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Abstract

Single-cell RNA sequencing (scRNA-seq) detects whole transcriptome signals for large amounts of individual cells and is powerful
for determining cell-to-cell differences and investigating the functional characteristics of various cell types. scRNA-seq datasets are
usually sparse and highly noisy. Many steps in the scRNA-seq analysis workflow, including reasonable gene selection, cell clustering
and annotation, as well as discovering the underlying biological mechanisms from such datasets, are difficult. In this study, we proposed
an scRNA-seq analysis method based on the latent Dirichlet allocation (LDA) model. The LDA model estimates a series of latent
variables, i.e. putative functions (PFs), from the input raw cell–gene data. Thus, we incorporated the ‘cell-function-gene’ three-layer
framework into scRNA-seq analysis, as this framework is capable of discovering latent and complex gene expression patterns via a
built-in model approach and obtaining biologically meaningful results through a data-driven functional interpretation process. We
compared our method with four classic methods on seven benchmark scRNA-seq datasets. The LDA-based method performed best
in the cell clustering test in terms of both accuracy and purity. By analysing three complex public datasets, we demonstrated that
our method could distinguish cell types with multiple levels of functional specialization, and precisely reconstruct cell development
trajectories. Moreover, the LDA-based method accurately identified the representative PFs and the representative genes for the cell
types/cell stages, enabling data-driven cell cluster annotation and functional interpretation. According to the literature, most of the
previously reported marker/functionally relevant genes were recognized.
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INTRODUCTION
Single-cell RNA sequencing (scRNA-seq) simultaneously deter-
mines gene expression levels for thousands of individual cells to
better investigate cell-to-cell heterogeneity [1]. In the last decade,
scRNA-seq has demonstrated a significant advantage in new
cell type discovery and cell development studies and has been
applied to various research areas, including tumours, immunity,
neuroscience, microbes and developmental biology [2–4].

Unsupervised cell clustering is the most critical task in the
scRNA data analysis workflow. In cell clustering, cells are grouped
according to their gene expression patterns, enabling further
downstream cell function recognition and cell-type annotation
tasks. Dozens of cell clustering methods have been developed.
Many of them are derived from generic clustering algorithms.
pcaReduce implements an iterative strategy based on principal
component analysis (PCA) and hierarchical clustering. After each

merge or split operation, the method conducts dimensionality
reduction to improve the scalability of the algorithm to large-scale
scRNA-seq data [5]. SC3 was developed based on the k-means and
PCA methods. It overcomes the greedy characteristic of k-means
by repeatedly performing clustering under different initial condi-
tions [6]. RaceID enhances the ability of k-means to identify rare
cell types through outlier detection [7]. In addition to such generic
clustering algorithm-based methods, community detection-based
algorithms have been developed and broadly used. PhenoGraph
adopts shared nearest-neighbour graphs and Louvain community
detection to reduce the clustering time costs incurred on large-
scale datasets [8]. Seurat integrates PCA, Louvain and many other
methods, currently becoming the most popular tool for scRNA-
seq analysis [9, 10].

The major obstacles to cell clustering are the high dimen-
sionality, inherently high noise and rapidly increasing volume of
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scRNA-seq data [11]. The above state-of-the-art methods have
made considerable efforts to solve the high dimensionality and
large cell number problems. However, the high noise associated
with data sparsity is still a major challenge.

The biological interpretation of cell clustering results, i.e. clus-
ter annotation, is also essential for scRNA-seq data analysis.
Because PCA-based dimensionality reduction is included, many
scRNA-seq data analysis methods do not reserve biological sig-
nificance during the clustering process. Genes are the key to
annotating and interpreting cell clusters. There are two categories
of automatic cell annotation methods. One category is the super-
vised methods, which require a labelled reference dataset. The
gene expression patterns of the cell clusters are compared to the
reference dataset. Clusters with similar expression patterns to a
particular cell group in the reference dataset can be assigned its
label [12]. The other category prioritizes genes for cells or cell
clusters. For instance, Cell-ID employs a multivariate statistical
method to extract gene signatures for each cell without a cluster-
ing process; the identified genes are considered to be informative
for revealing cellular diversity and are capable of indicating cell
functions [13]. Due to the complexity of biological systems, it is
still difficult to build clear connections between the identified
genes and cell functions. The cell annotation results are better
supported by the literature.

Here, we incorporate latent Dirichlet allocation (LDA) into the
scRNA-seq analysis workflow, aiming to discover latent and com-
plex gene expression patterns with a built-in model approach and
to obtain biologically meaningful results. LDA is a probabilistic
topic model utilizing unsupervised learning that was initially
proposed for text mining. It assumes that the reason we observe
a specific set of words in a document is actually determined
by a group of latent attributes in the document (topics) [14].
As a nonlinear method, LDA achieves outstanding performance
on complex, sparse and noisy datasets [15]. In addition, LDA is
considered interpretable because its parameters can be directly
used to associate the input features with latent factors or target
outcomes. In the bioinformatics field, LDA was applied to novel
cancer mutation signature discovery [16], microbiome composi-
tion analysis [17, 18], substructure exploration in metabolomics
[19] and pathway–drug relationships [20].

Similar topic models have also been applied in scRNA-seq
data analysis [11, 21–25]. Hierarchical Dirichlet process (HDP)
was adopted to conduct single-cell data clustering. This method
does not require a cluster number parameter as input [21]. The
cellTree tool focuses on producing tree structures outlining the
hierarchical relationship between single-cell samples based on
the LDA model. The method was implemented as an R/Biocon-
ductor package [26].

