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Abstract

Computational analysis of RNA sequences constitutes a crucial step in the field of RNA biology. As in other domains of the life sciences,
the incorporation of artificial intelligence and machine learning techniques into RNA sequence analysis has gained significant traction
in recent years. Historically, thermodynamics-based methods were widely employed for the prediction of RNA secondary structures;
however, machine learning-based approaches have demonstrated remarkable advancements in recent years, enabling more accurate
predictions. Consequently, the precision of sequence analysis pertaining to RNA secondary structures, such as RNA–protein interactions,
has also been enhanced, making a substantial contribution to the field of RNA biology. Additionally, artificial intelligence and machine
learning are also introducing technical innovations in the analysis of RNA–small molecule interactions for RNA-targeted drug discovery
and in the design of RNA aptamers, where RNA serves as its own ligand. This review will highlight recent trends in the prediction of
RNA secondary structure, RNA aptamers and RNA drug discovery using machine learning, deep learning and related technologies, and
will also discuss potential future avenues in the field of RNA informatics.
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INTRODUCTION
The central dogma posits that RNA functions solely as a conduit
for the transfer of genetic information from DNA to proteins. Mes-
senger RNAs (mRNAs) perform this role as information carriers.
However, a number of exceptions to this paradigm have been
discovered, involving RNA molecules participating in a diversity
of functions. Transfer RNAs (tRNAs) function in the translation of
the triplet codons of mRNAs into amino acids according to the
genetic code. Ribosomal RNAs (rRNAs) constitute a primary com-
ponent of ribosomes and catalyze protein synthesis as ribozymes.
Micro RNAs (miRNAs) are involved in RNA silencing and post-
transcriptional regulation of gene expression. Small nuclear RNAs
(snRNAs) participate in the processing of pre-messenger RNAs
within the nucleus. Long noncoding RNAs (lncRNAs), non-protein-
coding RNAs with sequences longer than 200 bases, have been
demonstrated to have various functions such as gene transcrip-
tional regulation, translational regulation and epigenetic regu-
lation [1]. The diversity of RNA species has been cataloged in
databases such as Rfam [2–5] and RNAcentral [6], and the number
of RNA species continues to grow.

Many of these functional RNAs execute their functions by
adopting tertiary structures that are evolutionarily conserved
among RNA species. The experimental determination of RNA

tertiary structures can be achieved through techniques such as
X-ray crystallography, nuclear magnetic resonance (NMR) and
cryo-electron microscopy (cryo-EM); however, these methods are
both labor-intensive and cost-prohibitive for high-throughput
analysis. As an alternative, RNA secondary structures are often
targeted for structural and functional analysis of functional RNAs.
An RNA secondary structure is defined as a set of base pairs
with hydrogen bonds between two nucleotides, which makes a
significant contribution to the tertiary structure in terms of free
energy. This means that the folding of RNA is hierarchical in
that tertiary interactions can be added without much distortion
of the secondary structure [7]. It is well established that RNA
secondary structures are also evolutionarily conserved among
RNA species. For instance, a multiple sequence alignment of 10
tRNAs extracted from the Rfam database (Figure 1A), in which
secondary structures are considered, yields the well-known
and evolutionarily conserved cloverleaf shape (Figure 1C). In
contrast, a multiple sequence alignment based on sequence
identity alone, calculated using Clustal Omega [8], does not
preserve the secondary structure at all, as shown in Figure 1B.
This suggests that functional RNAs are evolutionarily conserved
in their structures, rather than in their sequences and that
structure correlates with function. Thus, RNA informatics has
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Figure 1. Conserved secondary structures of transfer RNAs. (A) A multiple sequence alignment of 10 tRNAs extracted from the Rfam database is depicted,
along with the annotated secondary structure. A string consisting of ‘.’, ‘(’ and ‘)’ at the top of the multiple alignment is the dot-bracket notation that
represents the secondary structure. (B) A multiple sequence alignment based on sequence identity was calculated with Clustal Omega [8] for the 10
tRNAs. (C) The conserved secondary structure annotated by the Rfam database was visualized using VARNA [9]. Each colored region of base pairs
corresponds to the acceptor stem (blue), D arm (red), anticodon arm (yellow) and T arm (green), respectively.

extensively studied RNA sequence analysis based on their
secondary structures.

RNA secondary structure prediction, which has been a subject
of study since the 1970s, constitutes a foundational technology
in RNA sequence analysis. One of the pioneered works in this
field was the Nussinov algorithm [10], which used dynamic
programming to calculate the secondary structure with the
maximum number of base pairs, under the assumption that
the free energy of RNA structures decreases as base pairs are
formed, thereby resulting in greater stability. Minimizing free
energy using thermodynamic free energy parameters, such as
Turner’s free energy parameters [11–13], is a widely used approach
for predicting RNA secondary structures [11, 14–18]. However,
these thermodynamics-based methods have a drawback in that
they are limited by experimental technicalities in increasing the
number and improving the quality of the free energy parameters.
To address this issue, ‘assisted folding’ with high-throughput
experiments involving chemical probing has been frequently
employed. Selective 2’-hydroxyl acylation analyzed by primer
extension (SHAPE) [19] and dimethyl sulphate (DMS) [20] are
examples of high-throughput experiments that can induce
chemical modifications on unpaired nucleotides, which can
improve the accuracy of secondary structure prediction.

To address the drawback of the thermodynamics-based
methods without wet-laboratory experiments, machine learning-
based methods have been widely used. These methods learn
their parameters from training data that include RNA sequences
and their corresponding secondary structures, thus, more
accurate models can be constructed by increasing the number
of parameters if a sufficient amount of non-biased training
data can be obtained. For example, compared with CONTRAfold
[21, 22], which has approximately 300 parameters, ContextFold
[23] learns a much richer parameter set of approximately 200k
parameters from training data, resulting in the ability to predict
RNA secondary structures with remarkable accuracy at the time.
However, as discussed later, it has been shown that ContextFold’s
rich parameterization can easily lead to low prediction accuracy
due to overfitting to the training data [24, 25].

