Chen A, Wang C, et al. Amelioration effects of Kaempferol on immune response following chronic intermittent coldstress. *Res Vet Sci.* 2019;125:390-396.
- 224. So FV, Guthrie N, Chambers AF, Moussa M, Carroll KK. Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices. *Nutr Cancer*. 2009;5581:167-181
- 225. Soo YC, Sung MK, Kim NH, Jang JO, Go EJ, Lee HJ. Inhibition of P-glycoprotein by natural products in human breast cancer cells. *Arch Pharm Res.* 2005;28:823-828. doi:10.1007/BF02977349
- 226. Molnár J, Engi H, Hohmann J, et al. Reversal of multidrug resistance by natural substances from plants. *Curr Top Med Chem.* 2010;10:1757-168.
- 227. Mitra S, Dash R. Natural products for the management and prevention of breast cancer. *Evid Based Complement Alternat Med.* 2018;2018:1-23.
- 228. Xue X, Liang XJ. Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology. *Chin J Cancer*. 2012;31:100-109. doi:10.5732/cjc.011.10326
- 229. Castro AF, Altenberg GA. Inhibition of drug transport by genistein in multidrug-resistant cells expressing P-glycoprotein. *Biochem Pharmacol.* 1997;53:89-93.
- 230. Yarden Y. The EGFR family and its ligands in human cancer: Signalling mechanisms and therapeutic opportunities. *Eur J Cancer*. 2001;37:3-8.
- 231. Starok M, Preira P, Vayssade M, Haupt K, Salomé L, Rossi C. EGFR inhibition by curcumin in cancer cells: a dual mode of action. *Biomacromolecules*. 2015;16:1634-1642.
- 232. Chandrika BB, Steephan M, Kumar TRS, Sabu A, Haridas M. Hesperetin and Naringenin sensitize HER2 positive cancer cells to death by serving as HER2 tyrosine kinase inhibitors. *Life Sci.* 2016;160:47-56.

- 233. Maashi MS, Al-Mualm M, al-Awsi GRL, et al. Apigenin alleviates resistance to doxorubicin in breast cancer cells by acting on the JAK/STAT signaling pathway. *Mol Biol Rep.* 2022;49:8777-8784.
- 234. Kim S, Lee TJ, Leem J, Choi KS, Park JW, Kwon TK. Sanguinarine-induced apoptosis: generation of ROS, downregulation of Bcl-2, c-FLIP, and synergy with TRAIL. *J Cell Biochem.* 2008;104:895-907.
- 235. Li Y, Zhao H, Wang Y, et al. Isoliquiritigenin induces growth inhibition and apoptosis through downregulating arachidonic acid metabolic network and the deactivation of PI3K/ Akt in human breast cancer. *Toxicol Appl Pharmacol.* 2013; 272:37-48.
- 236. Bimonte S, Cascella M, Barbieri A, Arra C, Cuomo A. Current shreds of evidence on the anticancer role of EGCG in triple negative breast cancer: an update of the current state of knowledge. *Infect Agent Cancer*. 2020;5:1-6.
- 237. El-Hafeez AAA, Khalifa HO, Mahdy EAM, Sharma V, Hosoi T, Ghosh P. Anticancer effect of nor-wogonin (5, 7, 8-trihydroxyflavone) on human triple-negative breast cancer cells via downregulation of TAK1, NF-κB, and STAT3. *Pharmacol Rep.* 2019;71:289-298.

How to cite this article: Sohel M, Aktar S, Biswas P, et al. Exploring the anti-cancer potential of dietary phytochemicals for the patients with breast cancer: A comprehensive review. *Cancer Med.* 2023;12:14556-14583. doi:10.1002/cam4.5984