The remainder of this article is organized as follows. First, we
construct a scRNA-seq data analysis workflow based on LDA. Sec-
ond, we compare the performance of LDA and several popular cell
clustering methods using seven benchmark scRNA-seq datasets.
Then, we analyse three public scRNA-seq datasets by using our
methods in practice. Several biologically meaningful results are
derived. Finally, we assess the robustness and computational
efficiency of our multithreading LDA implementation on noisy
and large-scale simulation datasets.

METHODS
Overview
The LDA model was originally developed for mining text from
large-scale corpora, aiming for latent ‘topic’ recognition in

massive observed documents. The LDA model assumes that
each document is a mixture of multiple topics. The reason that
specific words in a document are chosen is that the document is
focused on the specific associated topics. Thus, mathematically,
the document is described as a probabilistic distribution over its
topics, and each topic is described as a probabilistic distribution
over all possible words in the vocabulary.

More generally, the LDA model is applied to identify latent
attributes that are difficult to directly observe from data. These
datasets usually have two-layer structures, including data units
and their unordered collections. The observed collection–unit
relationship pattern is largely determined by the latent attributes.
In many cases, recognizing the latent attributes is the main
purpose of such a data analysis process.

According to the above idea, we incorporated the LDA model
into the scRNA-seq data analysis process. In this study, the orig-
inal LDA terms were mapped to the scRNA-seq data analysis
context. ‘Document’ was mapped to ‘cell’. ‘Topic’ was mapped
to ‘function’. ‘Word’ was mapped to ‘gene’ (Figure S1). Therefore,
the basic assumption was that the reason we observe a specific
gene expression profile in a cell is actually determined by the
latent attributes of the cell, i.e. functions. In this context, cells
were described as probabilistic distributions over functions, and
functions were described as probabilistic distributions over genes.

In this study, we constructed an LDA-based scRNA-seq data
analysis workflow (Figure 1). The input of the LDA model was
a matrix containing the gene expression profiles of cells. Cells
with irregular gene expression patterns were removed in advance.
Then, the latent functions were identified by the LDA model
parameter estimation procedure. Two estimated parameter matri-
ces, i.e. the function distributions of cells and the gene distribu-
tions of functions, were used to characterize the putative func-
tions (PFs) mined from the cell–gene expression data. Since latent
function identification is a de facto dimensionality reduction tech-
nique imposed on the raw data, downstream analyses, including
cell-type recognition, pseudo-time-series analysis and marker
gene identification, could be conducted on the LDA results. In the
above analysis, the Hellinger distance between the PF distribu-
tions of cells was used to measure cell similarity. The k-medoids
algorithm was employed for cell clustering. The uniform manifold
approximation (UMAP) algorithm was employed for pseudo-time-
series analysis. Based on the two estimated parameter matrices,
representative genes were prioritized for each PF, and major func-
tions were assigned to each cell cluster. The LDA-based method
yielded a built-in-model interpretation of the underlying biologi-
cal mechanism.

The LDA model for scRNA-seq data analysis
In our method, LDA was used to discover the latent patterns
contained in the gene expression profiles of a large-scale single-
cell dataset. This approach assumes the gene expression of each
of the M cells as follows:

(1) Choose N ∼ Poisson (ξ ).
(2) Choose θ ∼ Dir (α).
(3) For each of the N transcripts wn:

(a) Choose a function zn ∼ multinomial (θ ).
(b) Choose a gene wn from p (wn | zn, β), a multinomial

probability conditioned on the function zn.

Here, N denotes the distribution of the number of expressed
transcripts in a cell and θ denotes the parameter of the multino-
mial distribution.
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Figure 1. Overview of the workflow of the LDA-based method. Without explicit gene filtering, the LDA model inferred latent PFs from the cell–gene
expression matrix. Two parameter matrices, i.e. the cell–function matrix ([θ1, θ2, . . . , θm]T, M × K) and the function–gene matrix (β, K × V), were estimated.
The cell–function matrix characterized the PF distributions over the cells. Cell-to-cell similarities were evaluated by the Hellinger distance between their
PF distributions θ and further supported cell clustering. The function–gene matrix characterized the gene distributions over the PFs. Gene prioritization
was conducted based on β. Genes with higher probabilities, i.e. the representative genes, enabled the biological interpretation of the latent variables
(PFs) and cluster annotation.

LDA assumes that the dimensionality K of the Dirichlet dis-
tribution, i.e. the dimensionality of the latent ‘function’ variable
θ , is known and fixed. The gene probabilities for a function are
parameterized by a K × V matrix β, where β ij = p (wj = 1 | zi = 1) and
V denotes the size of the complete set of all possible genes. The
matrix β can be estimated through a machine learning process.

The number of cell transcripts N is not necessarily assumed
to follow a Poisson distribution. Any realistic distribution can be
used as needed, N is independent of all the other data generating
variables (θ and z) and its randomness is thus usually ignored in
LDA. In practice, the number of transcripts per million mapped
reads (TPM) is used as a counting unit.

LDA can be solved by variational Bayesian expectation max-
imization or Gibbs sampling methods. Both the function–gene
matrix (β, K × V) and the cell–function matrix ([θ1, θ2, . . . , θm]T,
M × K) were estimated. Each row of the function–gene matrix,
i.e. the gene probability distribution, indicates the representative
genes of a function; each row of the cell–function matrix, i.e.
the function probability distribution, indicates the mixed function
proportions of a cell transcriptome. Thus, the cell-to-cell simi-
larity in terms of function could be represented by the Hellinger
distance between the function probability distributions of the two
cells.