Another approach to further improve prediction accuracy
is to incorporate evolutionary information from homologous
sequences [26–31]. This approach is potentially very powerful,

but it is a different problem from the de novo prediction
from single sequences discussed in this review, because this
approach incorporates much more information from homologous
sequences. In addition, there are few RNA secondary structure
prediction algorithms that incorporate evolutionary information
in machine learning, and thus this category will not be addressed
in this review.

Subsequent tasks include analyses utilizing the results of RNA
secondary structure predictions, such as clustering [32, 33], fam-
ily classification [34, 35], structural RNA detection [36, 37] and
degradation prediction [38]. Machine learning techniques are fre-
quently employed in these tasks as well.

With the aforementioned fundamental advancements in RNA
informatics, the practical application of RNA research is also
progressing at a rapid pace. One such application is RNA drug
discovery, which is highly anticipated as a next-generation drug
discovery modality. Research on RNA aptamers and mRNA vac-
cines, in which RNA itself serves as a therapeutic agent, and RNA-
targeted drug discovery, in which RNA functions as an alternative
drug target to proteins, is of particular interest. Additionally, the
application of RNA bioinformatics research utilizing technologies
such as machine learning and deep learning is required in these
areas, and research is being conducted from various perspectives,
including RNA structure.

In this review, we will present recent trends in the prediction
of RNA secondary structures utilizing machine learning, deep
learning and related technologies. Additionally, we will provide
an overview of significant advancements in computational tasks
that employ RNA secondary structure information, including the
prediction of RNA–protein interactions and RNA drug discovery.

RNA SECONDARY STRUCTURE PREDICTION
What is RNA secondary structure prediction?
An RNA sequence is a sequence composed of four types of
nucleotides: adenine (A), cytosine (C), guanine (G) and uracil
(U). An RNA secondary structure is defined as a set of base
pairs with hydrogen bonds between two nucleotides. Thus, the
problem of RNA secondary structure prediction is to predict
which two nucleotides in a given RNA sequence form base pairs.
Typically, we consider only the Watson–Crick base pairs (A-U
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Figure 2. An RNA secondary structure with pseudoknots. The arcs
connecting the two nucleotides represent base pairs. Since pseudoknot
structures are non-nested, the arcs representing base pairs cross each
other when the structure is drawn on a 2D plane.

and G-C), which are the most prevalent, as well as the wobble
base pairs (G-U), which are the next most common, in RNA
secondary structure predictions. Other non-canonical base pairs
are of great significance for tertiary structures, but they are much
more challenging to model computationally, since each base is
not guaranteed to form a base pair with at most one other base.
An RNA secondary structure can be represented by a string in
the dot-bracket notation, where two bases at the corresponding
open and close brackets (‘(’ and ‘)’) form a base pair, while a
base at the dot (‘.’) does not form a base pair with any base,
as shown at the top of the multiple alignment in Figure 1A. A
secondary structure that requires only one type of bracket for
its dot-bracket notation, resulting in fully nested base pairs, is
referred to as a pseudoknot-free secondary structure. Conversely,
a substructure consisting of non-nested base pairs, as depicted
in Figure 2, where the bases inside the loop form base pairs with
the bases outside the loop, is called a pseudoknot. To describe
a pseudoknot in the dot-bracket notation, two or more types of
brackets (e.g. ‘[’ and ‘]’) are required. RNA secondary structure
prediction including pseudoknots has been proven to be NP-hard
for optimal solutions with no limitations on the complexity of
pseudoknots [39, 40]. Therefore, approximations that restrict the
complexity of pseudoknots or introduce heuristics are common
approaches.

Computational models
De novo computational modeling of RNA secondary structures
can be broadly classified into three categories: nearest neigh-
bor models, probabilistic generative models and deep learning
models. This subsection provides an overview of these models
and their implementations, along with a comparison of the three
models. Figure 3 shows a schematic diagram of de novo RNA
secondary structure prediction algorithms discussed in this sub-
section. Additionally, the datasets utilized for constructing models
for predicting RNA secondary structures will be discussed.

Nearest neighbor models
The nearest neighbor model, which has been extensively uti-
lized in the prediction of RNA secondary structures [11, 41–43],
decomposes an RNA secondary structure into loop substructures
with hairpin loops, stackings, bulge loops, internal loops, multi-
branch loops and external loops, depending on the number of
closing base pairs, as depicted in Figure 4. Each loop substructure
is parametrized with several types of components, characterized
by nucleotides in loops, the length of loops and other such fac-
tors, which are referred to as the energy parameters. The values
assigned to each energy parameter are determined through either
experimental methods or machine learning techniques. The free
energy of each decomposed loop substructure is computed as
the sum of the values of the energy parameters that characterize
the loop substructure. The free energy of a given RNA secondary
structure can be calculated as the sum of the free energies of
the loop substructures that are decomposed from the given RNA
secondary structure. Zuker et al. [44] established an efficient
algorithm, known as the Zuker algorithm, which is based on the

dynamic programming technique to find a secondary structure
that minimizes the free energy among all possible secondary
structures formed by a given RNA sequence. Many RNA sec-
ondary structure prediction methods that model RNA secondary
structures without pseudoknots and employ the nearest neigh-
bor model use the Zuker algorithm to find the minimum free
energy (MFE) structures. The Zuker algorithm has a computa-
tional complexity of O(N3) in time and O(N2) in space for an
RNA sequence of length N. Recently, the LinearFold algorithm [45]
has been developed, which finds MFE structures accurately and
approximately with O(N) computational complexity in both time
and space using the beam search technique. The key differences
among the implementations of the Zuker algorithm or the Linear-
Fold algorithm are the parametrization of the loop substructures
and the determination of each value assigned to their energy
parameters.

The methodology used to determine the energy parameters
can be broadly classified into two approaches. The first approach
involves determining the free energy parameters through wet-
laboratory experiments, which is beyond the scope of this review;
for further details, see the reference [46]. Examples of tools that
fall under this approach include Mfold/UNAfold [14, 15], RNAfold
in the ViennaRNA package [16, 17] and RNAstructure [11, 18].
Turner’s free energy parameters [11–13] are widely used in these
thermodynamics-based approaches, and consist of up to approx-
imately 12 700 parameters.

