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Abstract

Background Identifying prediagnostic neurodegenerative disease is a critical issue in neu-

rodegenerative disease research, and Alzheimer’s disease (AD) in particular, to identify

populations suitable for preventive and early disease-modifying trials. Evidence from genetic

and other studies suggests the neurodegeneration of Alzheimer’s disease measured by brain

atrophy starts many years before diagnosis, but it is unclear whether these changes can be

used to reliably detect prediagnostic sporadic disease.

Methods We trained a Bayesian machine learning neural network model to generate a

neuroimaging phenotype and AD score representing the probability of AD using structural

MRI data in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) Cohort (cut-off 0.5,

AUC 0.92, PPV 0.90, NPV 0.93). We go on to validate the model in an independent real-

world dataset of the National Alzheimer’s Coordinating Centre (AUC 0.74, PPV 0.65, NPV

0.80) and demonstrate the correlation of the AD-score with cognitive scores in those with an

AD-score above 0.5. We then apply the model to a healthy population in the UK Biobank

study to identify a cohort at risk for Alzheimer’s disease.

Results We show that the cohort with a neuroimaging Alzheimer’s phenotype has a cog-

nitive profile in keeping with Alzheimer’s disease, with strong evidence for poorer fluid

intelligence, and some evidence of poorer numeric memory, reaction time, working memory,

and prospective memory. We found some evidence in the AD-score positive cohort for

modifiable risk factors of hypertension and smoking.

Conclusions This approach demonstrates the feasibility of using AI methods to identify a

potentially prediagnostic population at high risk for developing sporadic Alzheimer’s disease.
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Plain language summary
Spotting people with dementia early

is challenging, but important to

identify people for trials of treatment

and prevention. We used brain scans

of people with Alzheimer’s disease,

the commonest type of dementia,

and applied an artificial intelligence

method to spot people with Alzhei-

mer’s disease. We used this to find

people in the Healthy UK Biobank

study who might have early Alzhei-

mer’s disease. The people we found

had subtle changes in their memory

and thinking to suggest they may

have early disease, and we also found

they had high blood pressure and

smoked for longer. We have demon-

strated an approach that could be

used to select people at high risk of

future dementia for clinical trials.
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A critical task in dementia research is to identify disease at
the earliest possible time point, permitting early inter-
vention with lifestyle change1 or disease-modifying

therapies2 at a time when the disease process could potentially
be reversed or halted, and quality of life remains high. The dif-
ficulty in achieving early and accurate diagnosis has been high-
lighted as a major factor in the lack of success of clinical trials for
neurodegenerative diseases, including Alzheimer’s disease2,3.
Neuroimaging abnormalities in genetic dementia cohorts suggest
that neurodegenerative pathologies begin decades before
symptoms4,5. Predicting disease with such certainty before
symptom onset is not possible in sporadic forms of dementia, so
an alternative strategy is needed to identify an at-risk population
using disease biomarkers to find people with early stages of
neuropathology who are at high risk of developing cognitive
impairment in the future. Small studies of ageing cohorts cap-
turing people who have converted to Alzheimer’s disease have
identified group-level structural changes in the medial temporal
lobe detectable prior to diagnosis6–9. Whether identifying such
changes are sufficient to identify individuals at risk of dementia is
unclear. Identifying such a high-risk group would be suitable for
prevention studies or early disease-modifying treatment trials10.

The challenge of identifying disease at the earliest possible
point has led to proposed criteria for at-risk or presymptomatic
Alzheimer’s disease that rely on biomarker evidence rather than
clinical syndrome11. One set of criteria proposes an “ATN”
classification of Alzheimer’s disease, representing Amyloid (A),
Tau (T), and Neuronal loss (N) as central pillars of Alzheimer’s
pathology12. Many biomarkers to assess brain tau and amyloid
pathology in life are expensive, invasive, or not widely available.
However, neuronal loss is readily measured in vivo using struc-
tural brain imaging.

Structural neuroimaging has been central in clinical diagnosis
and in attempts to classify Alzheimer’s disease using neuroima-
ging for many years13,14. Loss of volume in the hippocampus is
well described in Alzheimer’s disease, and whole brain volume
may also be relevant15,16. Other specific brain regions are less well
studied, yet may be relevant in identifying people with Alzhei-
mer’s disease—alone or combined with hippocampal atrophy.
More complex analytical approaches offer the opportunity to use
all the available information from structural neuroimaging data to
identify a specific pattern of atrophy relevant to the disease.

Artificial Intelligence (AI) and Machine learning (ML) describe
computational algorithms that can make predictions that reflect
intuitive human thinking and can ‘learn’ from new data. A class
of AI models called deep learning methods uses multiple hier-
archical levels of data abstraction to identify important features to
make a prediction. These models have been successfully applied
to several different contexts in medicine17,18, leveraging neuroi-
maging datasets19 to address a multitude of neuroscientific
questions20. AI approaches in structural MRI have facilitated the
classification of Alzheimer’s disease with a good degree of
accuracy21–30, but few such studies have validated their approach
in an independent dataset31,32.

Despite these achievements in the neuroimaging field, there are
challenges to the generalisability of deep learning models33,34. A
relatively recent trend applies a probabilistic approach to deep
learning by using measures to describe Bayesian uncertainty35,36.
Such uncertainty measures allow for a better characterisation of
the model’s output rather than solely a deterministic value37,
ultimately strengthening the confidence in results derived from
these stochastic models38.

Probabilistic AI approaches are strong candidates to make the
best use of all available information in structural neuroimaging.
The availability of large open-access neuroimaging repositories
permits us to use distinct datasets for training an AI model and

assessing its generalisability. In this work, we use a selective and
well-characterised dataset of Alzheimer’s disease to train the
model (Alzheimer’s Disease Neuroimaging Initiative dataset,
ADNI), and a more ‘noisy’ real-world clinical dataset with a range
of different diseases to assess generalisability (National Alzhei-
mer’s Coordinating Center, NACC).

To identify a group of people at high risk of developing
dementia, we use the trained model to find people with a neu-
roimaging AI-derived phenotype of Alzheimer’s disease in a
healthy cohort without a diagnosis of dementia from the UK
Biobank study. We demonstrate poorer cognitive performance in
people with an AD-like neuroimaging profile, consistent with a
high prevalence of early Alzheimer’s pathology and potentially
suitable for screening and selection into disease-modifying trials.
We find that this group reports poorer general health and identify
hypertension and smoking as modifiable risk factors in this
cohort.

