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Abstract  
The blood-brain barrier is the interface through which the brain interacts with the milieu and 
consists mainly of a sophisticated network of brain endothelial cells that forms blood vessels 
and selectively moves molecules inside and outside the brain through multiple mechanisms of 
transport. Although brain endothelial cell function is crucial for brain homeostasis, their role in 
neurodegenerative diseases has historically not been considered with the same importance as other 
brain cells such as microglia, astroglia, neurons, or even molecules such as amyloid beta, Tau, or 
alpha-synuclein. Alzheimer’s disease is the most common neurodegenerative disease, and brain 
endothelial cell dysfunction has been reported by several groups. However, its impairment has barely 
been considered as a potential therapeutic target. Here we review the most recent advances in the 
relationship between Alzheimer’s disease and brain endothelial cells commitment and analyze the 
possible mechanisms through which their alterations contribute to this neurodegenerative disease, 
highlighting their inflammatory phenotype and the possibility of an impaired secretory pattern of 
brain endothelial cells that could contribute to the progression of this ailment. Finally, we discuss why 
shall brain endothelial cells be appreciated as a therapeutic target instead of solely an obstacle for 
delivering treatments to the injured brain in Alzheimer’s disease.
Key Words: dementia; endothelial cells; neurodegeneration; neuroinflammation; neuronal death; 
paracellular transport; transcellular transport 

Introduction 
Although the blood-brain barrier (BBB) disruption has been demonstrated 
to contribute to Alzheimer’s disease (AD) progression, most of the designed 
treatments underestimate its relevance and do not consider the BBB.

For years, the BBB was thought to be a poorly permeable structure that 
hinders the free pass of molecules between the brain and the milieu. 
However, as its study continued, this concept has been redefined, and now 
a plethora of evidence indicates that more than a barrier itself, the BBB acts 
as a highly dynamic and selective portal through which several biomolecules 
pass (Profaci et al., 2020).

Unfortunately, the role of the BBB in AD has been undervalued, and 
other brain cells have gained more relevance in the development of new 
treatments. Nevertheless, relevant findings strongly indicate that the 
importance of the brain endothelial cells (BECs) is not less than other cell 
types since BECs of AD patients bear the highest number of expressed genes 
related to AD risk (Yang et al., 2022). This finding calls for further investigation 
on BECs not only related to their role in the pathogenesis of AD but also 
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regarding the possibility of considering these cells as a therapeutic target.

In this review, we analyze and discuss the possible mechanisms through 
which BECs could promote and positively modulate AD progression by 
analyzing the mechanisms of their disruption and impairment of their 
secretory activity. Furthermore, we also discuss the potential therapeutic 
agents that could contribute to AD treatment by targeting BECs. Since BECs 
participate in the development of AD and are one of the main cells affected 
by this neurodegenerative disease, they could be one of the main targets for 
treating it. 

Search Strategy
Studies cited in this review were published between 1987 and 2023, and were 
searched on the PubMed, Science Direct, and Web of Science databases using 
the following keywords: Alzheimer’s disease, blood brain barrier, blood brain 
barrier transport, neurodegeneration, brain endothelial cells, amyloid beta, 
brain endothelial cells treatment, tau, and neuroinflammation.

The Blood-Brain Barrier
The BBB is a multi-layered structure composed of a thick glycocalyx, pericytes, 
a basement membrane, astrocytic endfeet, microglia, and non-fenestrated 
brain blood vessels, which are formed by BECs that are linked with tight 
junctions. All these cells and structures form the neurovascular unit (Solár et 
al., 2022; Varatharaj and Galea, 2017; Figure 1A). Each of these components 
contributes to the correct function of the BBB, such as keeping an adequate 
microenvironment for optimal brain function, clearing cellular metabolites 
and synaptic material, and importing the required nutrients for brain 
maintenance.

Glycocalyx
The glycocalyx is a matrix enriched with proteoglycans, glycoproteins, and 
glycosaminoglycans. This structure covers the luminal surface of BECs, 
and its density is higher in the BBB compared to the glycocalyx of the 
peripheral endothelium (Profaci et al., 2020; Walter et al., 2021). The BBB 
glycocalyx modulates the immune response, coagulation processes, neuronal 
homeostasis, and gene expression. Therefore, its correct function is essential 
for maintaining the BBB integrity (Zhao et al., 2021).
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Basal membrane
The basal membrane is an essential non-cellular component of the BBB 
which is classified as parenchymal basal membrane and endothelial basal 
membrane. The parenchymal basal membrane is secreted by astrocytes; 
meanwhile, the endothelial basal membrane is made by secretions of 
pericytes and BECs. Its biochemical and structural composition consists of a 
layer with a thickness between 50 and 150 nm, which is highly organized and 
mainly enriched with collagen IV, laminin, and perlecan. At a functional level, 
its relevance relies on its role as support for BECs in the BBB (Xu et al., 2018).