The second approach to determining energy parameters uti-
lizes machine learning techniques to learn them from a large
dataset of pairs of RNA sequences and their corresponding sec-
ondary structures. CONTRAfold [21, 22] used conditional log-
linear models (CLLMs) to train approximately 300 parameters of
the nearest neighbor model, resulting in high accuracy in pre-
dicting RNA secondary structures with significantly fewer param-
eters than Turner’s free energy parameters. Since the machine
learning-based approach does not depend on wet-lab experi-
ments, it allows for the development of a more comprehensive
parametrization. For example, ContextFold [23] employed a fine-
grained RNA secondary structure model with a parameter set of
more than 200 000, resulting in the state-of-the-art prediction
accuracy at the time. However, Rivas et al. [24, 25] pointed out that
ContextFold had poor accuracy in predicting secondary structures
for families not included in the training data, and was likely to fall
into overfitting.

Several hybrid tools that combine both the thermodynamics-
and machine learning-based approaches have been developed.
SimFold [47, 48] modifies Turner’s free energy parameters to fit
training data through the machine learning-based approach using
training data including triplets of RNA sequences and their sec-
ondary structure as well as their free energies. MXfold [49] com-
bines Turner’s energy parameters with rich-parametrized param-
eters trained by a max-margin framework, called structured sup-
port vector machines. It learns more precise parameters for sub-
structures observed in the training data, reducing overfitting
using thermodynamic parameters for unobserved substructures.
MXfold2 [50], the successor of MXfold, utilizes deep learning
to compute four types of scores for loop substructures: helix
stacking scores, helix opening scores, helix closing scores and
unpaired region scores, and combines them with Turner’s energy
parameters, resulting in highly accurate and robust secondary
structure prediction with a reduced risk of overfitting.

The majority of methods developed thus far predict RNA
secondary structures based on the MFE under a given set of energy
parameters. As the distribution of RNA secondary structures
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Figure 3. A schematic diagram of de novo RNA secondary structure prediction algorithms. Most RNA secondary structure prediction algorithms can
be categorized by three aspects: ‘Architecture’, ‘Parameterization’ and ‘Inference’. Rivas et al. [25] added ‘Scoring scheme’ to these aspects, which is
uniquely determined by ‘Parameterization’, and thus ‘Scoring scheme’ is omitted in this paper. From the ‘Architecture’ aspect, RNA secondary structure
prediction algorithms can be categorized into nearest neighbor models, probabilistic generative models and deep learning models, depending on the
RNA computational models. These are further sub-categorized according to their parameter assignment, fine-grainedness, grammatical rules etc. The
‘Parameterization’ aspect classifies RNA secondary structure prediction algorithms into three types, depending on how they find optimal parameter
values for the parameter set defined in the ‘Architecture’: wet-lab experiments, machine learning and deep learning. Finally, the ‘Inference’ aspect
classifies RNA secondary structure prediction algorithms according to how they use the models determined in the ‘Archtecture’ and ‘Parameterization’
to make secondary structure predictions.

Figure 4. The nearest neighbor model decomposes RNA secondary struc-
tures into loop substructures. Hairpin loops are closed by a single base
pair. Loop substructures that are closed by two base pairs with no
unpaired bases are called stackings, those with unpaired bases on one
strand are called bulge loops and those with unpaired bases on both
strands are called internal loops. Multi-branch loops are loop substruc-
tures that are closed by three or more base pairs. Loop substructures
closed by no base pairs are called external loops.

follows the Boltzmann distribution, the MFE is equivalent to
the maximum likelihood estimation (MLE), which predicts a
secondary structure with the maximum probability under
the Boltzmann distribution. An alternative scheme, known as
the maximum expected accuracy (MEA) approach, has been
proposed, which predicts a secondary structure that maximizes
the expected number of correctly predicted base pairs under
the Boltzmann distribution, rather than predicting the MFE or
MLE structure. The expected number of correctly predicted base
pairs is calculated using the McCaskill algorithm [51], which is
derived by replacing the ‘min’ operation of the Zuker algorithm
with the ‘logsumexp’ operation. This scheme, first proposed
in Knudsen et al.[52], is also implemented in various tools,

such as CONTRAfold, RNAfold and RNAstructure. Additionally,
Hamada et al.[53] have redefined MEA to be more compatible with
the accuracy metrics for predicting RNA secondary structures,
and developed CentroidFold [53, 54] using Turner’s parameters,
CONTRAfold’s parameters and the Boltzmann likelihood param-
eters by Andronescu et al. [48].

The nearest neighbor model for pseudoknot-free structures
was extended by incorporating additional parameters for pseudo-
knot substructures, and thus nearest neighbor models for pseudo-
knots, such as the Rivas–Eddy model [55], the Dirks–Pierce model
[56] and the Cao–Chen model [57], were developed to model RNA
secondary structures that include pseudoknots. Algorithms to
compute exact minimum free energies on these models through
dynamic programming have been implemented as PKNOTS [55]
and NUPACK [56], with a significant computational cost of O(N6)

time for PKNOTS, O(N5) time for NUPACK, and O(N4) space for
both for the limited complexity of pseudoknotted structures. For
more accurate prediction of secondary structures including pseu-
doknots, further efforts were made to use machine learning tech-
niques to estimate more accurate energy parameters. Andronescu
et al. [58] used HotKnots [59], which can rapidly predict pseudo-
knotted structures through heuristics on the Dirks–Pierce model,
to train its parameters from training data using the same method-
ology as SimFold. In contrast, IPknot [60, 61] utilizes the results
of learning the parameters of the nearest neighbor model for
pseudoknot-free structures, such as CONTRAfold, from training
data and forcibly predicts pseudoknotted structures through a
heuristic using integer programming.