Cluster annotation and function interpretation
Cluster annotation and function interpretation are completely
data-driven processes. Based on the cell-to-cell Hellinger dis-
tances, the cells were clustered by the k-medoids algorithm. Then,
the identified cell clusters were annotated using representative
genes in a ‘cell-function-gene’ three-layer framework. In a cell
cluster, each cell had a PF distribution characterizing the rele-
vance of the functions to the cell. The major functions of each
cell cluster were determined by its members’ representative PFs.
Since the PFs were actually ‘defined’ by their representative genes,
the interpretation of a PF was carried out by gene prioritization.

Representative PF identification for cell clusters
In the LDA model, the cells were characterized by their biological
function components, which were mathematically estimated as
the cell–function matrix ([θ1, θ2, . . . , θm]T, M × K). Cells with close
θ values were considered to be functionally similar and were
clustered together. Although the cell clusters were formed on

the basis of the functional similarity of the cells, there was no
direct connection between the cell clusters and the PFs. Thus, we
proposed a simple and intuitive method to assign representative
PF to cell clusters using their members’ PF distributions.

Assuming that M cells are clustered into C clusters, Ci denotes
the i-th cluster, |Ci| denotes the size of Ci, j denotes the cells in
cluster Ci and Avg.Pik denotes the average probability of a PF k of
the Ci members,

Avg.Pik =
∑

j∈Ci
θjk

|Ci| , i ∈ 1, 2, . . . , C; j ∈ 1, 2, . . . , |Ci| ; k ∈ 1, 2, . . . , K (1)

Some PFs may be essential in more than one cell type and
receive high probabilities in multiple clusters; thus, the Avg.Pik

values were normalized by the sum of the average probabilities
of PF k in all clusters:

Avg.P′
ik = Avg.Pik∑

1≤i′≤C Avg.Pi′k
, i ∈ 1, 2, . . . , C; k ∈ 1, 2, . . . , K (2)

For each cluster Ci, the normalized average probabilities of all
PFs, i.e. Avg.P′

ik (k ∈ 1, 2, . . . , K), were sorted in descending order.
Let k′ denote the descending rank of the PFs; then,

k′
max = argmax

1≤k′≤K−1

(
Avg.P′

ik′ − Avg.P′
ik′+1

)
(3)

As shown in Equation (3), we calculated the intervals between
the adjacent Avg.P′

ik’, and the maximum interval was selected as
the cut-off. The top k′

max PFs were assigned as the representative
PFs for clustering Ci.

Gene prioritization and PF interpretation
In this study, the ‘PFs’ were latent patterns that learned from the
data via the LDA model. Their actual biological meanings could
only be interpreted by identifying their representative genes, i.e.
by performing gene prioritization. Here, we proposed a balanced
gene prioritization method considering both relevance and dis-
tinctiveness.

Each row of the estimated function–gene matrix (β, K × V)
describes the relevance of all genes to a PF. In the hypothesized
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generation process of the LDA model, a PF chooses genes accord-
ing to their probabilities. The higher the probability that the PF
chooses a gene is, the more important the predicted gene is to
the PF.

For each PF k, we sorted the genes in descending order by their
probabilities. ‘Relevant genes’ were defined to be the smallest
set of genes that contributed over 80% of the components to a
putative function.

Let g′ denote the descending rank of the genes relative to the
PFs; g′

min denotes the rank of the fewest number of top genes
whose cumulative sum is greater than 0.8:

g′
min = argmin

1≤g′≤V

⎛
⎜⎝g′,

∑

1≤∼
g≤g′

β
k

∼
g

> 0.8

⎞
⎟⎠ (4)

The top g′
min genes are the ‘relevant genes’ of the putative

function k.
Furthermore, similar to cell–function relationships, some crit-

ical genes may have participated in multiple biological processes
and were prioritized at the top of more than one PF. Thus, we
introduced a normalized measurement process to determine a
more distinct representative gene set for each PF.

Let β ′
kg denote the normalized probability of a gene g to a PF k:

β ′
kg = βkg∑

1≤k≤K βkg
(5)

For each PF k, we then sorted the genes in descending order
again, except this time, we did so according to the normalized
probability β ′. Let g′′ denote the descending rank of the genes in
terms of β ′.

For the ‘relevant genes’ of each PF, the rank sum of g′ and g′′

was calculated. According to the rank sum, the top 10 genes were
assigned as representative genes to the PF.

Cell cluster annotation
Cell cluster annotation was conducted by identifying both repre-
sentative PFs and their representative genes.

For each cell cluster Ci, assuming there were k′
max representa-

tive PFs, let βk′ denote the gene probabilities of a representative
PF k′; then, the relevance vector δi from all genes to Ci could be
defined as the average of βk′ (1 ≤ k′ ≤ k′

max):

δi =
∑

1≤k′≤k′
max

βk′

k′
max

(6)

By calculating the δi for all cell clusters, we obtained the clus-
ter–gene matrix (δ = [δ1, δ2, . . . , δC]T, C × V). Similar to β, the matrix
δ describes the relevance of all genes to the cell clusters. Thus,
the representative genes of the cell clusters could be identified by
following the same strategy described above, except for replacing
β with δ.

Benchmarking on gold-standard datasets
We compared the performance of LDA and four classic scRNA-seq
clustering methods (Seurat, SC3, RaceID3 and clusterExperiment)
and a similar model (HDP) to our method on seven human lung
adenocarcinoma cell line datasets [27] (CEL-seq2_3cl, 10x_3cl,
Drop-seq_3cl, 10x_5cl, CEL-seq2_5cl_p1, CEL-seq2_5cl_p2 and
CEL-seq2_5cl_p3). Tian et al. [27] performed quality control
without normalization. The authors claimed that there is no

batch effect between the datasets. Detailed information about
the seven datasets is shown in Table S1.