Astrocytic endfeet
Astrocytes are a subtype of glial cells that have the ability to regulate the 
passage of nutrients, including oxygen and glucose, depending on the 
energy requirements or demand of brain tissue; they are also capable of 
regulating the dilation of brain arterioles through the secretion of calcium-
dependent vasoactive substances (Howarth, 2014). Astrocytes usually have 
a process called astrocytic endfeet through which these cells make contact 
with the basal membrane, while wrapping endothelial cells and pericytes 
(Profaci et al., 2020). The interaction between BECs and astrocytic endfeet 
is essential for the modulation of blood flow and cerebrospinal fluid in the 
brain parenchyma, and they stabilize the BBB integrity and barrier function 
(Howarth, 2014; Profaci et al., 2020).

Pericytes
Pericytes are multipotent cells present in all the vascularized tissues of 
the body (Liu et al., 2020). Within the brain, they are attached to the basal 
membrane of the vasculature, and they have important roles, such as 
modulation of angiogenic processes, permeability, blood flow, and traffic of 
molecules and immune cells through the BBB (Profaci et al., 2020). Moreover, 
pericytes have a role in the maintenance and survival of endothelial cells 
of the BBB through the secretion of factors such as platelet-derived growth 
factor, angiopoietin 1, transforming growth factor beta, and sphingosine 
1 phosphate (Sharma et al., 2019). Pericytes are also involved in BBB 
permeability and neuroimmune response by increasing BBB leakiness, 
secretion of cytokines and chemokines, facilitating peripheral immune cell 
transport, and stimulating resident and recruited immune cells (Erickson and 
Banks, 2018). Pericytes induce the polarization of astrocytic feet, contributing 
to the maintenance of the interaction between astrocytic endfeet and 
BECs (Armulik et al., 2010). These properties make pericytes an essential 
component of the neurovascular unit. 

Microglia
Microglia are innate resident cells of the central nervous system (CNS), 
derived from the mesoderm in embryonic stages (Ginhoux and Prinz, 2015). 
These cells are activated in response to pathogens, tissue damage, and toxic 
substances (Fatoba et al., 2020). When activated, microglia interact with 
the microvasculature, increasing the BBB’s permeability, producing reactive 
oxygen species, and promoting lymphocyte and monocyte migration (da 
Fonseca et al., 2014; Huang et al., 2021).

Brain endothelial cells
In the BBB, BECs are tightly joined by tight junctions formed by the proteins 
occludin, claudins 1, 3, and 5, cingulin, and zonula occludens ZO-1 and ZO-
2. BECs interactions are also reinforced by adherent junctions mediated by 
cadherins and catenin. BECs have a key role in solute transport across the 
BBB by paracellular and transcellular mechanisms, and tight junctions prevent 
paracellular diffusion of large molecules, but low molecular mass solutes can 
cross the BBB through this route (Sharma et al., 2019). However, the overall 
consequences of tight junctions are a low permeability of BECs through the 
paracellular route. Furthermore, transcellular traffic in BECs is also decreased 
compared to other peripheral endothelial cells. Although its vesicular 
transport is not as active as other peripheral blood vessels (Profaci et al., 
2020), recent evidence has demonstrated that macromolecule trafficking is 
more dynamic than previously thought since plasma proteins were found in 
the brain parenchyma after their systemic administration (Yang et al., 2020). 

Transport Function of Brain Endothelial Cells 
BECs function as a physical portal through which diverse molecules move 
between the milieu and the CNS; they harbor multiple transport mechanisms 
across their membrane. The mechanisms of transport employed by molecules 
are paracellular and transcellular transport. 

Paracellular Transport
The intercellular space is the gap amid two BECs that has a width of 
approximately 1.4 and 1.8 nm. The transport of molecules through the 
intercellular space is called paracellular transport, and in the BBB, only small 
molecules can move across it due to the presence of tight junctions such as 
occludins, claudins, or junctional adhesion molecules along with associated 
proteins like ZO-1, ZO-2, ZO-3 or cingulin, that together restrict the pass of 
large molecules. Therefore, paracellular transport is almost nonexistent in the 
BBB (Yazdani et al., 2019; Profaci et al., 2020).

Transcellular Transport
The main mechanism of transport across the BBB is transcellular transport 
which is the traffic of molecules across the BEC membrane. Transcellular 
transport can be divided into three main types: passive diffusion, carrier-
mediated transport, and transcytosis (Yazdani et al., 2019). 

Passive diffusion
This mechanism occurs mainly with hydrophobic molecules, which due to 
their characteristics and molecular weight (less than 500 DA), are capable 
of crossing both the apical and basolateral domains of BECs (Yazdani et al., 
2019).

Carrier mediated transport
Solute carriers transport their specific solutes by passive or active 
mechanisms; these solutes play vital roles in energy metabolism and 
the proper functioning of all CNS components. Among these solutes are 
carbohydrates, amino acids, nucleotides, inorganic ions, fatty acids, vitamins, 
amines, cholines, monocarboxylic acids, and hormones (Sweeney et al., 2019; 
Yazdani et al., 2019; Profaci et al., 2020).

Carriers that move molecules against their concentration gradient require 
energy provided by ATP hydrolysis. This mechanism of transport moves 
proinflammatory molecules, drugs, xenobiotics, and nucleosides outside the 
CNS (Sweeney et al., 2019).