Probabilistic generative models
The use of stochastic context-free grammars (SCFGs) as a
probabilistic generative model for modeling RNA secondary
structures without pseudoknots was first proposed by Eddy and
Durbin [62] and Sakakibara et al. [63]. A variant of this approach,
known as covariance models, has been applied to the popular RNA
homology search tool, Infernal [64]. Building covariance models
requires highly accurate RNA multiple sequence alignments,
which enable accurate and robust homology searches due to the
evolutionary information provided by the alignment. Pfold [52, 65]
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is a method for RNA secondary structure prediction that utilizes
simple context-free grammars. Dowell et al. [66] compared nine
lightweight grammars for RNA secondary structure prediction,
including the Pfold grammar. Sato et al. [67] proposed a method
for learning RNA grammars with appropriate complexity using a
non-parametric Bayesian approach. TORNADO [24] is a flexible
framework that can describe a variety of RNA grammars, allowing
SCFGs to emulate the nearest neighbor model with Turner’s
parameters or CONTRAfold, and demonstrated prediction
accuracy comparable with their counterparts.

Since RNA secondary structure prediction including pseudo-
knots is beyond the capacity of context-free grammars, context-
sensitive grammars, such as tree-adjoining grammars [68, 69]
and multiple context-free grammars [70], are alternatively used
for predicting pseudoknotted structures. However, due to their
large computational complexity, it is impractical to use them for
secondary structure prediction including pseudoknots.

Deep Learning models
Deep learning techniques have been leveraged to achieve ground-
breaking advancements in a plethora of fields, including the
life sciences, and have been applied to the prediction of RNA
secondary structures. A majority of deep learning-based methods
for RNA secondary structure prediction make no assumptions
about the structures themselves, such as the nearest neighbor
model and probabilistic generative models. Instead, these meth-
ods perform secondary structure prediction by solving multiple
binary classification problems for all combinations of two bases in
a given RNA sequence, determining whether each of the two bases
form a base pair or not. In order to address the constraints that
RNA secondary structures must satisfy, such as the restriction
that each base can only form a base pair with at most one
other base, methods such as E2Efold [71] and UFold [72] utilize
linear programming, while Akiyama et al. [73] employ integer
programming, originated from IPknot [60, 61]. SPOT-RNA [74] did
not aim to solve such constraints, instead attempting to predict
base triplets, and employed ensemble of multiple networks with
different hyperparameters to mitigate overfitting. UFold, on the
other hand, aimed to reduce overfitting by utilizing data aug-
mentation, through the random generation of a large number of
artificial RNA sequences and their secondary structures predicted
by CONTRAfold, as additional training data.

Unlike other deep learning-based approaches, MXfold2 [50]
employs deep learning to infer the energy of decomposed loop
substructures within the nearest neighbor model, subsequently
utilizing the Zuker algorithm to predict RNA secondary structures.
To mitigate overfitting, MXfold2 introduces thermodynamic reg-
ularization, ensuring that the energy of the secondary structure
calculated by MXfold2 does not deviate significantly from the free
energy calculated using Turner’s parameters.

It has been acknowledged that the utilization of deep learn-
ing for RNA secondary structure prediction can easily result in
overfitting, owing to the high number of parameters that require
training. This implies that the accuracy of secondary structure
prediction for structurally dissimilar RNA sequences from the
training data is not particularly high if no efforts are taken to pre-
vent overfitting [50, 73, 75, 76]. For example, E2Efold [71] was not
designed against overfitting, and in their benchmark experiments,
the training and test datasets were created by randomly splitting
a single dataset. Consequently, overfitting could not be detected
because structurally similar sequences were included in training
and test datasets. This resulted in very low prediction accuracy

of E2Efold for families not included in the training data, which is
unfortunately not practical.

Comparison of the three computational models
Table 1 summarizes the de novo RNA secondary structure predic-
tion tools presented in this review that are currently available.
The nearest neighbor model is based on the knowledge of RNA
secondary structures, which has been extensively studied for a
long time. To date, the mainstream approach for predicting RNA
secondary structures has been to conduct wet-lab experiments
or employ machine learning techniques to determine the energy
parameters of the nearest neighbor model. Probabilistic genera-
tive models, on the other hand, provide a framework for describing
RNA structure modeling through the use of formal grammars.
As demonstrated by Rivas et al. [24], the nearest neighbor model
can be articulated by SCFGs, with prediction accuracy that is
comparable with that of its nearest neighbor model counterpart.
However, to date, no RNA grammar has been developed that
surpasses the prediction accuracy of the nearest neighbor model.

Conversely, full deep learning methods, with the exception
of MXfold2, do not rely on knowledge of RNA secondary struc-
tures, thereby allowing for a high degree of freedom in model
construction. This can lead to improved fitting of the training
data, and thus high prediction accuracy for RNA sequences with
structures similar to those in the training data. However, this
also increases the risk of overfitting and poor prediction accuracy
for structurally dissimilar sequences. The problem of overfitting
is a prevalent issue not only in deep learning but also in other
machine learning techniques with rich parametrization; it is par-
ticularly acute in deep learning as models can easily be scaled to
an enormous number of parameters [75, 78].

Datasets for building models
Frequently employed benchmark datasets for RNA secondary
structure prediction are summarized in Table 2, which include
RNA STRAND dataset [79], Archive II dataset [80] and RNAS-
tralign dataset [81]. These benchmark datasets were constructed
by compiling RNA sequences with known and reliable secondary
structures from various databases such as Comparative RNA Web
(CRW) Site [83], tmRNA database [84], Sprinzl tRNA Database
[85], RNase P Database [86], SRP Database [84] and others. These
benchmark datasets, however, are limited in their diversity of
RNA secondary structures, containing only 8–10 RNA families.
More recently, a more comprehensive dataset, bpRNA-1m dataset
[82], has been constructed by incorporating RNA sequences with
secondary structure annotations from Rfam 12.2 [4] in addition
to RNA sequences derived from the aforementioned databases,
comprising 102 318 sequences from approximately 2600 RNA
families.

In many previously conducted benchmark experiments for
RNA secondary structure prediction methods, these datasets have
been randomly partitioned into training and test data for cross-
validation. This means that the test data may not contain highly
homologous sequences to those in the training data, but struc-
turally similar sequences from the same families.