Methods
Datasets. The ADNI study recruits people with Alzheimer’s
disease, Mild Cognitive Impairment (MCI), and control partici-
pants. It is primarily a research cohort and has a well-
characterised population who have undergone high-quality,
standardised neuroimaging with a standard battery of cognitive
and clinical assessments. We used all available datasets from
ADNI1, ADNI2, ADNI-GO, and ADNI3, comprising 736 base-
line scan sessions from the ADNI dataset with a diagnosis of
Alzheimer’s disease (n= 331) and Controls (n= 405), whose
demographic data are summarised in Table 1.

Because ADNI is a relatively select research cohort, it is
vulnerable to selection bias39; therefore, we used the NACC
dataset for validation. This NACC dataset is a “real-world”
memory clinic-based cohort, including people with Alzheimer’s
disease and a range of other cognitive and non-cognitive
disorders. Because of its pragmatic nature, the NACC dataset is
more heterogeneous in the quality of imaging and additional data
collected. Therefore, it is an ideal dataset for validation of a tool
developed in a more ‘clean’ dataset such as ADNI. We used 5209
people from the NACC dataset whose demographics are
summarised in Table 2. Other degenerative disorders (OD)
correspond to NACC labels “Vascular brain injury or vascular
dementia including stroke”, “Lewy body disease (LBD)”, “Prion
disease (CJD, other)”, “FTLD, other”, “Corticobasal degeneration
(CBD)”, “Progressive supranuclear palsy (PSP)”, and “FTLD with
motor neuron disease (e.g., ALS)”. Other non-degenerative

Table 1 Summary of demographics of the ADNI dataset.

Diagnosis n Mean age (s.d.) Sex (male/female)

AD 331 75 (7.8) 181/150
Control 405 74.7 (5.7) 202/203

Table 2 Summary of demographics of the NACC dataset.

Diagnosis n Mean age
(s.d.)

Sex (male/
female)

Control 2824 68.6 (10.9) 938/1886
AD 1706 73.9 (9) 794/912
Other degenerative
disorders

326 71.2 (9.9) 196/130

Other non-degenerative
disorders

353 69.1 (10) 135/218
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disorders (OND) correspond to NACC labels “Depression”,
“Other neurologic, genetic, or infectious condition”, “Cognitive
impairment for other specified reasons (i.e., written-in values)”,
“Anxiety disorder”, “Cognitive impairment due to medications”,
“Other psychiatric disease”, “Cognitive impairment due to
systemic disease or medical illness”, “Traumatic brain injury
(TBI)”, “Cognitive impairment due to alcohol abuse”, “Bipolar
disorder”, and “Schizophrenia or other psychosis”.

We deliberately chose not to train the model on the NACC
dataset. The argument to train on this dataset rather than ADNI
would be the larger dataset available, but the NACC dataset is
much more ‘noisy’ in the sense that the diagnostic labels are
clinical rather than biomarker supported (as in ADNI). It is
highly likely that if we had trained in the NACC data and
validated in the ADNI dataset our results would have looked
better in terms of raw accuracy, but we consider that this would
be falsely reassuring given the highly selected nature of the ADNI
cohort.

Finally, we used the UK Biobank as a non-clinical longitudinal
ageing cohort to apply the algorithm to a healthy cohort. This
dataset is subject to potential selection bias, tending to be a
population with a low risk for disease40. Despite these limitations,
the size of the dataset, the age of participants, and the high-quality
neuroimaging data make it an ideal cohort to assess at-risk features
for neurodegenerative disease. A summary of the UK Biobank
neuroimaging data is found in Table 3. Some cognitive tests used
in the UK Biobank are not clinical-standard tests but include fluid
intelligence (Touch-screen fluid intelligence test. https://biobank.
ctsu.ox.ac.uk/crystal/ukb/docs/Fluidintelligence.pdf), numeric
memory (Touch-screen numeric memory test. https://biobank.
ctsu.ox.ac.uk/crystal/ukb/docs/numeric_memory.pdf), matrix rea-
soning (UK Biobank Category 501—matrix pattern completion.
https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=501), and reac-
tion time (UK Biobank Category 100032—reaction time. https://
biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100032). The validity of
these tests has been assessed separately, finding moderate to high
validity for the cognitive tests used41.

The previous three datasets are provided by the respective
consortium and not collected by us; therefore, each consortium
had its relevant ethical regulations obtained and approved, and no
extra ethical regulations were specifically required for this work.

ADNI preprocessing. In each cohort, structural MRI Magnetiza-
tion Prepared—RApid Gradient Echo (MPRAGE) scans were
acquired. Further details of the individual imaging protocols are
available for ADNI at http://adni.loni.usc.edu/methods/documents/
mri-protocols/, for NACC at https://files.alz.washington.edu/
documentation/rdd-imaging.pdf, and for the UK Biobank at42.
Scans underwent estimation of regional cortical volume, regional
cortical thickness, and estimated total intracranial volume using the
FreeSurfer toolbox (version 6.0)43. Given the size of the cohorts, the
resulting segmentations were assessed for gross abnormalities, but
minor registration errors were not corrected. Results were obtained
for cortical thickness and volume in the 68 surface-based regions of
the Desikan–Killiany atlas from both hemispheres. In addition, the
brainstem volume was also extracted together with 9 volume fea-
tures per hemisphere (cerebellum white matter, cerebellum cortex,
thalamus proper, caudate, putamen, pallidum, hippocampus,

amygdala, and accumbens area). In total, 155 features were
extracted per brain scan.

The ADNI dataset was divided into a training set with
662 samples and a validation set with 74 samples, representing
approximately 90% and 10% of the original cohort, respectively.
This division approximately preserved the relative distributions of
diagnosis, estimated total intracranial volume, sex, and age.

To regress out confounds, 155 distinct linear regression models
(one for each input feature) were fitted to the training set using
ordinary least squares (OLS) implemented in statsmodels44. For
each of the 68 cortical thickness features, the independent
variable to be regressed out was age. For the remaining 87 volume
features, the independent variables were age, estimated total
intracranial volume, and sex. These 155 regression models (as
defined using the statsmodels package) were saved in disk to be
later employed on the ADNI validation set, NACC, and UK
Biobank datasets. We ensure no data leakage in the training and
evaluation processes by deconfounding the validation/test sets
(i.e., NACC, UK Biobank, and ADNI validation set) using only
ADNI confounding factors learned from the training set.