ABC transporters employ ATP to transport solute across the cell membrane. 
They are multi-domain integrated membrane proteins (Pereira et al., 2018) 
with two nucleotide-binding domains involved in transportation, and two 
transmembrane domains, related to transfer across lipid membranes (Bakos 
and Homolya, 2007). Remarkably, ABC transporters are unidirectional, from 
the cytoplasm to the blood, and are expressed in endothelial cells.

Transcytosis
Transcytosis is a cellular process of moving macromolecules from one surface 
or domain of a polarized cell to another (Fung et al., 2018). 

Receptors can mediate the movement of many proteins and large peptides 
through the BBB. The ligand-receptor interaction triggers an endocytic event 
which forms vesicles that envelope the ligand-receptor complex; afterward, 
the ligand passes across the BECs and, through an exocytic mechanism, is 
released in the opposite compartment of the cell (Abbott et al., 2010; Ayloo 
and Gu, 2019; Sweeney et al., 2019). This transport system is called receptor-
mediated transcytosis (RMT). RMT is specific as it involves ligand-receptor 
interaction. This transport has been described for transferrin, insulin, growth 
factors, and lipoproteins, whose receptors are located or recruited in clathrin-
coated pits that are enriched in the brain endothelium (Hervé et al., 2008; 
Pulgar, 2019; Sharma et al., 2019).

In contrast, absorptive-mediated transcytosis (AMT) involves the unspecific 
interaction of a ligand with a moiety at the luminal surface of endothelial 
cells which is driven by ionic forces. Several cationic proteins such as albumin, 
protamine, avidin, and histone use AMT to enter the brain parenchyma. 
Cationic molecules bind to the luminal and abluminal side of BECs through 
anionic sites formed by the glycocalyx components such as heparan sulfate 
and chondroitin sulfate. Some studies have demonstrated the participation 
of caveolae in AMT, however, caveolae-independent AMT can also occur, this 
was observed for the transport of synthetic peptides B, additionally, clathrin-
coated pits in the luminal side of BECs are negatively charged, suggesting 
their interaction with cationic proteins (Hervé et al., 2008).  

The two main mechanisms of transcytosis in BECs are clathrin and caveolae-
mediated transcytosis. The main difference between them is the type 
of molecules that coat their vesicles which are clathrins and caveolins, 
respectively (Ayloo and Gu, 2019; Yazdani et al., 2019). Both mechanisms of 
transport are susceptible to changes derived from insults or aging.

Stroke alters the transport across BECs and promotes the breakdown of the 
BBB in an ordered manner. First, transcellular trafficking mediated by caveolae 
increases within hours with a modest leakage at the beginning of the insult; 
however, after almost a day of the insult, the increase of BBB permeability is 
evident, which suggests that the impairment of transcellular trafficking comes 
first before the alteration of paracellular transport (Knowland et al., 2014). 

Remarkably, as individual ages, caveolae transport increases meanwhile, 
clathrin transport decreases (Yang et al., 2020). Therefore, it will be interesting 
to know whether the increased caveolae transcytosis is a conserved 
mechanism of brain injury that could also be present in neurodegenerative 
diseases such as AD. 

The Blood-Brain Barrier in Alzheimer’s Disease
AD is a progressive neurodegenerative disorder and the leading cause of 
dementia worldwide (Deture and Dickson, 2019). Clinically, it begins with mild 
cognitive impairment that worsens over the years in a significant percentage 
of the patients that develop severe cognitive impairment, defects in visual 
space perception, and motor alterations with emotional and behavioral 
changes (Tarawneh and Holtzman, 2012). AD correlates with neuronal death 
and atrophy in the cerebral cortex and hippocampus. Senile plaques and 
neurofibrillary tangles are considered hallmarks of AD that are accompanied 
by neurodegeneration, loss of synapses, neuroinflammation, and oxidative 
stress (Nelson et al., 2009; Goel et al., 2022). Amyloid beta peptide (Aβ) is the 
main constituent of senile plaques; mutations in amyloid precursor protein 
(APP), presenilin 1 and 2 (PSEN1, PSEN2) induce Aβ aggregates in heritable AD 
(Petit et al., 2022). Amyloid plaques are related to degenerated nerve endings 
and are higher in aged individuals (Sadigh-Eteghad et al., 2015). 

Interestingly, epidemiological studies associate AD with vascular risk factors 
(Breteler, 2000) since vascular dysregulation from the early stage of the 
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disease contributes to its progression (Iturria-Medina et al., 2016). Aβ is toxic 
to the cerebral and peripheral endothelium, generating neurotoxicity since 
it causes endothelium-dependent vasoconstriction (Sutton et al., 1997). The 
accumulation of Aβ is also observed at the micro and macrovascular level, 
which promotes cerebral amyloid angiopathy, which culminates in severe 
cerebral vascular dysfunction (Saito et al., 2021). There is evidence that Tau 
pathology also causes cerebral vascular dysfunction in the hippocampus, 
which correlates with loss of the BBB integrity (Canepa and Fossati, 2021). 
Moreover, Tau can generate vascular dysfunction as neurofibrillary tangles 
formed by the deposition of phosphorylated Tau in the microvasculature 
disrupt the vessels and cause vascular inflammation (Cisternas et al., 2019). 
Finally, phosphorylated Tau is also abundant in perivascular spaces and may 
contribute to neurovascular pathology if its clearance is decreased (Canepa 
and Fossati, 2021).