Rivas et al. [24, 25] have highlighted that accuracy evaluations
utilizing ‘sequence-wise cross-validation’ cannot detect overfit-
ting, and subsequently established TrainSetA, TestSetA, Train-
SetB and TestSetB. TrainSetA and TestSetA were compiled from
literature sources [21, 47, 48, 66, 85, 87], while TrainSetB and
TestSetB, comprising 22 families with 3D structure annotations,
were extracted from Rfam 10.0 [3]. The sequences in Train/Test-
SetB share less than 70% sequence identity with the sequences
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Table 1. List of de novo RNA secondary structure prediction tools presented in this paper that are currently available.

Model TM ML MEA PK Ref. Year Related URL

RNAstructure NN � � [11, 18] 1999 https://www.urmc.rochester.edu/rna/
PKNOTS NN � � [55] 1999 https://github.com/EddyRivasLab/PKNOTS
Mfold/UNAfold NN � [14, 15] 2003 http://www.unafold.org/
RNAfold NN � � [16, 17] 2003 https://www.tbi.univie.ac.at/RNA/
NUPACK NN � � [56] 2003 https://www.nupack.org/
CONUS PG MLE [66] 2004 http://eddylab.org/software/conus/
HotKnots NN � CG � [58, 59] 2005 https://www.cs.ubc.ca/labs/algorithms/Software/HotKnots/
CONTRAfold NN CLLM � [21, 22] 2006 http://contra.stanford.edu/contrafold/
SimFold NN � CG, BL [47, 48] 2007 https://www.cs.ubc.ca/labs/algorithms/Projects/RNA-Params/
CentroidFold NN � � [53, 54] 2009 https://github.com/satoken/centroid-rna-package
ContextFold NN MM [23] 2011 https://www.cs.bgu.ac.il/&#x007E;negevcb/contextfold/
IPknot NN � � � [60, 61] 2011 https://github.com/satoken/ipknot
TORNADO PG MLE � [24] 2012 https://github.com/EddyRivasLab/tornado
MXfold NN � MM � [49] 2018 https://github.com/mxfold/mxfold
LinearFold NN � [45] 2019 https://github.com/LinearFold/LinearFold
SPOT-RNA DL DL � [74] 2019 https://github.com/jaswindersingh2/SPOT-RNA
E2Efold DL DL � [71] 2020 https://github.com/ml4bio/e2efold
MXfold2 NN � DL+MM [50] 2021 https://github.com/mxfold/mxfold2
EternaFold NN multitask � [77] 2022 https://github.com/eternagame/eternafold
Ufold DL DL � [72] 2022 https://github.com/uci-cbcl/UFold
NeuralFold DL DL � [73] 2022 https://github.com/keio-bioinformatics/Neuralfold

The column labeled ‘Model’ indicates the category to which the method belongs (NN: nearest neighbor model, PG: probabilistic generative model, DL: deep
learning-based model). The ‘TM’ column indicates whether the method uses thermodynamic parameters. The column labeled ‘ML’ indicates whether the
method can train its parameters using machine learning, and if so, which training method is used (MLE: maximum likelihood estimation, CG: constraint
generation, CLLM: conditional log-linear models, BL: Boltzmann likelihood, MM: max-margin framework, DL: deep larning). The ‘MEA’ column indicates

whether the method predicts secondary structure by default (�) or optionally (�) with the maximum expected accuracy. The column labeled ‘PK’ indicates
whether the method can predict pseudoknotted structures.

Table 2. Benchmark datasets commonly used in recent machine learning- and deep learning-based methods.

# fam. # seq. Length Ref.

RNA STRAND 172 4666 4 ∼ 4381 [79]
TORNADO dataset [24]

TrainSetA 11 3166 10 ∼ 734
TestSetA 11 697 10 ∼ 768
TrainSetB 22 1094 27 ∼ 237
TestSetB 22 430 27 ∼ 244

Archive II 10 3975 28 ∼ 2968 [80]
RNAStralign 8 30 451 30 ∼ 1851 [81]
bpRNA-1m ≈2600 102 318 2 ∼ 4381 [82]
bpRNAnew ≈1500 5401 33 ∼ 489 [50]

# fam.: the number of families. # seq.: the number of sequences.

in TrainSetA. It is worth mentioning that the literature-based
TrainSetA and Rfam-based TestSetB share no families and are
structurally dissimilar, while TrainSetA and TestSetA exhibit some
structural similarity. By conducting ‘family-wise cross-validation’,
in which training is performed using TrainSetA and subsequently
testing with TestSetB, Rivas et al. [24, 25] demonstrated that Con-
textFold, which exhibits an extremely high prediction accuracy
in sequence-wise cross-validation, is prone to overfitting. Similar
trends have been reported for deep learning-based methods by
Szikszai et al. [75].

To further perform family-wise cross-validation on models
trained from a bpRNA-1m-based dataset, Sato et al. [50] con-
structed bpRNAnew dataset from approximately 1500 families
newly discovered and registered with Rfam since the release of
Rfam version 12.2 (January 2017), on which bpRNA-1m dataset is
based.

In general, machine learning and deep learning algorithms
operate under the assumption that training data are randomly
and uniformly sampled from the population. However, this

assumption is often invalidated, even in large datasets such
as bpRNA-1m dataset, as novel RNA families continue to be
discovered to this day. If prior knowledge of the family of a
sequence of interest is available, a homology search tool such
as Infernal [64] can be more accurate in predicting its structure.
However, when no knowledge of the family is available, it is
necessary to make RNA secondary structure predictions solely
from the sequence in order to perform structural and functional
analyses. Therefore, it is crucial to evaluate prediction accuracy in
such situations through the use of family-wise cross-validation,
avoiding methods with significantly lower accuracy for unknown
families.