After the data is deconfounded, each 155 input feature was
separately scaled to zero mean and unit variance for numerical
stability when training a neural network using Scikit-learn45.
Normalisation statistics were once again calculated only using the
ADNI training set. Values in the validation/test sets (i.e., NACC,
UK Biobank, and ADNI validation set) were normalised using the
normalisation statistics from the ADNI training set, after the
deconfound process.

Bayesian machine learning. A supervised machine learning (ML)
model learns a target function fθ, parameterised by θ, such that it
can predict y ¼ f θ xð Þ. In the case of a classification task, the
function is such that f : RN ! f1; ¼ ; kg, where k is the number
of possible categories (i.e. labels). For example, for a certain image
with pixels represented in a feature vector x, the function could
try to predict whether it contains a dog, a cat, or a bird (k= 3); in
our context, the binary classification model predicts whether a
patient has Alzheimer’s disease or not (k= 2). Practically, this
function fθ learns how to predict labels y from features x by
estimating the probability distribution p(y∣x) that generated those
same labels.

The function fθ can be modelled as a deep neural network. To
train such a model with a particular dataset, one needs to tune the
learnable parameters of that model (i.e. θ) by minimising a loss
function using stochastic gradient descent or another optimisa-
tion algorithm. In contrast, under Bayesian ML the Bayes rule is
used to infer model parameters θ from data x:

p θjxð Þ ¼ p xjθð Þp θð Þ
p xð Þ : ð1Þ

Here, the model parameters are represented by the posterior
distribution p θjxð Þ, where the model parameters θ are condi-
tioned on the data x. The goal of Bayesian ML is then to estimate
this distribution given the likelihood p xjθð Þ and the prior
distribution p θð Þ (i.e. belief of what the model parameters might
be). The prior p xð Þ cannot be generally computed but as it is a
normalising constant not dependent on θ and it stays the same
for any model, it can be dropped from calculations when
estimating the posterior. The posterior distribution cannot
usually be analytically calculated using big data in a practical
way, and therefore there are several methods to calculate these
distributions and approximate the intractable posterior46.

We use Monte Carlo dropout47,48 to approximate Bayesian
inference by using dropout during the inference phase of
model49. Dropout is a regularisation approach often employed

Table 3 Demographics for those in the UK Biobank who
underwent neuroimaging.

n Mean age (s.d.) Sex (male/female)

37,104 55.3 (7.4) 19,493/17,611
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in deep neural networks to avoid overfitting which works by
randomly dropping nodes during the training process. With
Monte Carlo dropout, nodes are also randomly dropped during
inference which means that for the same input, each forward pass
will generate a different output; this is possible as for each pass a
different Bernoulli mask is applied to the neural network’s
weights. Gal and Ghahramani47 show that each forward pass on
the neural network corresponding to a different dropout mask is a
good approximation to sampling from the true posterior
distribution p θjxð Þ.

With this simple yet powerful approximation, one can have the
statistical power of a Bayesian ML model at very little added
computational cost. Indeed, the Monte Carlo dropout method
was chosen as it works well on a wide variety of previously trained
neural networks; therefore, it could be used in other clinical
contexts without the requirement for a complete knowledge of
Bayesian statistics. Furthermore, Monte Carlo dropout is known
to bring advantages in modelling uncertainty47, which is of
paramount importance in a clinical context, as well as better
overall performance for certain downstream tasks50.

Deep neural network implementation. As depicted in Fig. 1, we
implemented a neural network with two hidden layers, each with
128 dimensions. Given the small dataset size, we empirically
found these hyperparameters to give stable learning curves, thus
avoiding a deeper neural network that could more easily overfit
the small training data. Dropout layers were added after each
hidden layer with a high dropout rate (i.e., 80%) to help in
avoiding overfitting given the small neural network size; a smaller
dropout rate was empirically found to provide slightly worse
metrics on the ADNI validation set. We used the hyperbolic
tangent function (tanh()) as the non-linear activation function to
leverage both the positive and negative value ranges of the input.
This non-linear activation is a symmetric function in which
negative inputs will be mapped strongly negative, and positive
inputs will be mapped strongly positive; this symmetric property
allows for normalisation of layer’s outputs, therefore avoiding
using other mechanisms like batch normalisation and allowing
our neural network to be less complex. The sigmoid function was
applied to the last output node to give a value between 0 and 1 to
represent the likelihood that the individual has Alzheimer’s
disease.

Monte Carlo dropout was employed by sampling (i.e. making a
forward pass) 50 times from the model, after which a mean and
standard deviation were calculated. The mean corresponds to the
final model prediction (i.e. likelihood of Alzheimer’s disease), and
the standard deviation represents the uncertainty of the model. A
higher number of samples would bring increased statistical power

to the Bayesian approximation process, but it would also increase
the inference time, thus this number (i.e., 50) was chosen as a
good compromise in accordance with previous literature48.

We highlight that a more systematic hyperparameter search
could potentially bring better metrics on the ADNI validation set,
but we consider such extensive exploration to be beyond the
scope of this work, and with diminished returns given the small
size of the ADNI dataset.

The model was implemented using Pytorch51 and trained for
100 epochs using the Adam optimiser52 with the default learning
rate of 0.001. Training convergence was achieved under 50
epochs, therefore 100 epochs for training was considered
reasonable. A small weight decay was set to 0.0001 to help with
regularisation, and binary cross entropy loss was chosen given the
prediction of binary output. The training procedure took 9 s on a
server with a TITAN X Pascal GPU and an Intel(R) Core(TM) i7-
6900K CPU with 16 cores. The model with the smallest loss on
the validation set during the training procedure was selected as
the final model for evaluation. Inference time (i.e. 50 forward
passes with output calculation) took an average of 12.7 ms (std:
1.78 ms) on GPU (average calculated over 1000 runs for the same
batched input). The training log was saved using Weights &
Biases53. In total, the model contained 36,609 trainable
parameters.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Statistical analysis
To assess group differences in the association between AD scores
and clinical measures, we used a Bayesian statistical approach
given the different sizes of the cohorts used in this study and the
limitations of frequentist analysis in identifying statistically sig-
nificant but clinically irrelevant group differences. We used
Stan54,55 implemented in R (version 4.1.0) using linear regression
and logistic regression implemented in the brms library56,57, and
the rstan library for piecewise linear regression. To assess evi-
dence for group differences we use the Region of Practical
Equivalence (ROPE), which is an a priori effect size considered to
be significant between groups. The 95% distribution of the
Bayesian posterior is termed the critical interval (CI); if the mean
lies outside the ROPE there is some evidence to accept a
hypothesis between groups, and where the CI lies outside the
ROPE there is strong evidence for accepting a hypothesis58. The
null hypothesis can be accepted where the CI lies completely
within the ROPE. The ROPE is either set by knowledge of the