Furthermore, current evidence also suggests that vascular dysfunction plays 
a significant role in AD. Senile plaques and neurofibrillary tangles may result 
from inadequate blood supply (Kelleher and Soiza, 2013). Furthermore, BECs 
may contribute to the formation of amyloid deposits around blood vessels 
because they express secretases that cleave the APP protein, which allows its 
accumulation (D’Uscio et al., 2017).

Remarkably, BECs are the cell type of the brain that expresses the largest 
amount of AD risk genes; some of them are associated with immune and 
inflammatory responses (Wang et al., 2012; Yang et al., 2022). Therefore, the 
altered BEC phenotype in AD suggests the participation of these cells in the 
onset and progression of the disease. In fact, there are multiple alterations in 
the endothelial cells, such as increased permeability, dysfunctional transport, 
and secretion of proinflammatory factors that are described below.

Although paracellular transport in the BBB is minimal in physiological 
conditions, multiple studies suggest that this process is impaired in AD. 
Recently it was demonstrated that AD brains displayed an abnormal 
distribution pattern of the tight junction protein Claudin 5 in blood vessels, 
thus suggesting a disruption of the BBB impermeability (Soto-Rojas et al., 
2021a). This idea is supported by findings of plasma proteins in AD brains and 
imaging studies indicate that BBB disruption can be appreciated even in early 
AD patients (van de Haar et al., 2016; Sweeney et al., 2018).

BBB impairment in AD patients has been evidenced by gadolinium and 
protein infiltration in brain areas such as the hippocampus, prefrontal cortex, 
and entorhinal cortex (Alajangi et al., 2022; Kurz et al., 2022). In AD, BBB 
breakdown has been associated with PSEN1 mutations, apolipoprotein ε4 
(APOE4) allele, metalloprotease-9 (MMP-9) expression, cyclophilin A, APP 
mutations, and Aβ aggregation (Alajangi et al., 2022). 

BBB impairment alters permeability and clearance of substances, cell 
infiltration, and cerebral blood flow. MMPs are known to degrade tight 
junctions and basal membranes, causing BECs damage and detachment, 
pericyte loss, astrocytic endfeet detachment, and thus BBB damage (Knox et 
al., 2022). In contrast, brain damage activates microglia into proinflammatory 
M1 phenotype that secretes inflammatory mediators such as tumor necrosis 
factor α (TNF-α) and interleukin (IL)-1β and produces reactive oxygen species, 
which in turn activates astrocytes that secrete MMPs causing disruption of 
tight junctions and immune cells infiltration. Astrocytes also secrete vascular 
endothelial growth factor that downregulates occludin and claudin 5 and 
induces the proliferation and migration of BECs (Archie et al., 2021).

Furthermore, BBB damage in AD is widely associated with impaired Aβ 
clearance since the expression of low-density lipoprotein receptor-related 
protein 1, and P-glycoprotein transporters that remove Aβ from brain 
parenchyma is reduced in BECs, while receptor for advanced glycation 
endproducts (RAGE) that performs the opposite role is increased, thus 
promoting Aβ deposition in the brain (Dib et al., 2021; Gong and Jia, 2022; 
Kurz et al., 2022). 

Recent findings show that insulin receptors (IR) are more expressed in BECs 
than in brain parenchyma (Yang et al., 2022; Leclerc et al., 2023), suggesting 
a crucial role of the endothelium in the transport of insulin and glucose 
through the pathway initiated by this hormone. Furthermore, IR activation 
occurs mainly in BECs instead of brain parenchyma. However, in an AD rodent 
model, this activation is not observed, thus suggesting a dysfunctional insulin 
signaling in this neurodegenerative disease (Leclerc et al., 2023). It remains 
to be studied whether in AD the IR remain internalized in BECs, or whether 
they activate alternative insulin signaling pathways. Recently, it was reported 
that insulin transport across BECs is mediated by clathrin in vitro. Since 
aging shifts clathrin-mediated transport to caveolae-mediated transport in 
BECs, this change could impair insulin signaling and contribute to AD onset 
(Yang et al., 2020; Pemberton et al., 2022).It was also demonstrated that the 
transport of insulin in the hypothalamus is mediated by caveolae (Pemberton 
et al., 2022); thus, the insulin transport might depend on the brain regions 
where endocytosed. These results encourage further investigation of the 
mechanisms of insulin transport across the BBB in the different areas of the 
central nervous system.

In 1999, it was discovered that endothelial cells from AD patients promote 
neurotoxicity. These findings gave rise to the endothelial-mediated 
neurotoxicity hypothesis, which proposes that BECs produce soluble factors 
capable of harming or killing neurons (Grammas et al., 1999). Multiple studies 
have demonstrated that in AD, BECs secrete proinflammatory factors such 
as thrombin, IL-1β, IL-6, TNF-α or monocyte chemoattractant protein-1 that 

could contribute directly to neuronal damage (Figure 1B and C; Grammas 
and Ovase, 2001; Yin et al., 2010; Grammas et al., 2014). Furthermore, BECs 
also secrete molecules that induce neuronal damage, such as reactive oxygen 
species or nitric oxide, which are overproduced in BECs from AD patients 
(Grammas, 2000). 