APPLICATIONS OF RNAs TO THERAPEUTICS
Currently, the majority of pharmaceuticals consist of small
molecules that target disease-associated proteins in small
molecule drug discovery. However, the limitations of this approach
are well known, and there is a pressing need for alternative

https://www.urmc.rochester.edu/rna/
https://github.com/EddyRivasLab/PKNOTS
http://www.unafold.org/
https://www.tbi.univie.ac.at/RNA/
https://www.nupack.org/
http://eddylab.org/software/conus/
https://www.cs.ubc.ca/labs/algorithms/Software/HotKnots/
http://contra.stanford.edu/contrafold/
https://www.cs.ubc.ca/labs/algorithms/Projects/RNA-Params/
https://github.com/satoken/centroid-rna-package
https://www.cs.bgu.ac.il/~negevcb/contextfold/
https://github.com/satoken/ipknot
https://github.com/EddyRivasLab/tornado
https://github.com/mxfold/mxfold
https://github.com/LinearFold/LinearFold
https://github.com/jaswindersingh2/SPOT-RNA
https://github.com/ml4bio/e2efold
https://github.com/mxfold/mxfold2
https://github.com/eternagame/eternafold
https://github.com/uci-cbcl/UFold
https://github.com/keio-bioinformatics/Neuralfold
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Figure 5. (A) Schematic representation of the RNA aptamer development process and (B) the significance of RNA structure in each RNA therapeutic
approach. (A) The basic and exploratory research comprises multiple stages, encompassing HT-SELEX, candidate identification from the HT-SELEX
output, assessment of the selected candidates’ activity and sequence truncation/optimization. (B) The importance of RNA structure (right) in three
RNA-based therapeutics (left) that have been highlighted in this review.

drug modalities. To address these limitations, synthetic and
natural RNAs have garnered significant attention as potential
drug candidates and targets, respectively. This section outlines
the use of machine-learning and deep-learning techniques in the
discovery and development of RNA-based drugs, including the use
of synthetic RNAs as drugs and natural RNAs as targets for drug
discovery. We will also discuss the importance of RNA structures
in these approaches (Figure 5B).

RNA drug discovery—making RNAs into drugs
RNA aptamers
RNA aptamers are single-stranded RNA molecules that range in
length from 20 to 50 bases and form specific three-dimensional
structures based on their nucleotide sequence. These structures
allow RNA aptamers to fit into the shape of target substances,
such as disease-related proteins, and act as drugs; it is therefore
important to consider RNA structures in aptamer design. RNA
aptamers have several advantages over traditional drugs, includ-
ing high affinity and specificity, the ability to be designed for a
wide range of target molecules, including membrane proteins, and
low immunogenicity. As a result, RNA aptamers are considered to
be potential next-generation drugs. As of February 2022, only one
RNA aptamer, Macugen® (pegaptanib), has been approved for the
treatment of age-related macular degeneration.

The process of creating RNA aptamers follows a similar path
to traditional drug development, comprising several stages such
as basic and exploratory research, preclinical study, clinical
study, application and production and distribution (Figure 5A).
Many computational studies on RNA aptamers focus on the
initial stage of basic and exploratory research, which is further
divided into several steps. The first step involves obtaining
candidate aptamer sequences using a technique called SELEX
(Systematic Evolution of Ligands by EXponential enrichment)
[88]. This process involves repeatedly binding and amplifying RNA
sequences that bind strongly to the target from a pool of random

sequences, enriching for aptamers with high binding activity.
High-throughput sequencing techniques, known as HT-SELEX
(High-Throughput SELEX), enable comprehensive measurement
of the sequence information in the enriched sequence pool at
each round, generating a large amount of sequence data in each
round of HT-SELEX.

A number of computational approaches have been proposed to
improve the identification of aptamers from HT-SELEX data [89–
91], including sequence/structure clustering-based methods [92–
94], motif-based methods [95, 96], scoring-based methods [97, 98]
and so forth. Here, we review some of these approaches that utilize
machine learning and deep learning and discuss their effective
utilization.

Bashir et al. [99] proposed a machine learning (ML)-guided
Particle Display methodology (MLPD), which integrates physical
experiments and machine learning. They used particle display
(PD) to partition aptamer libraries according to affinity and used
these data to train machine learning models. This method allows
for the in silico prediction of aptamer affinity, and the authors
were able to successfully identify novel aptamers with enhanced
affinity.

RaptGen [100] employs a combination of a variational autoen-
coder (VAE) and a profile hidden Markov model (HMM) to effec-
tively model aptamers with local motifs that contain substitu-
tions and indels. The latent spaces learned by RaptGen are used
for several purposes: (i) visualizing SELEX data and generating
novel aptamers, (ii) optimizing aptamers using Bayesian optimiza-
tion with additional information, such as detailed affinity scores
obtained through surface plasmon resonance experiments and
(iii) designing shortened (truncated) aptamers, which is realized
using shorter profile HMM in RaptGen model. While the current
version of RaptGen does not take structural information of RNA
into account, this can be addressed using a profile stochastic
context grammar (SCFG; see the previous section) instead of a
profile HMM.
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Di Gioacchino et al. [101] created a restricted Boltzmann
machine (RBM) model using SELEX data for thrombin, which
is a probabilistic generative model capable of generating novel
aptamer sequences (similar with RaptGen). They demonstrated
that the log-likelihood of sequences correlates with their fitness
(i.e. binding ability to the target).

Recently, Andress et al. [102] proposed a method called
Daptev, which combines a deep generative model (VAE) and
molecular simulation (molecular docking). As both data-driven
and simulation-based approaches (considering tertiary structures
of aptamers) can be useful for in silico aptamer design, this may
be a promising approach.

Note that the above-mentioned approaches, such as RaptGen
and MLPD, assume a target protein with experimental data (e.g.
SELEX). More general (and difficult) problem setting that predicts
pairs of aptamer-protein is introduced. AptaNet [103] uses a multi-
layer perceptron (MLP) to predict aptamer–protein pairs, taking
a pair of RNA and amino acid sequences as input. The training
dataset for this model was compiled from Aptagen and Aptamer
Base and consists of 850 positive and 2554 negative instances. In
Torkamanian-Afshar et al. [104], a classifier for aptamer–protein
pairs was trained using the sequential and structural properties
of known aptamer–protein complexes, utilizing positive and neg-
ative data from RPINBASE [105]. This classifier was then used
to select target-binding RNA sequences as a potential biomarker
for aminopeptidase N (CD13). These sequences were utilized as
the starting population for a genetic algorithm (GA) to generate
new aptamers that exhibit higher selectivity for binding to CD13
compared with the original ones.