The performance of clustering against cell labels was evaluated
by the adjusted Rand index (ARI), entropy of cluster accuracy
(ECA) and entropy of cluster purity (ECP). ARI is calculated by
measuring similarity or agreement between predictions and real
labels. The ECA and ECP were observed to correlated with the
ARI [28]. Cell annotation performance was assessed through ARI
and three complementary metrics: precision, recall and F1 score,
which is the harmonic mean between precision and recall. By
employing these three complementary metrics, the overweighting
of large clusters was avoided, and a greater contribution from rare
cell types was allowed. The above metrics were calculated in R.

Tian et al. [27] also provided such metrics as along with the
computation times for four clustering methods. Each method was
normalized and imputed by different methods, and the top 1000
highly variable genes were selected. The normalization methods
included Scran, Linnorm, Scone, DESeq2, BASiCS, Scnorm, Counts
Per Million reads mapped (CPM) and Trimmed Mean of M values
(TMM), and the imputation methods included SAVER, DrImpute
and KNN-Smooth. Seurat_pipe takes raw Unique Molecular
Identifier (UMI) counts as inputs and uses its default data
preprocessing pipeline for normalization and gene selection.
Most methods aside from Seurat have functions to help them
choose the optimal number of clusters. Therefore, Seurat uses
two resolutions, 1.6 (Seurat_1.6) and 0.6 (Seurat_0.6), to obtain
more or fewer clusters, respectively.

The HDP study only mentioned that Gensim library was used
for HDP modelling and did not provide any source code or imple-
mentation details [21, 29]. Therefore, we also employed the Gen-
sim library to replicate its implementation method as much as
possible. The HDP method does not require a predefined topic
number, but tends to learn more topics from the data. Thus,
following the instructions in the HDP article, we first labelled
the topic with the highest membership probability as the cluster
assignment for each cell, then grouped clusters with fewer than
15 cells as a separate single cluster.

In our method, the k-medoids algorithm was employed for cell
clustering based on the ‘PF’ probabilities estimated from the LDA
model. The parameter ‘K’ of k-medoids was directly set to be the
number of cell types in the benchmark dataset. We chose the best
metrics by enumerating the parameter ‘K’ of LDA, i.e. the number
of ‘PFs’, from 2 to 20. For the other methods, we also chose their
best performances for the comparison.

Robustness and computational efficiency
evaluation on simulation datasets
Recently, the size of scRNA-seq datasets has been increasing fast.
Noise and dropouts caused by various factors may also weaken
algorithm performance [30–32]. It is necessary to evaluate the
robustness and computational efficiency of our method on simu-
lation datasets.

We used Splatter to simulate scRNA-seq data. The baseline
parameters for Splatter were estimated using a scRNA-seq
dataset including 1244 lung adenocarcinoma (A549) cells with
32 895 genes.

All simulation parameters were set to their default values. For
each simulation, we fixed the number of genes at 15 000 and
fixed the number of cell types at 5. For each of the five cell types,
we simulated datasets with the probability of grouping (cell type)
equal to 0.2 and set the probability of differentially expressed
genes to 0.3, 0.1, 0.2, 0.01 and 0.1, among which the probabilities
of downregulated genes were 0.1, 0.4, 0.9, 0.6 and 0.5.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad199#supplementary-data
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For the robustness test, the size of the simulation datasets, i.e.
the number of cells, was set to 10 000. The outlier probability
parameter and dropout parameters were set to different values to
control the data quality, and the specific parameter settings can
be found in Table 3.

For the scaling test, the sizes of the simulation datasets were
set to 1000, 2000, 5000, 10 000, 20 000, 50 000, 100 000, 200 000,
500 000 and 1 000 000 cells. We performed 10 simulations for sizes
smaller than 100 000 and 1 simulation for larger sizes.

We evaluate our LDA-based method on the simulation
datasets. The PF (topic) parameter of the LDA was set to 5. The
number of threads was set to 48. We recorded the computation
time and the highest CPU and memory usage during the model
training process.

Method implementation and availability
In this study, the LDA-based scRNA-seq data processing workflow
was packaged in an all-in-one Perl script, built upon MALLET
(MAchine Learning for LanguagE Toolkit). MALLET is a JAVA-
based toolkit for statistical natural language processing (NLP)
that provides memory-efficient and multithreaded LDA modelling
implementation [33].

The cluster annotation and function interpretation methods
were provided as an R script. It takes the results of the LDA
modelling and produces functional interpretations, such as cell
clusters and their annotations, representative genes and PFs.

The source codes and test data are available at https://github.
com/lrjuan/LDA_scRNAseq.

RESULTS
First, we benchmarked the LDA-based method with four classic
scRNA-seq clustering methods on seven gold-standard datasets.
Then, we analysed three public datasets used in practice, demon-
strating the performance of our method on more complex data, as
well as the capability of LDA to reconstruct cell development tra-
jectories. The results showed that the PFs identified by our LDA-
based method have significant biological implications. According
to the literature, most previously reported marker/functionally
relevant genes were recognized as representative genes of PFs
or cell clusters. The mixtures of latent gene expression patterns
were characterized. Finally, we investigated the computational
efficiency of our method using simulation datasets.