A B

C

Figure 1 ｜ Impaired brain endothelial cells in Alzheimer’s disease. 
(A) Elements of a healthy BBB include pericytes, astrocytes, basement membrane, 
microglia, and BECs closely linked by TJ. (B) In AD, BECs secrete proinflammatory factors 
that contribute to neuronal damage. (C) Diagram showing how endothelial-mediated 
neurotoxicity could be targeted in AD to decrease neuronal damage. Whether CLU(?) 
inhibits endothelial-mediated neurotoxicity remains to be determined. Aβ: Amyloid 
beta; AD: Alzheimer’s disease; BBB: blood-brain barrier; BEC: brain endothelial cell; 
CLU: clusterin; IL-1β: interleukin-1β; IL-6: interleukin-6; LRP1: low-density lipoprotein 
receptor-related protein 1; MCP-1: monocyte chemoattractant protein-1; MMPs: 
metalloproteinases; NO: nitric oxide; RAGE: receptor for advanced glycation endproducts; 
ROS: reactive oxygen species; SHH: sonic hedgehog; TJ: tight junction; TNFα: tumor 
necrosis factor α; VEGF: vascular endothelial growth factor; Wnt: wingless and Int-1. 
Created with BioRender.com.

Additionally, proinflammatory factors also act on BECs (Versele et al., 2022). 
Therefore, it is likely that BECs are susceptible to peripheral inflammation and, 
in turn, respond to peripheral cytokines that could modify their phenotype. 
In fact, BECs can secrete proinflammatory factors in response to systemic 
inflammation, altering brain function (Skelly et al., 2013). Interestingly, AD 
patients display elevated peripheral inflammatory cytokines (Tan et al., 2007) 
which could activate BECs and stimulate them to secrete proinflammatory 
factors inside the brain and promote neurodegeneration.

Altogether, this information indicates a central role of BECs in AD 
pathophysiology. Notwithstanding, BECs have historically not been considered 
with the same importance as other cell types and molecules to develop 
therapeutic strategies against this neurodegenerative condition. 

Targeting the Blood-Brain Barrier as a Potential 
Treatment for Alzheimer’s Disease 
Since 2003, the Food and Drug Administration has not approved new 
treatments for AD. The BBB is a limitation for the emergence of new 
therapies given that the vast majority of small molecules and biological drugs 
do not cross it. Therefore, several approaches are aimed at increasing its 
permeability and penetration into the cerebral parenchyma (Pardridge, 2020). 
Although BBB damage in AD has been evidenced in several studies in human 
and animal models, most drugs designed for AD treatment have shown poor 
effectiveness due to their inability to enter the CNS. 

Pharmacological treatment of AD has been focused on cholinergic 
transmiss ion,  Aβ and Tau pathologies,  neuroinf lammation,  and 
cholesterol metabolism (Nehra et al., 2022). Only small molecules such as 
acetylcholinesterase inhibitors (198–380 Da) and memantine (179 Da) can 
enter the brain parenchyma but do not significantly improve AD symptoms. 
Aβ secretases inhibitors and neurotrophins such as nerve growth factor and 
brain-derived neurotrophic factor have been evaluated without success since 
their high molecular weight or polarity results in low CNS penetration. Anti-Aβ 
antibodies have been proposed as a promising alternative for AD treatment. 
However, only aducanumab has shown brain penetration and beneficial 
effects in Aβ plaque reduction, but this effect was associated with BBB 
disruption since this drug causes cerebral microhemorrhages and vascular 
edema, which positively correlate with Aβ decrease (Pardridge, 2020). 
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BECs microvasculature expresses the transferrin receptor 1, hence this 
receptor has been tested for drug delivery into the brain via transcytosis. 
However, transferrin transport across brain endothelial cells has been 
controversial, despite transferrin transcytosis was demonstrated in rats by the 
presence of 125I-labelled transferrin in the brain parenchyma, it was mainly 
accumulated in the brain endothelium, this evidence was supported by the 
use of a radiolabeled antibody against transferrin receptor ([125I]OX26) which 
was found mainly in BECs and extravascular [125I]OX26 was observed only 
in periventricular neurons (Fishman et al., 1987; Moos and Morgan, 2001). 
Moreover, the Divalent metal transporter 1 (DMT1), which transports iron 
either bound or unbound to transferrin, was detected in primary cultures of 
BECs, thus suggesting the transport of iron through this transporter and not 
by transferrin-mediated transcytosis. However, the absence of transferrin 
transcytosis cannot be completely assumed since several works reported 
the absence of the DMT1 transporter, in brain endothelial cells. Taking 
together this information, two mechanisms for brain iron transport have been 
proposed, transferrin-mediated endocytosis through DMT1, and transferrin 
transcytosis across BECs without DMT1 participation (Skjørringe et al., 2015; 
Johnsen et al., 2019). 