In contrast, a wealth of data on RNA sequences that bind to
various natural RNA-binding proteins (RBPs) have been accumu-
lated, and research utilizing these data through machine learning
and deep learning methods is ongoing [106]. For example, Yamada
et al. [107] proposed a BERT (Bidirectional Encoder Representa-
tions from Transformers)-based model for predicting RNA–protein
interactions with biological implications, and Kashiwagi et al. [108]
introduced a max-margin model for predicting residue-level con-
tact in RNA–protein interactions. These studies on natural RBPs
could potentially inform the design of artificial RNA aptamers
that target proteins; for further details, see the reference [109].

As previously mentioned, beneficial machine learning tech-
niques for in silico aptamer design have been developed in recent
years and are anticipated to aid in the expansion of aptamer
drug discovery in the future. Furthermore, the refinement of RNA
structure prediction contributes significantly to the development
of highly effective RNA aptamers.

mRNA vaccines
Since 2020, the development of coronavirus disease 2019 vac-
cines such as BNT162b2 (Pfizer/BioNTech) and mRNA-1273 (Mod-
erna) has been active, and the drug discovery modality of mRNA
medicine has garnered significant attention [110–112]. mRNA
vaccines have also been proposed as a potential therapeutic
approach for cancer [113]. To facilitate the rapid production of
mRNA vaccines, computational design of mRNA sequences is
crucial, involving the comprehensive design of 5’ untranslated
region (UTR), coding sequence (CDS) and 3’UTR sequences.

The sequence of the 5’UTR is closely correlated with translation
efficiency. A study by Sample et al. [114] developed a convolu-
tional neural network (CNN) model to predict Mean Ribosome
Load (MRL), a measure of ribosome association, for given 5’UTR
sequence. The authors used MRL measurements from 280 000
random 5’UTRs as a training dataset for the model. Utilizing this

CNN model and a GA, the authors were able to generate 5’UTR
sequences with a desired MRL value. These comprehensive data
will be beneficial for 5’UTR design in the development of mRNA
vaccines.

The sequence of CDS also impacts the abundance of trans-
lation. iCodon [115] is a tool designed to optimize coding
regions that contain synonymous codon substitutions in order
to increase mRNA stability and protein expression (e.g. designing
high-expression reporters) or de-optimize sequences containing
synonymous codon substitutions (e.g. designing sequences with
reduced expression). The prediction model of mRNA stability is
proposed in Medina-Muñoz et al. [116]. Zhang et al. [117] proposed
an efficient method, named LinearDesign, for mRNA design by
reducing it to a problem in computational linguistics. The optimal
mRNA is analogous to finding the most probable sentence among
similar-sounding alternatives. The algorithm takes 11 min for
the Spike protein and can optimize stability and codon usage
concurrently.

According to Leppek et al. [118], a method for optimizing the
structure, stability and translation of mRNA through combinato-
rial means was introduced. Initially, viral and cellular UTRs mined
from literature were procured, followed by structure-informed
CDS design in which Eterna (crowdsourced) [77] and the LinearDe-
sign were utilized as efficient design tools.

RNA-targeted drug discovery—making RNAs into
drug target
Another challenge in drug discovery is the depletion of poten-
tial drug targets. Currently, disease-related proteins are the pri-
mary targets for drug discovery. Recent research has shown that
lncRNAs play a vital role in a variety of intracellular regulatory
processes in eukaryotes, including humans [119, 120]. Moreover,
many lncRNAs have been found to be associated with serious
diseases such as cancer and neurodegenerative disorders, making
them potential new drug targets [121–123].

A strategy for RNA-targeted drug discovery is to design small
molecules (i.e., traditional drugs) that bind to RNA structures
in lncRNAs [124–126] and ribo-switches [127], indicating that
the consideration of RNA structures is essential in this kind of
researches. Although there exists limited studies for RNA–target
drug discovery using machine learning [128], we will introduce a
few studies in the following.

RNAmigos [129] is a tool that constructs and encodes network
representations of RNA structures and predicts potential ligands
for novel binding sites. It employs a graph convolutional neural
network (GCN) to represent RNA structures as an Augmented
Base Pairing Network (ABPN), including both canonical and non-
canonical base-pairs. The training data were sourced from the
RNA–ligand pairs in the RCSB PDB Data Bank [130].

A recent study by Yazdani et al. [131] that analyzed data from
screening experiments suggests that there may be a correla-
tion between the properties of RNA and the properties of small
molecule ligands that bind to RNA. Using machine learning meth-
ods to analyze their own library of RNA-bound small molecules,
the authors found that general chemical properties of RNA-bound
small molecule compared with protein-bound small molecules
and FDA-approved drugs.

Stefaniak et al. [132] developed AnnapuRNA, a machine-
learning statistical scoring function, to accurately predict the
structure of RNA-ligand complexes. Their program utilizes a
coarse-grained representation for both the RNA and small
molecule ligands involved in the interaction. On the other hand,
Chhabra et al. [133] used a distance-dependent fingerprint to
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characterize the binding pose of a ligand in an RNA binding pocket
(RNAPosers). They trained a machine-learning algorithm using
data from 80 experimentally determined RNA–ligand complexes
and used it to score docking poses.

Grimberg et al. [134] sought to design novel small molecule
inhibitors that would bind to the RNA hairpin within the ribo-
somal peptidyl transferase center (PTC) of Mycobacterium tuber-
culosis through the use of computational optimization mod-
els integrating CNNs with classical machine learning regression
and decision tree models, using approximately 800 training data
points [135]. Upon synthesizing the 10 small molecules identi-
fied by these computational means, functional validation was
conducted, revealing that four of the molecules were potent
inhibitors targeting hairpin 91 in the ribosomal PTC of M. tuber-
culosis, thereby inhibiting translation. This study demonstrates
the potential for optimizing RNA-binding drugs with sufficient
training data.