Fig. 1 Architecture of the neural network model used in this paper. The neural network consists of two hidden layers of 128 dimensions and non-linear
activation function σ= tanh(). For each set of 155 inputs, N= 50 forward passes are run, each time with a different dropout mask sampled from a Bernoulli
distribution. An Alzheimer’s disease likelihood score is generated as the mean, and model uncertainty as the standard deviation calculated from the 50
forward passes.
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variable or set to be 0.1 of the standard deviation of the control
group58. Model comparison used the loo package59. To assess the
validity of our chosen breakpoint against variable or no break-
point, we used the expected log pointwise predicted density
(ELPD) as the measure of model fit, assessing the difference in
ELPD value between models and its standard error to consider
whether there was evidence of a difference between models60.

Results
Model evaluation and performance. Using the ADNI dataset, we
trained our deep learning model to detect Alzheimer’s disease from
structural neuroimaging. To evaluate model performance in the
test set of the ADNI cohort and the NACC cohort, we report ROC
curve analyses in Table 4. For the NACC dataset, we evaluated AD
identification against two comparator groups: (1) controls alone,
and (2) combined controls and non-AD diagnoses. As expected,
given the similarity to the training set and the selective nature of
the cohort, the highest accuracy was found in the ADNI test set. In
NACC, a completely independent dataset, accuracy was lower but
still reasonable and in line with a previous similar study using SVM
for out-of-distribution classification of AD61. Overall accuracy was
above 0.7, although with a loss in positive predictive value (0.56).
Of particular importance, the negative predictive value remained
relatively high (0.83). These metrics show that our algorithm is
balanced toward missing some people with Alzheimer’s disease,
but is less likely to label healthy people as having an Alzheimer’s
disease neuroimaging phenotype. The bias towards a relatively
high negative predictive value is relatively better than the reverse
situation given the application to UK Biobank data where the rate
of Alzheimer’s disease will be substantially lower than either ADNI
or NACC, so there is a greater risk of misclassifying healthy people
as having Alzheimer’s disease.

We investigated the relationship between uncertainty measures
generated by the model and the predicted value (AD score) in
Supplementary Fig. S1a. There was a wider range of uncertainty
values when the average AD score was closer to 0.5 than closer to
the extremes; in other words, when the probability of classifica-
tion was greater (towards 0 or 1) the AD score was more certain.
Supplementary Fig. S1b demonstrates that when the model
prediction was incorrect, its corresponding uncertainty value was
higher on average compared to correct predictions. We further
compared the Bayesian ML model (including calculation of
uncertainty with multiple passes) to a non-stochastic (single pass)
one; in our analysis explained in detail in Supplementary
Figs. S2–S4, the Bayesian ML model consistently achieved better
performance. In Supplementary Figs. S5 and S6, we illustrate
possible explainability capacities of our model when using it
together with SHapley Additive exPlanations (SHAP)62, a unified
framework for interpreting predictions.

For comparison purposes, we trained the model with the same
hyperparameters and preprocessing steps on a balanced training
ADNI set (i.e., by having the same number of people in both the
AD and control groups). In general, evaluation metrics do not
improve on the ADNI and NACC validation sets with this setting,
which is expected given the already small training set size (see

Supplementary Table S1). To understand how much our model
improves over known risk factors, we fitted a linear regression
model to the training (ADNI) set using ordinary least squares
(OLS), in which the dependent variable was AD diagnosis, and
the independent variables were left hippocampus volume, right
hippocampus volume, age, estimated total intracranial volume,
and sex. In Supplementary Table S2 it is possible to see that our
model is significantly better.

ADNI
Clinical scores. To assess the clinical validity of the AD score, we
assessed the difference in clinical scores between those categorised
as positive or negative by AD score using a cut-off of 0.5 and
applying Bayesian regression models with age as a covariate; the
posterior distributions are shown in Fig. 2. Given the distribution
of the observed data, skewed Gaussian families were used for
Mini-Mental State Examination (MMSE)63 and Clinical
Dementia Rating (CDR) Sum of Boxes64, otherwise Gaussian
distributions were assumed with Cauchy distribution priors in all
cases. All models converged well (R̂ ≈ 1.00). We report four key
cognitive measures from the ADNI dataset, finding very strong
evidence for a difference between AD score positive and negative
groups in MMSE (Effect size −5.2, 95% Credible Interval −5.5 to
−4.8), Montreal Cognitive Assessment (MoCA)65 (−8.2, CI −9.1
to −7.4), CDR (3.7, CI 3.5–3.9), and Trails B66 (−13.0, CI −13.6
to −12.4).

NACC
Clinical scores. We applied the trained model to the NACC
datasets and assessed the relation of the model-derived AD-score
against clinical scores. Group differences were assessed with
Bayesian analysis using the ROPE to assess the strength of evi-
dence, shown in Fig. 3. There was strong evidence that people
with a positive AD score had lower MMSE scores (−3.82, CI
−4.62 to −3.02), MoCA scores (−7.00, CI −8.33 to −5.69),
semantic fluency (−4.64, CI −5.49 to −3.80) and executive
function (time taken to complete trails B 44.43, CI 33.36–55.63).
For Wechsler Adult Intelligence Score (WAIS)67 scores (−6.61,
CI −9.12 to −4.10) and Boston naming test68 (−2.97, CI −3.95
to −1.98) there was moderate evidence of a difference in that the
mean effect size of the AD score positive group fell outside the
ROPE but the critical interval overlapped with the AD
score negative, suggesting imprecision in the estimate of the AD
score negative group; this may be explained by the relatively low
Positive Predictive Value so that some people with Alzheimer’s
disease are included in the negative AD score group. Finally, there
was good evidence that the AD score does not predict forward
(−0.19, CI −0.57 to 0.19) or backward (−0.46, CI to −0.86 to
−0.06) digit span, given the distribution of the AD score positive
scores, is completely contained within the critical interval of the
AD score negative group.

To assess whether the severity of the disease was associated
with the strength of expression of the AD neuroimaging
phenotype, we regressed the AD score against z-scored clinical

Table 4 Performance metrics across datasets with a model trained on the ADNI training set, using a cut-off of and Alzheimer’s
disease (AD) score of 0.5 and employing inference using MC Dropout with 50 samples.