TfR-mediated transport has been tested as a therapeutic approach. Several 
types of TfR ligands have been employed such as antibodies, liposomes, and 
nanoparticles. One of the most evaluated strategies is the use of antibodies 
against TfR conjugated with neuroprotective drugs such as BDNF or epidermal 
growth factor, with positive results in preclinical models, although with a very 
low percentage of brain uptake (Johnsen et al., 2019). Interestingly, it was 
reported that the reduced affinity between the antibody and TfR enhances 
transcytosis and antibody uptake in the brain parenchyma, this was assessed 
by designing an antibody with low affinity for TfR and high affinity for beta-
secretase 1 secretase, observing its accumulation in the mouse brain and the 
reduction of Aβ with a single systemic dose (Yu et al., 2011). 

Transcytosis-mediated delivery of gold nanoparticles (AuNP) was also probed 
using a monoclonal antibody for mouse transferrin receptors. AuNPs coupled 
to transferrin antibody were injected in the caudal vein of mice and followed 
at 10 minutes, 30 minutes, 2.5 hours, and 24 hours after administration. 
AuNPs were observed in the brain at all temporal times increasing gradually 
with time and within different localizations. Some were located at the luminal 
membrane of endothelial cells in blood capillaries, other AuNPs were in the 
wall of clathrin-coated pits of the luminal membrane and inside of lysosomal 
and non-lysosomal vesicles. Only a few particles were found at the basal 
membrane of the endothelium, however, no AuNP particles were observed 
beyond the basal membrane of brain capillaries (Cabezón et al., 2015).  

The fusion of the TNF receptor 2 extracellular domain with the heavy chain of 
a monoclonal antibody against IR or transferrin receptor has been developed 
to mediate TNF receptor 2 brain entry by RMT and reduce neuroinflammation 
by sequestering TNF-α. RMT strategy was also applied with the erythropoietin 
receptor to promote neurite outgrowth. Moreover, the RMT delivery system 
increased brain uptake to 1–3% ID/brain (Pardridge, 2020). These proposals 
have a high potential and shall be explored in depth.

IR-mediated transcytosis has been also employed for brain drug delivery. 
Preclinical studies developed humanized anti-IR antibodies conjugated with an 
anti-Aβ antibody, iduronate 2-sulfatase, arylsulfatase, and N-sulfoglucosamine 
sulfohydrolase showing a brain uptake between 1–3% ID/100 g tissue (Pulgar, 
2019). However, brain insulin transport by transcytosis is controversial. A 
recent work showed that insulin receptor blockade or its deficiency did not 
affect insulin transport across BBB in mice (Rhea et al., 2018).   

Several studies have shown that increasing the function of ABC transporters, 
such as ABCB1, ABCA1, ABCG2, and ABCC1, has beneficial effects in AD 
models, promoting the clearing of Aβ peptides (Abuznait and Kaddoumi, 
2012).

ABCB1 is highly expressed in neurocapillary endothelial cells and has lower 
concentrations in neurons, astrocytes, and pericytes. ABCB1 mediates 
Aβ efflux, probably facilitating the transfer of endocytosed Aβ from the 
endothelial cells to plasma. ABCB1 also inhibits the penetrability of soluble 
Aβ, transported by RAGE, from the apical to the basolateral side of capillary 
endothelial cells (Behl et al., 2021).

ABCA1 is expressed in astrocytes, microglial cells, neurons, and brain capillary 
endothelial cells (Fujiyoshi et al., 2007) and, importantly, regulates the 
efflux of phospholipids and cholesterol from microglial cells and astrocytes, 
increasing the lipidation of apoE  (Wolf et al., 2012), altering APP processing, 
and facilizing Aβ degradation (Behl et al., 2021). ABCA1 expression decreases 
Aβ formation, secretion, and deposition (Terwel et al., 2011). Conversely, the 
absence of ABCA1 decreased lipidation and expression of apoE and increased 
insoluble Aβ (Koldamova et al., 2005). 

ABCG2 is abundant in the luminal membrane of endothelial cells of the 
nervous system and multiple organs (Tachikawa et al., 2005). It also engages 
in Aβ transport, impeding Aβ entry into the brain (Do et al., 2012) and 
maintains the BBB structure. ABCG2 expression is enhanced in neurons of 
patients with AD and inhibits oxidative stress and inflammatory response 
by interacting with the cell signaling of the nuclear factor κB (Abuznait and 
Kaddoumi, 2012).

ABCC1 (multidrug resistance protein 1) is expressed on the luminal side 
of the BBB and also in neurons, pericytes, microglia, and astrocytes (Wolf 
et al., 2012). Knock-out mice have high Aβ in the brain, but the enzymes 

that produce Aβ are normal, suggesting a role in Aβ clearance (Krohn et al., 
2011). ABCC1 participates in the endocytosis of Aβ facilitated by lipoprotein 
receptor-related protein 1 (Kanekiyo and Bu, 2014). The role of ABC 
transporters in Aβ clearance and its notable expression in BECs make them a 
good therapeutic target for AD treatment.  