Benchmarking of the LDA-based method
We compared the performance of our method with that of four
classic scRNA-seq clustering methods and a similar model (HDP)
to our method on seven benchmark datasets [27]. For each
method and each dataset, we chose the best performance through
the ARI for the comparison (Table S2). As described in the Methods
section, the LDA model characterized the relevance of the genes to
a PF using a multinomial distribution. The latent gene expression
patterns were identified in a built-in model. Thus, for our method,
there was no need to normalize or impute genes in advance. The
number of clusters was directly assigned as the number of actual
cell types in the given dataset. For the other clustering methods,
the datasets were normalized and imputed by the recommended
methods. Genes were filtered according to well-accepted param-
eters. The optimal numbers of clusters were chosen.

We compared the clustering performance of each method on
all datasets with two metrics: accuracy (ECA) and purity (ECP). A
lower ECA/ECP value indicated better performance. As shown in
Figure S2, the LDA-based method performed best on the 10x_3cl,

Drop-seq_3cl, CEL-seq2_3cl, 10x_5cl, CEL-seq2_5cl_p1 and CEL-
seq2_5cl_p3 datasets and was close to the best method on the
CEL-seq2_5cl_p2 datasets. Collectively, our method performed
best, achieving a good balance between underclustering and over-
clustering across all datasets (Figure 2).

The performance of the HDP method was poor in the bench-
marking. The ARI scores of the method were significantly lower
than those of other methods. The HDP method achieved its best
performance on the 10x_3cl dataset, with ECA and ECP reaching
0.24 and 0.61, respectively.

As shown in Figure 2, Seurat had a performance very close to
LDA on the benchmark datasets. This may be because these cell
line datasets are relatively simple, i.e. their gene expression pat-
terns are significantly different from each other. Thus, both Seurat
and our LDA-based method reached almost perfect performance.
To demonstrate the capability of our method on complex datasets,
we further conducted empirical analysis on three public datasets.

Empirical analysis of the LDA-based method
The performance of the LDA-based method on more complex data
was examined using three public datasets. The first dataset, the
‘melanoma dataset’, was sequenced from 19 melanoma patients
[34]. The second dataset, the ‘thymic development dataset’,
included scRNA-seq data concerning the human thymus across
the life span [35]. The third dataset, the ‘PBMC dataset’, was
sequenced from peripheral blood mononuclear cells (PBMCs) of
29 samples [36].

Empirical analysis on melanoma dataset
The melanoma dataset included 1169 malignant cells from eight
tumours and 2848 stromal cells obtained after the recommended
cell selection process was carried out. In this study, the cells were
grouped into 18 clusters, and 55 PFs were identified (Figure S3).

The cell clustering results of the LDA-based method were
consistent with the cell labels annotated by Tirosh et al. [34]
(Figure 3A and B). The malignant cells were grouped into eight
clusters (C1∼C8) according to the tumour origins of the patients.
Among the stromal cells, four distinct clusters (C9∼C12) were
identified for B cells, macrophages, cancer-associated fibroblasts
and endothelial cells. Moreover, our method divided tumour-
infiltrating T cells and natural killer cells into six clusters, which
was concordant with the supervised analysis of T cells conducted
by Tirosh et al. [34] based on surface markers.

As shown in Figure 3C, the LDA-based method identified one to
two representative PFs for most cell clusters. These representative
PFs are actually core features in cell clustering and are capable of
connecting further to biological implications.

Based on the representative PFs, the representative genes of the
stromal cell clusters were identified using the method described
in Section 2.3. The marker genes and the cell-type-specific genes
of the stromal cells were significantly enriched in the 10 top-
ranked representative genes of C9∼C18 (Table 1). These genes
were not only consistent with the results provided by Tirosh
et al. [34] but also supported by a number of studies. Both the liter-
ature and an enrichment analysis demonstrated that these genes
indicate the critical biological processes of the corresponding cell
types. The details are shown in Table 1, Table S3 and Table S4.

Empirical analysis on thymic development dataset
The thymic development dataset included 3032 thymic T cells
collected from different developmental stages. We reconstructed
the T-cell differentiation trajectory based on the evaluated PFs
provided by the LDA model. The number of PFs was varied from 6

https://github.com/lrjuan/LDA_scRNAseq
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad199#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad199#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad199#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad199#supplementary-data
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Figure 2. Comparison between the LDA-based method and four scRNA-seq clustering methods and a similar model (HDP) to our method on seven
benchmark datasets. The coordinates of each glyph are the ECP and ECA values for the top performing combinations of each method for different
datasets. Colours denote different clustering methods. Seurat_pipe denotes the default pipeline. Seurat_1.6 and Seurat_0.6 denote 1.6 and 0.6 resolutions,
which tend to obtain more or fewer clusters, respectively. Different types of glyphs indicate datasets with different protocols.

Table 1. Comprehensive validation of the top 10 representative genes in clusters 9 to 18 for the melanoma dataset

Cluster Cell
type

Putative
function

Marker gene Specific gene Gene (experimental evidence) Gene summary (experimental evidence)

C 9 B PF 28 CD79B,
CD79A, CD19

MS4A1, BANK1,
VPREB3, IRF8

TCL1A, CD20, CD79A, CD79B,
BANK1, CD19, IRF8, HLA.DOB

B-Cell receptor signalling pathway & activation
& differentiation & proliferation

C 10 TAM PF 26 CD14 C1QA, C1QC,
C1QB, S100A9,
LYZ, DAP12

C1QA, C1QB, C1QC, S100A8,
S100A9, IL1B, LYZ, FCN1, CD14,
DAP12

Macrophage activation & aggregation, regulation
of inflammatory response

C 11 Endo. PF 52 VWF CCL14, CLDN5,
FABP4, PLVAP,
ECSM2, EGFL7

CLDN5, DARC, PLVAP, ECSM2,
VWF, HP, EGFL7, CCL14, FABP4

Regulation of angiogenesis, endothelial cell
protection & endocytosis, cell–cell junction
assembly, anti-angiogenic and tumour inhibition
effects