Dataset Accuracy AUC Sensitivity Specificity PPV/precision NPV

ADNI test set 0.92 0.97 0.90 0.93 0.90 0.93
NACC (only AD/Control) 0.74 0.79 0.68 0.78 0.65 0.80
NACC (AD/All) 0.72 0.76 0.68 0.73 0.56 0.83

AUC area under the ROC curve, PPV positive predictive value, NPV negative predictive value.
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measures. We used piecewise linear regression analysis given that
we did not expect an association in the AD score negative group
(below 0.5) compared with the AD score positive group. Firstly,
we assessed whether the piecewise regression model was superior
to a linear model, and whether our chosen breakpoint of 0.5 was
reasonable by comparing piecewise linear regression models with
a fixed breakpoint of 0.5, with variable breakpoint (permitted to
vary between 0.25 and 0.75), and with no breakpoint (i.e.
completely linear), see Tables S5–S7 in the supplementary data
for the full results. The analysis presented in Table 5 shows that
models including a breakpoint were superior to the model
without a breakpoint for all measures where we found evidence
for a difference between the AD score positive and AD score
negative groups, specifically MMSE, MoCA, and semantic
fluency. There was no substantial difference in whether the
breakpoint was fixed at 0.5 or permitted to vary for almost all
measures; for the Boston naming task, the variable breakpoint
analysis was a better fit than the fixed breakpoint analysis,
speculatively because executive cognitive function appears later
than other cognitive impairments.

We, therefore, proceeded with our estimated breakpoint of 0.5
to differentiate AD score positive from AD score negative scores,
as shown in Fig. 3. There was evidence of a relationship between
stronger expression in the AD score positive group than the AD
score negative group of the AD score with more impaired
cognitive function measured by MMSE, MoCA, forward digit
span, trails B and semantic fluency and the Boston naming task,
all with a credible interval lying outside the range −0.1 to 0.1
standard deviations of the control group mean.

UK Biobank. Using a cut-off for the AD score of 0.5, we divided
the UK Biobank cohort into AD score positive or AD score
negative groups. There were 1304 (3.4%) with a positive AD score
and 36,663 (96.6%) with a negative AD score. All 6 people with a
diagnosis of Alzheimer’s disease at scan had an AD score >0.5

(range 0.60–0.95) and were not included in any subsequent
analysis. The group with a positive AD score was only slightly
older than the AD score negative group (1.79 years, CI 1.39–2.21).

AD scores predict cognitive differences in healthy individuals with
an AD imaging phenotype. To assess for differences in cognitive
scores between the groups, we used Bayesian linear or logistic
regression models. All models achieved good convergence
(bR � 1) and the results are shown in Fig. 4.

There was strong evidence of worse fluid intelligence in the AD
score positive group (−0.35, CI −0.46 to −0.21) with the 95% CI
lying completely outside the ROPE. There was moderate evidence
to support poorer performance in matrix pattern completion
(−0.35, CI −0.50 to −0.20), numeric memory (−0.17, CI −0.27 to
−0.07), and reaction time for correct trials (13.11ms, CI
7.12–19.33 ms), where the mean estimate was outside the ROPE,
but the CI overlapped with the ROPE. On a working memory task
(pairs matching) there was only weak evidence to suggest a poorer
performance in the AD score-positive groups performance using
logistic regression with an adjacent categories model; with AD
score-positive participants slightly more likely to have one rather
than two correct answers out of four (boundary effect size −0.14,
CI −1.02 to 0.65), and slightly more likely to have two rather than
three correct answers (boundary effect size −1.74, I −5.19 to 0.79),
and slightly more likely to have three rather than four correct
answers (boundary effect size 0.95, CI −0.36 to 3.46). There was
also weak evidence to suggest poorer performance on a prospective
memory task (increased probability probably of an incorrect
answer in the AD score positive group 0.09, CI 0.00–0.18).

On tests of executive function, there was clear evidence of no
difference in the number of errors on the Trails B test (0.12, CI
−0.24 to 0.48) where the credible interval was completely within the
ROPE, and weak evidence against an effect in tower rearranging
(−0.31, CI −0.53 to −0.08) where the mean lies within the ROPE
but the credible interval extends beyond the ROPE.

Fig. 2 Bayesian analysis of cognitive tests in the ADNI dataset. These distributions represent the Bayesian posterior estimates of the mean of cognitive
tests in Alzheimer’s disease (AD) score positive and negative groups, with the Region Of Practical Equivalence (ROPE) as a shaded column. As expected in
this well-characterised dataset, for all measures there was very strong evidence of a difference between groups classified as positive or negative by AD
score derived from structural neuroimaging, indicated by mean AD score in the AD score positive group and the 95% credible intervals (indicated by the
thin horizontal bars) falling outside the ROPE. The mean of the AD score negative group is represented by the dotted vertical line with the ROPE denoted
by the shaded area on each side. The 75% credible interval is denoted by the thick bars and the 95% credible interval by the thin bars.
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AD score predicts worse reported overall health. In non-cognitive
measures, there was strong evidence that people in the AD group
were more likely to report their overall health as ‘poor’ or ‘fair’
rather than ‘good’ or ‘excellent’ (see Fig. 5) (probit 0.14, CI

0.09–0.19). There was weak evidence that hand grip was weaker
in the AD score positive group with a mean outside the ROPE but
the CI overlapping with the ROPE (mean −1.10, CI −1.70 to
−0.51). There was also weak evidence that the AD score positive

Fig. 3 Analyses of the NACC clinical scores. A Bayesian analysis of the NACC clinical scores. There is strong evidence for impairment in the Alzheimer’s
disease (AD) score positive group for Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and trails B since the posterior
estimate of the effect size lies outside the 95% credible interval, and outside the Region Of Practical Equivalence (ROPE). There is good evidence of no
difference for forward and backward digit span since in both cases the distribution of the AD score positive group completely overlaps with the distribution
of the AD score negative group. The mean of the AD score negative group is represented by the dotted vertical line with the ROPE denoted by the shaded
area on each side. The 75% credible interval is denoted by the thick bars and the 95% credible interval by the thin bars. B Breakpoint analysis of the NACC
clinical scores. Disease severity correlated with the AD score positive group (AD score > 0.5) with evidence for a difference in correlation from the AD
negative (AD score < 0.5) group in MMSE, MoCA, forward digits span, Trails B, and the Boston naming task.

COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-023-00313-w ARTICLE

COMMUNICATIONS MEDICINE |           (2023) 3:100 | https://doi.org/10.1038/s43856-023-00313-w | www.nature.com/commsmed 7

www.nature.com/commsmed
www.nature.com/commsmed


group was more likely to report one fall than no falls and more
likely to report two or more falls than no falls (probit regression
0.07, CI 0.06–0.08).

AD scores are associated with modifiable risk factors. Having
identified a cohort potentially at risk of Alzheimer’s disease, the
next step was to consider whether other health measures or
modifiable risk factors are more common in this subgroup. We
report the results of a number of risk factors in Fig. 6 and other
health markers in Fig. 5.

There was some evidence of a difference in both diastolic blood
pressure (1.12, CI 0.53–1.72) and systolic blood pressure (2.29, CI
1.26–3.30). Additionally, there was weak evidence that smoking
(current or ex-smoker) was associated with AD score positive
score (0.06, CI −0.06 to 0.18), demonstrating a mean outside the
ROPE, but a wide CI. Among those who smoked, there was
moderate evidence that a greater smoking history (i.e. more pack
years) was associated with an AD score positive score (2.98, CI
1.23–4.73).

There was moderately strong evidence for no difference in
waist circumference (0.62, CI −0.11 to 1.35), consultation with
GP for depression (logistic regression 0.03, CI −0.10 to 0.16),
consultation with a psychiatrist for depression (logistic regression
0.02, CI −0.19 to 0.23), hearing difficulties (logistic regression

−0.01, CI −0.14 to 0.12). There was strong evidence of no
difference in hip circumference (−0.12, CI −0.63 to 0.38), sleep
duration (−0.01 h, CI 0.07–0.06), and neuroticism (0.11, −0.09 to
0.32) score.

Discussion
We have identified a cohort of healthy individuals in the UK
Biobank with an Alzheimer’s disease-like neuroimaging-based
intermediate phenotype, by leveraging developments in Bayesian
deep learning. Despite having no diagnosis or reported symptoms
of dementia at the time of assessment, this AD-like cohort
demonstrates a cognitive profile in keeping with early Alzheimer’s
disease and reports worse general health. In addition, they have
evidence of slightly higher blood pressure and longer smoking
history as potentially modifiable risk factors.

Our approach offers the opportunity to identify and study
presymptomatic idiopathic Alzheimer’s disease. The search for
the earliest possible changes in Alzheimer’s disease has mainly
focused on genetic forms of dementia4,14, with neuroimaging
changes in presymptomatic genetic Alzheimer’s disease described
since the 1990s using PET69 or structural MRI70. The earliest
studies to identify prediagnostic structural brain changes of
Alzheimer’s disease found group-level differences in medial

Table 5 Here, we test the cut-off Alzheimer’s disease (AD) score value of 0.5 in the NACC dataset by applying linear analysis of
the relationship between AD score and cognitive scores using Bayesian piecewise linear regression analysis

Variable breakpoint

BP Slope < BP (CI) Slope > BP (CI) Slope diff (CI) ELPD diff (se)

MMSE 0.67 −0.19 (−1.8, −0.94) −1.4 (−1.8, −0.94) −1.2 (−1.7, −0.65) 0.0 (0.0)
MoCA 0.6 −0.18 (−0.35, 0.03) −1.40 (−1.8, −1.0) −1.2 (−1.8, −0.77) 0.0 (0.0)
Backward digit span 0.56 −0.08 (−0.25, 0.08) −0.51 (−0.96, −0.13) −0.43 (−1.0, 0.10) 0.0 (0.0)
Forward digit span 0.59 0.09 (−0.08, 0.26) −0.62 (−1.1, −0.2) −0.71 (−1.3, −0.16) 0.0 (0.0)
Semantic fluency 0.59 −0.22 (−0.34, −0.10) −1.0 (−1.3, −0.74) −0.8 (−0.18, −0.44) 0.0 (0.0)
Trails B 0.44 0.2 (0.079, 0.35) 0.66 (0.45, 0.89) 0.46 (0.13, 0.79) 0.0 (0.0)
WAIS 0.53 −0.24 (−0.42, −0.07) −0.59 (−0.97, −0.25) −0.35 (−0.82, 0.13) −0.1 (0.1)
Boston naming task 0.66 −0.08 (−0.23, 0.056) −1.3 (−1.7, −0.81) −1.2 (−1.70, −0.64) 0.0 (0.0)

Fixed breakpoint (0.5)

BP Slope < BP (CI) Slope > BP (CI) Slope diff (CI) ELPD diff (se)

MMSE [0.5] −0.17 (−0.32, −0.02) −1.12 (−1.4, −0.82) −0.95 (−1.4, −0.53) −1.3 (1.0)
MoCA [0.5] −0.16 (−0.34, 0.03) −1.3 (−1.6, −1.0) −1.1 (−1.6, −0.72) −0.5 (0.6)
Backward digit span [0.5] −0.08 (−0.26, 0.09) −0.47 (−0.81, −0.13) −0.38 (−0.87, 0.10) −0.3 (0.2)
Forward digit span [0.5] 0.10 (−0.07, 0.28) −0.53 (−0.87, −0.2) −0.63 (−1.1, −0.15) −0.3 (0.3)
Semantic fluency [0.5] −0.21 (−0.34, −0.08) −0.94 (−1.20, -0.72) −0.74 (−1.1, −0.41) −0.5 (0.4)
Trails B [0.5] 0.22 (0.08, 0.36) 0.67 (0.46, 0.89) 0.46 (0.13, 0.77) 0.0 (0.2)
WAIS [0.5] −0.24 (−0.40, −0.07) −0.58 (−0.87, −0.24) −0.34 (−0.79, 0.13) 0.0 (0.0)
Boston naming task [0.5] −0.07 (−0.23, 0.09) −1.0 (−1.3, −0.7) −0.94 (−1.4, −0.49) −1.7 (0.8)

Linear model (no breakpoint)

Slope (CI) ELPD diff (se)

MMSE −0.47 (−0.55, −0.39) −10.0 (5.3)
MoCA −0.60 (−0.69, −0.51) −12.4 (6.8)
Backward digit span −0.2 (−0.29, −0.12) −0.5 (1.6)
Forward digit span −0.1 (−0.18, −0.02) −2.6 (2.6)
Semantic fluency −0.46 (−0.52, −0.40) −9.6 (4.5)
Trails B 0.39 (0.36, 0.45) −2.7 (2.8)
WAIS −0.35 (−0.43, −0.26) −0.3 (1.4)
Boston naming task −0.37 (−0.45, −0.29) −9.6 (4.7)