The inhibition of RAGE is a possible approach to decrease the effects of its 
activation and inflammation.

Anti-RAGE antibody inhibits inflammation, cytokines, and RAGE expression. 
It also prevents monocyte infiltration, thus avoiding pro-inflammatory 
responses and neurotoxicity. BBB permeability is the most critical obstacle for 
using anti-RAGE antibodies (Kozyrev et al., 2020).

FPS-ZM1 is a small inhibitor that blocks the binding of the V-domain and 
Aβ1–42 (Deane et al., 2012) and inhibits the activation of microglia by advanced 
glycation endproducts, oxidative stress, and inflammation.

Azeliragon (PF-04494700) is a small molecule that antagonizes the RAGE 
pathway by inhibiting the binding of the extracellular domain of RAGE to Aβ1–42,  
with a reduction in neuroinflammation, levels of Aβ1–42 and inflammatory 
cytokines (Burstein et al., 2018). However, a phase III study discovered that 
it did not exhibit a beneficial effect (2-Year Extension Study of Azeliragon in 
Subjects with Alzheimer’s Disease (STEADFAST Extension) - Full Text View - 
ClinicalTrials.gov, n.d.).

Several compounds, such as tranilast, emetine, aminopyrimidine derivatives, 
and phenyl benzoxazoles with effects in Aβ clearance, can have an effect and 
can be tested (Singh and Agrawal, 2022).

BECs receptors and transporters reduce Aβ deposition and could be valuable 
targets for therapeutic agents, and more research is needed to explore this 
possibility (Zhang et al., 2022). Most of the studies consider the BBB as an 
obstacle for drug delivery to the CNS in AD patients. However, few of them 
consider the BBB not only as a delivery barrier but also as a therapeutic 
target. Therefore, modest emphasis has been made on targeting BECs to treat 
AD.

The endothelial-mediated neurotoxicity hypothesis, together with the 
cumulative evidence of increased BBB leakiness in AD, suggests that BECs 
are a promising therapeutic target. Preclinical studies demonstrated that 
targeting the proinflammatory phenotype of BECs with the multikinase 
inhibitor Sunitinib decreased TNF-α, IL1-β, thrombin, and Aβ expression in 
BECs and improved cognitive functions in AD murine models (Grammas et 
al., 2014). Moreover, the plasma-derived protein clusterin also decreased the 
proinflammatory phenotype of BECs in another AD rodent model (de Miguel 
et al., 2021), suggesting that there are proteins and drugs capable of restoring 
the altered BECs in AD. Interestingly, these effects could be promoted without 
the need to cross the BBB; thus, it could be highly feasible to target BECs by 
systemic drug delivery. This information suggests that BECs are a potential 
target to treat AD that needs to be further explored.

There are other potential therapeutic agents with possibilities of producing 
their beneficial effects in the brain without crossing the BBB. One of 
them is the Gap27 antibody, which inactivates connexins after binding to 
them and therefore inhibiting neuroinflammation. It was demonstrated 
that Gap27 inhibited reactive gliosis in an inflammation model based 
on lipopolysaccharide exposure. Since reactive gliosis is a hallmark of 
neurodegenerative diseases such as AD (Fakhoury, 2018), it is possible that 
blocking connexin activity at the luminal side of BECs with Gap27 could 
represent a feasible therapeutic strategy to treat these ailments (de Bock et 
al., 2022).

Targeting caveolae transport mechanisms in BECs of AD patients could 
also represent a potential therapeutic strategy. It has been proposed that 
inhibiting caveolae-mediated endocytosis with the statin atorvastatin could 
aid in the treatment of AD since its blockade could increase the transforming 
growth factor beta signaling (Fessel, 2020). Remarkably, statin treatment 
correlates with a decrease of AD risk (Jeong et al., 2021) and its potential to 
treat AD should be further explored. 