C 12 CAF PF 22 DCN, COL1A1,
COL3A1

LUM, COL3A1,
CXCL14, TAGLN

CCL19, DCN, COL1A1, LUM,
COL3A1, SFRP2, CXCL14, TAGLN

Extracellular structure organization, CAF growth
and migration, tumorigenesis promotion,
fibroblast ossification

C 13 T, NK PF 34, PF 53,
PF 3, PF 11

– – GNLY, GZMB, GZMH NK cell-mediated cytotoxicity

C 14 T, NK PF 33, PF 14,
PF 42

– CCL5, GZMK,
CST7

CCL3, CCL4L1, CCL4L2, CCL4,
CCL5, GZMA, GZMK, CST7

Regulation of NK cell cytotoxicity, NK
cell-mediated cytotoxicity

C 15 T PF 46 – – JUNB, DUSP2, TOB1, ZFP36L2 T-Cell development & differentiation, regulatory
T-cell function suppression

C 16 T PF 36 IL7R, CCR7 TCF-1 IL7R, CCR7, SELL, TXNIP, PIK3IP1,
TCF-1, CD48

T-Cell differentiation & activation & immune
response

C 17 T PF 10 – – – –
C 18 T PF 5 CD8A, NKG2D,

CD8B
CD8A, NKG2D CD8A, CD8B, FCRL3, NKG2D,

SLAMF7, KLRC3, STAT1
Regulation for NK cell maturation, T-cell
activation & differentiation, cytotoxicity
promotion, regulatory T-cell function
suppression

to 20. A UMAP visualization suggested that 14 PFs best described
the inherent differentiation structure of the T-cell development
dataset. The reconstructed differentiation trajectory was consis-
tent with the annotations of Park et al. [35].

As shown in Figure 4A, the trajectory started from CD4−CD8−

DN cells [DN(early)-DN(P)-DN(Q) stage], then became CD4+CD8+

DP cells [DP(P)-DP(Q) stage], and then transitioned through an αβT
stage to diverge into mature CD4+ or CD8+ SP cells (CD4+ T and
CD8+ T). The DN and DP cells were separated into two phases:
proliferating (P) and quiescent (Q).

The LDA-based method provided PFs as a key to better
understanding the T-cell differentiation mechanism. As shown
in Figure 4B, seven representative PFs were observed to be
successively dominant in T-cell development. The mixture of
adjacent PFs manifested as cell types. Initially, PF12 and PF6
provided a mixture contribution to the DN (early) stage, and PF
12 dominated in the cells; then, PF1, PF6 and PF12 collaborated
in the DN(P) stage, and PF6 slightly dominated. Moving through
subsequent stages, the contribution of PF12 gradually decreased,
those of PF1 and PF6 increased, PF1 dominated in the DN(Q) stage
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Figure 3. The analysis results obtained on the melanoma dataset. (A–B) The t-distributed stochastic neighbour embedding (t-SNE) plots based on the
cell-to-cell Hellinger distances calculated from the θ parameters (PFs) estimated by the LDA model. As shown in (A), 18 clusters were identified by the
downstream k-medoids algorithm. (B) shows the Tirosh et al. [34] annotations of the cells. (C) Heatmap based on the contribution of the PFs to each cell.
Most of the identified clusters were significantly correlated to a PF, enabling further cluster annotation and functional interpretation (Table 1).

and PF6 dominated in the DP(P) stage. The PF annotations showed
that the representative PF1 genes (e.g. PTCRA) included the pre-
T-cell receptor alpha chain, while the representative PF6 genes
were reported to be essential in cell proliferation (Table 2 and
Table S5).

Then, PF8, PF9 and PF7 successively dominated in the DP(Q)
stage, αβT(entry) stage and CD4+/CD8+ T stage, respectively. The
representative PF8 genes (e.g. RAG1/2) participated in V(D)J recom-
bination. The representative PF9 genes (e.g. ITM2A) participated
in the positive selection of T cells. The representative PF7 genes
(e.g. HLA) were involved in the major histocompatibility com-
plex (MHC) synthesis of CD4+ T cells. The representative PF14
genes (e.g. TRBV) were components of the T-cell receptor beta
chain.

Most of the representative PF genes coincided with the criti-
cal genes in T-cell development, providing good interpretations
of these PFs (Table 2 and Table S5). The shifts in the dominant

PFs for the different cell types were consistent with the T-cell
development trajectory. Furthermore, the mixed contributions of
multiple PFs to the cell types characterized the collaboration of
PFs in certain T-cell developmental stages. The changes in this
contribution proportion indicated the alterations of the cell states.
The ‘cell-function-gene’ three-layer framework of our LDA-based
method provides a proper tool to capture such subtle differences
between cell types.

Empirical analysis on PBMC dataset
The PBMC dataset included 10 cell types: CD14+ monocyte, CD19+

B, CD34+, CD4+ T Helper2, CD4+/CD25 T Reg, CD4+/CD45RA+/CD25−

naive T, CD4+/CD45RO+ memory, CD56+ NK, CD8+ cytotoxic T and
CD8+/CD45RA+ naive cytotoxic [36]. The dataset is well accepted
as one of the most complex scRNA-seq benchmark datasets, with
high pairwise correlations observed between the mean expression
profiles of each cell population [37].