For the slope estimates, we include the 95% Credible Interval (CI). Given that the data are z-scored, we use 0.1 as the Region of Practical Equivalence (ROPE) which represent 0.1 of the standard
deviation of the data. If the CI lies outside −0.1 to 0.1, we consider there is good evidence of a relationship between the AD score and clinic score, indicated by values in bold. For models with variable
breakpoints, the breakpoint values obtained were similar to 0.5, and comparing models with the Expected Log Pointwise Predicted Density (ELPD) the difference between variable and fixed breakpoint
models was negligible, except for the Boston naming task. There was good evidence for a breakpoint in MMSE, MoCA, forward digit span, semantic fluency, and the Boston naming task, and further
evidence supporting no difference between the two breakpoint models; however, both being superior to the non-breakpoint model. These findings support our use of a breakpoint of 0.5.
BP breakpoint, MMSE Mini Mental State Examination, MoCA Montreal Cognitive Assessment, WAIS Wechsler Adult Intelligence Scale.
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temporal structures6,7, but with low sensitivity (78%) and speci-
ficity (75%)8. A recent study using ADNI data in 32 people who
progressed to MCI and 8 to AD confirmed group-level structural
changes in medial temporal structures that were detectable 10
years prior to onset. We are aware of one promising study in
idiopathic Alzheimer’s disease using a machine learning approach
with multimodal imaging data to try to predict individualised
presymptomatic disease in the ADNI cohort, currently in pre-
print71, an approach that will need independent validation. A
study of cognitively normal adults over 70 years of age attempted
to detect presymptomatic Alzheimer’s disease using FDG-PET,
suggesting two-thirds of people in this age group had an abnor-
mal FDG-PET scan which was associated with psychiatric
symptoms72. This proportion of patients seems high for the age
group under consideration, and abnormalities on PET have been
associated with depression73, so the relevance of these findings is
unclear. In a small study using Pittsburgh Compound B (PiB)
PET to detect presymptomatic Alzheimer’s disease in a healthy
and MCI cohort, there was a correlation between β-amyloid load
and poorer episodic memory, though only one person converted
to Mild Cognitive Impairment74. Another much larger study
found a high rate of positive β-amyloid PET scans in otherwise
cognitively normal older adults and no association with cogni-
tion, so whilst PET may be helpful for risk stratification, the role
and timing of β-amyloid PET abnormalities remain uncertain in
the detection of presymptomatic Alzheimer’s disease in a clinical
setting75.

In this context, our approach has improved on previous
efforts by identifying individuals with possible early sporadic
AD, a supposition that is supported by finding a cognitive
profile in keeping with AD. Our findings are strengthened by
identifying strong correlations between the AD scores and
relevant cognitive tests in the independent NACC study. We
found that the AD score was associated with worse performance
on global cognitive tests such as the MMSE and MoCA, and on
more AD-specific cognitive domains of memory and semantic
fluency. In the UK Biobank cohort, the AD score was associated
with key cognitive domains of AD including memory and fluid
intelligence.

Regarding the prospect for disease prevention, our results
suggest that smoking history, particularly a greater pack-year
history, and both systolic and diastolic hypertension are risk
factors. Both smoking and hypertension are reported as risk
factors in the 2020 Lancet Commission on Dementia76.
Smoking is a particularly well-established risk factor for
dementia77. In keeping with our findings, Rusanen et al.78

studied over 21,000 people, finding that heavy smoking in
middle age was associated with developing Alzheimer’s disease
and, more specifically, that greater cigarette use was associated
with a higher risk of developing dementia. Our results suggest
that the effect of smoking is mediated through structural
volume loss in key brain regions.

The difference between blood pressure in the AD score positive
and AD negative groups was small, ~2.5 mmHg for systolic BP

Fig. 4 Bayesian analysis of cognitive tests in the UK Biobank. It is possible to see a reduced cognitive function in participants with an Alzheimer’s disease
(AD) score > 0.5. In particular, there is strong evidence for impaired visual memory, good evidence for impaired fluid intelligence, numeric memory, and
some evidence for impaired executive function. The shaded area represents the Region Of Practical Equivalence (ROPE)—if the distribution of the AD-
positive group lies outside the ROPE there is strong evidence for a difference between the groups, and if the mean only lies outside the ROPE then there is
some to good evidence for a group difference. There was strong evidence for no difference between groups in errors on the trials B task or reaction time,
where the distributions lie completely inside the ROPE. For the pairs matching task, we used Bayesian ordinal regression, plotting here the 95% credible
intervals demonstrating only weak evidence of fewer correct answers in the AD score positive group. The mean of the AD score negative group is
represented by the dotted vertical line with the ROPE denoted by the shaded area on each side. The 75% credible interval is denoted by the thick bars and
the 95% credible interval by the thin bars.
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and 1 mmHg for diastolic BP. There has been much debate on the
relationship between blood pressure and cognitive impairment,
with studies finding both high and low diastolic blood pressure to
be related to Alzheimer’s disease79,80. More recent evidence from
a meta-analysis has suggested that mid-life hypertension is a
greater risk factor, with a systolic blood pressure above
140 mmHg conferring a relative risk of 1.2 for developing
dementia, and systolic blood pressure above 80mmHg conferring
a relative risk of 1.5481. However, the small increase in blood
pressure we identified in the AD score positive group, and the
overlap with the AD score negative group in both systolic and

diastolic blood pressures suggests heterogeneity within the AD
score positive group.

We did not find differences in other potentially modifiable risk
factors. Here, the Bayesian approach is helpful since we can
confidently reject the possibility of some risk factors being asso-
ciated with the AD neuroimaging phenotype in this group. For
example, some of the risk factors highlighted in the Lancet
Commission 2020 report76, were not identified as risks in the
current study (i.e. alcohol frequency, hip circumference, sleep
duration) since the distribution of the AD score positive group
lies wholly within the ROPE (see Fig. 6). For depression and

Fig. 5 Other measures of health from the UK Biobank. People with positive AD scores were more likely to report their general health to be `fair' or `poor'
and less likely to report their general health as `good' or `excellent'. In addition, they had lower grip strength which has previously been associated with
Alzheimer’s disease. There was weak evidence to suggest that people with a positive AD score were more likely to have had one or more falls in the
previous year. The mean of the AD score negative group is represented by the dotted vertical line with the ROPE denoted by the shaded area on each side.
The 75% credible interval is denoted by the thick bars and the 95% credible interval by the thin bars.