Another interesting approach to identifying possible therapeutic strategies 
is the study of molecules involved in the development of the BBB. Recent 
studies have demonstrated that components of the Wingless and Int-1 
(Wnt) signaling, which are involved in BBB development, are decreased in 
an AD rodent model. Remarkably, the activation of Wnt/β catenin signaling 
restored the levels of Claudin-5, ZO-1, and the glucose transporter Glut1, 
thus decreasing BBB leakage induced by Aβ (Wang et al., 2022). These results 
suggest that the molecules that modulate the development of the BBB could 
restore BECs in neurodegenerative conditions. Another morphogen that 
participates in BBB development is Sonic Hedgehog (SHH) (Alvarez et al., 
2011). Curiously, SHH can reduce proinflammatory cytokines on BECs such 
as IL-8 or monocyte chemoattractant protein-1, which are increased in BECs 
of AD patients (Grammas and Ovase, 2001; Grammas et al., 2006; Alvarez et 
al., 2011). This information suggests that SHH could be studied as a potential 
therapeutic agent to restore the BBB in AD; nevertheless, there is contrasting 
evidence with respect to its role in this neurodegenerative disease that 
should be considered when interpreting the results of SHH on BECs and AD 
(Yang et al., 2021). In this regard, other morphogens should be explored in 
the near future as potential candidates to improve BEC integrity and function 
as a therapeutic approach to treat AD by targeting cerebral vasculature. 
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Significantly, paracellular transport in BECs is also impaired in AD (Soto-
Rojas et al., 2021b). Addressing this impairment by restoring tight 
junction proteins could provide promising therapeutic approaches for this 
neurodegenerative disease (Sharma et al., 2022). Mice carrying the APOE4 
allele display a conspicuous leakage at the BBB that is accompanied by an 
overexpression of the proinflammatory cytokine CypA mainly in pericytes; 
since these BBB alterations were associated with neural dysfunction, the 
restoration of BBB leakage through anti-inflammatory agents could be used 
as a therapeutic strategy for AD treatment. Notably, the treatment with 
cyclosporine decreased BBB permeability and the activity of MMP-9. The 
action of cyclosporine was proposed to be on MMP-9 derived from pericytes 
(Bell et al., 2012); whether cyclosporine could also act on BECs to decrease 
thrombin or fibrin in brain parenchyma is unknown. In contrast, inhibition of 
the mammalian target of rapamycin signaling directly in BECs with rapamycin 
improved BBB integrity by upregulating tight junction proteins and decreasing 
their permeability to fibrinogen (van Skike et al., 2018), however, whether 
mammalian target of rapamycin inhibition also restores the secretory 
phenotype of BECs remains to be seen. Other studies using tocopherol 
and etodolac also improved BBB integrity by increasing its impermeability 
and restoring ZO-1 and Claudin 5 levels (Elfakhri et al., 2019). However, the 
authors did not perform behavioral tests and did not evaluate whether these 
molecules also had a direct effect on the secretory pattern of BECs. 

Caffeine restores BBB integrity in an AD mice model by decreasing BBB 
leakage and increasing the expression of ZO-1. Additionally, cognitive 
impairments were attenuated with this treatment. Interestingly, there was a 
reduction of thrombin and proinflammatory cytokines such as TNF-α and IL-
1β in mice brains (Kim et al., 2022). This evidence also suggests that not only 
is the integrity of the BBB restored but also the secretory phenotype of BECs 
since the decrease of thrombin, TNF-α and IL-1β in the brain could also be 
derived from a decreased production or transport of them from BECs given 
that the microvasculature releases these molecules in AD (Grammas and 
Ovase, 2001; Yin et al., 2010). Remarkably, rivaroxaban, an inhibitor of the Xa 
coagulation factor, had similar effects on the expression of these neurotoxic 
factors in the same animal model, either in brain parenchyma or BECs (Kim et 
al., 2022).

Interestingly, it was observed that progesterone reduces MMP-9 levels 
and increases the expression of claudins 1 and 5, improving BBB integrity; 
moreover, progesterone decreases oxidative stress and inflammation, having 
a protecting role in CNS and although this hormone could target BECs, it 
remains to be determined (Alajangi et al., 2022).

Viral vectors have been proposed for gene delivery to the CNS, adeno-
associated viruses (AAV) are considered suitable because of their safety and 
long-term expression in CNS. Modifications of AAV capsid improve its crossing 
through the BBB, such as AAV-BR1 capsid which mediates the selective 
transduction of mouse brain and spinal cord microvasculature, or AAV-PHP.eB 
based on Cre recombinase for the specific targeting of neurons that showed 
a transduction efficiency of 69% and 55% in cortical and striatal neurons, 
respectively, after its systemic administration in mice (Chan et al., 2017; 
Körbelin et al., 2016). 

Finally, stem cell treatment also shows significant results at the preclinical 
and clinical stages (Brody et al., 2022; López-Ornelas et al., 2022; Gonçalves 
et al., 2023). The most employed in preclinical and clinical models are 
mesenchymal stem cells and neural stem cells (López-Ornelas et al., 2022). 
Interestingly, phase I clinical trials with mesenchymal stem cells, which 
are immunomodulatory, demonstrated an increase of anti-inflammatory 
cytokines in serum samples of AD patients (Gao et al., 2016; Brody et al., 
2022), however, whether this treatment also had an effect on BECs by 
modulating their inflammatory profile was not determined and should be 
explored in the future.

Conclusion
New technologies and research approaches have shed light on the cell 
biology of BECs, which are now recognized to have a key role in brain 
physiology and the pathophysiology of neurodegenerative diseases. Although 
emerging literature has highlighted the relevance of BBB alteration to 
promote or maintain AD, there is not enough focus on strategies for repairing 
BBB impairments, and most of the studies consider the BBB as an obstacle to 
deliver drugs rather than as a therapeutic target.

Throughout the years most of the therapeutic strategies for treating 
neurodegenerative diseases have been focused on improving the passing of 
candidate drugs across the BBB to reach brain parenchyma, however, there 
is a lack of attention on the healing of the impaired elements of the BBB 
in AD, such as BECs which are one of the most altered cells in this ailment. 
This approach has been poorly tested and BECs should now be considered 
in the design of new treatments in the future. The more the BECs and other 
components of the BBB are considered as targets to treat AD and other 
neurodegenerative diseases, the higher the odds a potential treatment will 
have to thrive through clinical trials.
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