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad199#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad199#supplementary-data
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Figure 4. The analysis results obtained on the thymus development dataset. (A) The UMAP plot based on the cell-to-cell Hellinger distances calculated
from the θ parameters (PFs) estimated by the LDA model, which was consistent with the annotations of Park et al. [35]. (B) Heatmap based on the PFs’
contributions to each cell. The identified PFs clearly characterized the shifts of dominant functions in T-cell development.

We performed additional benchmarking for our method with
Seurat (Louvain) in terms of cell clustering, as well as Cell-ID
and SCINA for marker-based cell annotation [10, 13, 38, 39]. The
authors’ annotation was regarded as the ground-truth labels.
There are two different annotation resolutions in the original
study: the 6 major cell types and the 10 fine cell types. For each cell
type, the reference marker genes were extracted from a blood cell
marker collection from the XCell repository and a typical marker
gene list provided by the original study [36, 40]. For our method,
the cells were grouped into 6 clusters, and 19 PFs were identified
in the major cell type resolution. In fine cell type resolution, the
cells were grouped into 9 clusters, and 52 PFs were identified. For
other methods, we also chose the best performance through the
ARI for comparison.

For cell clustering, the performance of the LDA-based method
is slightly better than Seurat (Louvain) on the PBMC dataset.
The highest ARI is 0.628. Seurat (Louvain) achieved its best per-
formance, 0.615, at resolution = 0.8. We also tested the Seurat
(Leiden) method on this dataset; the best performance is almost
the same as Seurat (Louvain). By comparing the ECA and ECP
measures, we found that the LDA-based method tends to achieve
better precision (0.49 versus 0.57), while Seurat prefers accuracy
(0.46 versus 0.58).

For marker-based cell annotation, our method performed best
in both major cell type resolution (Figure 5) and fine cell type reso-
lution (Figure S4). In the major cell type resolution, the LDA-based
method achieves a significant advantage in recall (Figure 5C), and
the ARI reached 0.76, greater than both Cell-ID (0.71) and SCINA

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad199#supplementary-data
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Table 2. Comprehensive validation of the top 10 representative genes in the representative PFs for the thymus development dataset

Putative
function

Marker gene Gene (experimental evidence) Gene summary (experimental evidence)

PF 12 IGLL1, SMIM24, AC002454.1, TPM4 – –
PF 6 – TUBA1B, H2AFZ, RAN, RANBP1, YBX1, HSPD1,

FKBP4, FABP5, MCM7
Cell proliferation

PF 1 PTCRA, JCHAIN, ID1, MAL, SELL,
FXYD2

PTCRA, ID1, CISH, CD99, MAL, SELL, JCHAIN Pre-T-cell receptor alpha chain, T-cell receptor
signalling pathway & differentiation

PF 8 SH3TC1, SMPD3, AQP3, CD1B,
RAG1, RAG2, CD1E

RAG1, RAG2, TRBV20.1, DUSP1, CD1B, CD1E V(D)J recombination, T-cell receptor beta chain, T-cell
receptor signalling pathway

PF 14 LTB TRBV2, TRBV4.2, TRBV6.1, TRBV6.5, TRBV7.9,
LTB, LST1

T-Cell receptor beta chain, cell differentiation, MHC
class III

PF 9 ITM2A, SATB1, CCR9 CCR9, JUN, ITM2A, SATB1, HSPA1B, ID3,
TRBV5.1, TRBV6.6, TRBV10.3, TRBV12.4

Positive T-cell selection, T-cell receptor beta chain

PF 7 IFITM2, CCR7 HLA-A, HLA-B, HLA-C, HLA-E, FOS, IFITM1,
IFITM2, B2M, CCR7

MHC class I of CD4+ T cells, CD4+ T-cell differentiation
& activation, CD8+ T-cell anti-apoptosis

Table 3. Robustness of the LDA-based method

Cells number Genes number Outlier
probability

Dropouts
midpoint

Dropouts
shape

ARI ECA ECP

10 000 15 000 0.01 −5 −1.2 >0.999 8.3 × 10−4 8.6 × 10−4

10 000 15 000 0.01 −4 −1.2 >0.999 3.4 × 10−3 3.3 × 10−3

10 000 15 000 0.01 −3 −1.2 >0.999 1.7 × 10−3 1.7 × 10−3

10 000 15 000 0.01 −2 −1.2 >0.999 2.6 × 10−3 2.6 × 10−3

10 000 15 000 0.01 −1 −1.2 0.999 3.8 × 10−3 3.7 × 10−3

10 000 15 000 0.01 0 −1.2 0.998 7.9 × 10−3 7.8 × 10−3

10 000 15 000 0.01 1 −1.2 0.995 1.6 × 10−2 1.6 × 10−2

10 000 15 000 0.01 2 −1.2 0.979 5.4 × 10−2 5.3 × 10−2

10 000 15 000 0.1 −5 −1.2 >0.999 <10−5 <10−5

10 000 15 000 0.2 −5 −1.2 >0.999 <10−5 <10−5

10 000 15 000 0.3 −5 −1.2 >0.999 <10−5 <10−5

10 000 15 000 0.4 −5 −1.2 >0.999 <10−5 <10−5

10 000 15 000 0.5 −5 −1.2 >0.999 <10−5 <10−5

10 000 15 000 0.6 −5 −1.2 >0.999 <10−5 <10−5

10 000 15 000 0.7 −5 −1.2 >0.999 <10−5 <10−5

(0.55). In the fine cell type resolution, the performance of Cell-ID
is actually very close to our method. Quite a few cell subtypes can
only be annotated by either LDA or Cell-ID. The ARI of our method
is 0.55, still greater than both Cell-ID (0.46) and SCINA (0.19).