Fig. 6 Results from Bayesian analysis of potentially modifiable risk factors in the UK Biobank population. There is partial evidence to support a higher
diastolic and systolic blood pressure among participants with an Alzheimer’s disease (AD) score > 0.5, indicated by a mean effect size lying outside the
Region Of Practical Equivalence (ROPE) but with a distribution overlapping with the ROPE. No other risk factors were associated with a positive AD score.
The mean of the AD score negative group is represented by the dotted vertical line with the ROPE denoted by the shaded area on each side. The 75%
credible interval is denoted by the thick bars and the 95% credible interval by the thin bars.
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hearing difficulty, there was a wide distribution of estimated risk
beyond the ROPE suggesting an imprecise estimate of the risk.
We cannot rule out an association with an AD neuroimaging
phenotype for these measures.

Two factors may have limited our ability to identify potentially
modifiable risk factors. Firstly, the UK Biobank has a sample bias
towards people who are healthier with fewer disease risk factors
than the general UK population82. For example, the proportion of
people currently smoking in the UK Biobank population is 10.7%
compared to 14.7% in the general population (data from the
Office for National Statistics83. Moreover, the restricted mid-life
age range of the UK Biobank cohort may exclude the age at which
some risk factors apply most strongly.

Secondly, our model was biased towards a high negative pre-
dictive value, meaning that we may have ‘missed’ some people
with early Alzheimer’s disease pathology. Whilst providing more
confidence in the identification of an AD-like cohort, the
potential classification of people with latent AD in the AD-
negative group may have reduced the power to detect a difference
in risk factors between the AD score positive and AD-negative
groups. We anticipate that combining neuroimaging with other
risk biomarkers could improve the selection of a high-risk group,
for example, blood biomarkers84,85 or polygenic risk scores86,87.

Despite these caveats, this approach has the potential to
enrich dementia prevention trials. It is important to note that
the impact of addressing risk factors on preventing dementia is
not yet well established. The World Wide FINGERS study has
reported a trial of a multi-domain intervention with a small but
significant effect size1, although this was not targeted at
smoking cessation or lowering blood pressure specifically, and
there was no difference in blood pressure between the inter-
vention and control groups at the end of the study. Our findings
support the need for such trials but raise some caution about
the prevalence and strength of the association between risk
factors and AD pathology.

To identify the AD score positive group we used a state-of-the-
art Bayesian ML approximation method (i.e. Monte Carlo
dropout47) to identify the cohort of interest in the UK Biobank.
The Bayesian approach allows a model to predict not only a single
AD-likelihood value as in typical deterministic neural networks
but also a measure of uncertainty (see Fig. 1). A key advantage of
this approach is the additional information about the gen-
eralisability of the model to challenging out-of-distribution
datasets, such as we have done in this paper; for example, we
were able to identify that greater uncertainty was associated with
incorrect predictions (see supplementary Fig. S1b).

Our approach is particularly well-validated compared to other
similar models. The model was trained only on the ADNI dataset
before validation on the completely independent and significantly
more noisy NACC data, prior to application to the UK Biobank.
All the confound corrections on the input data were conducted in
the training dataset (i.e. ADNI) alone, and correction statistics are
then applied to the external datasets; in this way, we avoid biases
that would have been introduced had we corrected the model on
all the available data.

There are limitations to our approach. Most importantly, we
do not know at present whether the people identified as having a
positive AD score will go on to develop the syndrome of Alz-
heimer’s disease. At the time of analysis, only 17 people in the
neuroimaging cohort have developed dementia (6 of these self-
reported at the baseline visit). The neuroimaging sub-study began
later than the main biobank study, so it may be some years before
a sizeable population of people with dementia and neuroimaging
is available. An ideal dataset for training our model would be
comprised of people prior to a diagnosis of Alzheimer’s disease,

which does not yet exist in sufficient size to train a deep learning
model. Despite these caveats, we propose that the group we
identified from their AD-like imaging phenotype is at higher risk
of future clinical Alzheimer’s disease.

Whilst our model performed very well in the ADNI population
in which it was trained, it performed, as expected, less well in the
independent NACC population. There are a number of reasons
for this. Firstly, there is a recognised selection bias when using the
ADNI cohort which may lead to an overly optimistic
classification39. Secondly, the NACC dataset relies on clinical
diagnosis rather than a defined set of diagnostic criteria without
pathological information or biomarkers such as CSF; therefore, a
lower diagnostic accuracy might be expected. Thirdly, the neu-
roimaging quality varies significantly in the NACC dataset; for
example, both 1.5 and 3 T MRI scans were included. For these
reasons, it is not surprising that the classification was poorer in
the NACC dataset, though still with good metrics for the task
at hand.

Using Bayesian statistics for group comparison and regression
models provided several clear advantages for this study. Firstly,
given the unequal sizes of the positive and negative groups we
were able to focus on the precision of parameter estimates given
the available data which differed between the two groups; this
meant that we could distinguish a small effect size from an
imprecise parameter estimate. Secondly, we were able to use effect
size to detect evidence of difference between groups; if we had
used a traditional frequentist approach we would have had dif-
ficult choices about correction for multiple comparisons and
concern about detecting small but clinically irrelevant differences.
Finally, using Bayesian analysis enabled us to explicitly accept the
null hypothesis (i.e. no difference between groups) in a number of
statistical comparisons.

In conclusion, we demonstrate an approach to identify a cohort
of potentially presymptomatic sporadic Alzheimer’s disease using
AI with structural neuroimaging to identify a neuroimaging
phenotype.

Data availability
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(www.adni-info.org), NACC (https://naccdata.org/), and the UK Biobank (https://www.
ukbiobank.ac.uk/). ADNI data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).
The ADNI was launched in 2003 as a public–private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological assessment can be
combined to measure the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD). For up-to-date information, see www.adni-info.org. The
patient-level original and preprocessed data cannot be directly shared due to restrictions
set by each consortium (i.e., ADNI, NACC, and the UK Biobank). The outputs of the
deep learning model used to generate the figures can be accessed in CSV format in the
same GitHub repository, under the folder “results/”.

Code availability
Code (for reproducibility) and results are publicly available on GitHub, with additional
instructions for implementation: https://github.com/tjiagoM/adni_phenotypes88.
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