It should be noted that all of the aforementioned methods
assume targeted RNA elements of relatively small size. However,
it is crucial to identify specific RNA elements (such as struc-
tures, modifications and binding sites of other biomolecules) that
are suitable for drug targeting, as lncRNAs are lengthy and the
location of functional elements can be challenging to determine.
To this end, various approaches have been proposed, including
infoRNA [136]. While machine learning-based approaches in this
direction are limited, these approaches may prove useful in iden-
tifying functional elements in lncRNAs in the future if sufficient
data are available.

CHALLENGES AND OPPORTUNITIES
The accuracy of RNA secondary structure prediction has consid-
erably improved in recent years due to the utilization of machine
learning and deep learning techniques. One potential avenue for
further enhancement in prediction accuracy is the incorporation
of evolutionary information from homologous sequences, which
can be achieved through methods such as common secondary
structure prediction from multiple sequence alignments [26, 27],
probabilistic consistency transformation of base-pairing probabil-
ities from homologous sequences [28, 29], MSA transformers [137]
and the utilization of pre-trained large language models, such as
BERT [107, 138, 139].

Additionally, high-throughput experiments such as selective
2’-hydroxyl acylation analyzed by primer extension (SHAPE)
[19] and dimethyl sulphate (DMS) [20], which can stochastically
induce chemical modifications on unpaired nucleotides, have
been shown to improve the accuracy of secondary structure
predictions. The incorporation of pseudo-free energy calculated
using the reactivity of chemical probing from high-throughput
experiments has also been shown to substantially enhance the
accuracy of thermodynamics-based RNA secondary structure
prediction [140]. However, despite the potential benefits, few
machine learning methods have been developed to predict
RNA secondary structures from RNA sequences with chemical
reactivity due to a lack of a large amount of training data including
not only RNA sequences and their structure, but also their
chemical reactivities. EternaFold [77] augmented the accuracy
of secondary structure prediction by refining the parameters of
the nearest neighbor model via multitask learning with high-
throughput experimental data that lack secondary structure
annotations, thereby demonstrating the potential of using high-
throughput experimental data in machine learning-based RNA
secondary structure prediction. Currently, the accuracy of RNA

secondary structure prediction is still insufficient for long RNA
sequences longer than 500 bases. One of the reasons for this is
that the number of long RNAs with known secondary structures
is small, and models that can handle long sequences cannot
be sufficiently trained by machine learning or deep learning. If
secondary structure prediction models can be trained from high-
throughput experimental data, which are easily available even for
long sequences, the accuracy of secondary structure prediction
for long sequences is expected to improve.

RNA modifications play a significant role in various biological
processes including splicing, translation, cell development and
disease [141, 142]. In mRNA vaccines, all uridines are modified
to N1-methylpseudouridines, which enables them to bypass the
Toll-like receptors (TLRs) that detect RNA viruses and thus pro-
duce viral proteins [143]. Due to the need for modified free energy
parameters and potential alteration of base pairing partners, the
development of RNA secondary structure prediction methods that
can consider RNA modifications is limited [144]. However, as RNA
modifications are more prevalent in vivo than previously thought,
and the increasing demand for mRNA vaccine stability prediction
and other applications make the development of highly accurate
RNA modification-aware RNA secondary structure prediction by
machine learning an urgent task. However, this is a challenging
task due to the scarcity of data of RNA sequences containing
modified bases with secondary structures available.

It is highly demanding to establish high-throughput methods
for determining RNA 3D structures, not only for RNA structural
and functional analysis, but also for RNA drug discovery and RNA-
targeted drug discovery. AlphaFold2 [145] has achieved highly
accurate protein 3D structure prediction comparable with exper-
imental structure determination. Inspired by AlphaFold2, similar
deep learning approaches have been applied to tackle RNA 3D
structure prediction and have been reported to perform well on
their datasets [146–148]. However, in the competition for RNA 3D
structure prediction held at the most recent CASP 15 (https://
predictioncenter.org/casp15/), these deep learning-based RNA 3D
structure prediction methods were not at all comparable with
conventional approaches. The number of 3D structures registered
in Protein Data Bank (PDB) [149] is 173 649 for proteins, but
only 1682 for RNAs (December 2022). Therefore, highly accu-
rate RNA 3D structure prediction without falling into overfitting
is presumed to be challenging with fully deep learning-based
approaches like AlphaFold2.

CONCLUSION
In recent years, there has been a growing interest in structure-
based RNA analysis, as it is believed that the function of many
RNAs is closely related to their structures. In this paper, we
have reviewed the latest advancements in RNA secondary struc-
ture prediction, which is a fundamental technique for structure-
based RNA analysis, particularly in methods that utilize machine
learning and deep learning. We have also discussed the use of
machine learning and deep learning in RNA drug discovery and
RNA-targeted drug discovery, which are among the most notable
applications of structure-based RNA analysis in recent times.
It is important to note that compared with proteins, there are
orders of magnitude fewer known samples of RNA structures
and interactions with other molecules. Therefore, when applying
machine learning and deep learning techniques to analyze RNAs,
it is essential to be cognizant of the fact that the training data may
be small, biased or both, and to implement various strategies to
enhance generalization capabilities.

https://predictioncenter.org/casp15/
https://predictioncenter.org/casp15/
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Key Points

• In this review, we have outlined the field of RNA sec-
ondary structure prediction, focusing particularly on
methods that utilize machine learning and deep learn-
ing.

• It is important to note that, in order to maintain the pre-
diction accuracy of these methods, the test data used for
benchmarking must be carefully constructed to detect
any potential overfitting.

• Fundamental technologies of RNA informatics are appli-
cable to the development of RNA-based therapeutics.

• We provided a review of RNA drug discovery and RNA–
target drug discovery, in which various machine learning
and deep learning approaches are effectively utilized.
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