Robustness and computational efficiency of the
LDA-based method
The above scRNA-seq analysis was conducted using a multi-
threading LDA implementation based on the MALLET package. We
further investigated its robustness and computational efficiency
across simulated datasets of different levels of noise/dropouts
and sizes.

As shown in Table 3, the LDA-based method demonstrated
excellent robustness on the simulated dataset. Splatter simulates
dropouts following a logistic distribution, with the dropout
probability determined by two parameters: dropout midpoint
and dropout shape. By independently increasing the ‘outlier
probability’ and the ‘dropout probability’, we observed that
there was little influence on the model performance when
outliers/noise were simulated, while the dropouts only had a
very small effect on the model performance.

Simulation datasets ranging from 1000 to 200 000 cells were
generated using Splatter [41]. Due to insufficient memory for

Splatter to run, we produced 500 000-cell and 1 000 000-cell
datasets by simply combining multiple 100 000-cell and 200 000-
cell datasets, solely for testing the usability of our LDA implemen-
tation.

As the number of cells increased, the time consumption and
memory usage of model training increased linearly (Table 4).
Since the MALLET package was originally designed for training
LDA models with massive documents in NLP area, benefiting from
its efficient memory management strategy, our LDA implemen-
tation for scRNA-seq analysis is capable of processing up to the
scale of 1 million cells. A typical 100 000-cell dataset took ∼12 CPU
hours on average, which could be completed in less than 15 min
using an ∼50-thread LDA implementation. Furthermore, the
number of PFs may also affect the computational performance
of our LDA implementation. The average time consumption
is evaluated based on our Intel Xeon Gold 6326 CPU model
(2.9G/3.5 GHz).

DISCUSSION
In this study, we proposed an LDA-based scRNA-seq analysis
framework. Compared with four classic scRNA-seq clustering
methods, the LDA-based method performed best on seven
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Figure 5. The performance comparison of marker-based cell annotation among the LDA-based method, Cell-ID and SCINA. The comparison was
conducted on the PBMC dataset. The annotation precision and recall were evaluated in the major cell type resolution. (A) F1 score comparison among
the three methods. (B) Precision comparison among the three methods. (C) Recall comparison among the three methods.

Table 4. Computational performance of the LDA-based method

Cells number Genes number Topics (PFs) number Threads number Avg. memory (GB) Avg. time (h)

1000 15 000 5 48 0.6 0.04
2000 15 000 5 48 1.0 0.06
5000 15 000 5 48 1.7 0.13
10 000 15 000 5 48 3.2 0.23
20 000 15 000 5 48 5.2 0.52
50 000 15 000 5 48 9.1 1.38
100 000 15 000 5 48 19.1 2.26 (1 time)
200 000 15 000 5 48 35.2 3.81 (1 time)
500 000 15 000 10 48 82.3 11.48 (1 time)
1 000 000 15 000 45 48 169.4 25.25 (1 time)
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benchmark datasets. Then, by conducting an empirical analysis
on three public datasets, our method was demonstrated to
be able to capture the latent patterns of biological functions
in multiple and complex cell types, and the results had good
interpretability. Finally, we investigated the computational perfor-
mance of the multithreading LDA implementation on large-scale
datasets.

According to the results of the above analysis, our LDA-based
scRNA-seq analysis method can not only cluster cells with high
accuracy, but also possess strong capabilities for cell cluster anno-
tation and marker gene identification. This is attributed to the
unique advantages of LDA in scRNA-seq data analysis, which
excels in its ability to discover latent gene expression patterns
that exist in large-scale single cells.

In our method, the LDA model was employed to construct
a cell-function-gene framework for scRNA-seq data analysis.
Through a probabilistic generative process, LDA introduces
latent variables into the observed cell–gene expression data.
Although mathematically, the latent variables are distributions
over all genes, only a few genes have been observed to contribute
significant effects to each latent variable in practice. We use
‘representative genes’ to denote such genes. They provide insights
for understanding the biological significance of the latent
variables (topics) discovered by LDA, and are also the reason
that the latent variables were named as ‘putative functions
(PFs)’ in this study. Ultimately, the representative genes determine
which functions of a cell are activated and further mark their cell
types.

The cell-function-gene three-layer framework is capable of
characterizing and precisely modelling complex biological mech-
anisms, which enables the LDA-based method to produce more
meaningful results. This is the foundation of the data-driven cell
annotation and functional interpretation method proposed in this
study.

Furthermore, several intrinsic features of the LDA model make
it well suited for scRNA-seq data analysis. For example, the latent
topic identification process of LDA is a de facto dimensional-
ity reduction technique imposed on the raw data. Information-
intensive PFs were extracted from sparse gene expression profiles.

The LDA model is also capable of characterizing ‘mixtures’. In
this study, cells were described as distributions over PFs, which
means that each cell was understood as a state formed by the
cooperation of multiple PFs. Thus, the LDA-based method could
better distinguish between cell subtypes with subtle differences
and more precisely model cells in intermediate states, which
are common in development situations. The advantages of intro-
ducing the ‘mixture’ feature into single-cell analysis were first
elucidated by duVerle et al. during the development of cellTree
package [26]. Based on this insight, cellTree focuses on annotating
the biological significance of LDA topics through a GO enrichment
methodology.

Key Points

• An interpretable analysis framework for scRNA-seq data
was constructed based on the Latent Dirichlet Allocation
(LDA) model.

• A data-driven cell annotation and function interpreta-
tion method was proposed.

• Compared with classic methods, our method performed
best onseven benchmark datasets.

• The LDA-based method is capable of capturing the latent
patterns of biological functions in multiple and complex
cell types, the results had good interpretability.
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