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ABSTRACT
Background/aims  To investigate the foveal 
morphology in carriers of oculocutaneous albinism (OCA) 
using spectral domain optical coherence tomography 
(SD-OCT). A cross-sectional, observational study.
Methods  Handheld SD-OCT (Envisu C2300) was 
used to acquire horizontal scans through the centre of 
the fovea in biological parents of patients with OCA 
(n=28; mean age±SD=40.43±8.07 years) and age-
matched and ethnicity-matched controls (n=28; mean 
age±SD=38.04±10.27 years). Sequence analysis was 
performed for variants in known genes associated with 
OCA. Best-corrected visual acuity (BCVA), presence of 
foveal hypoplasia and grade, foveal, parafoveal and 
perifoveal thickness measurements of total retinal layers 
(TRL), inner retinal layers (IRL) and outer retinal layers 
(ORL) thickness were measured.
Results  Foveal hypoplasia was identified in 32.14% 
of OCA carriers; grade 1 in all cases. OCA carriers 
demonstrated significant thicker TRL thickness (median 
difference: 13.46 µm, p=0.009) and IRL thickness (mean 
difference: 8.98 µm, p<0.001) at the central fovea 
compared with controls. BCVA of carriers was between 
−0.16 and 0.18 logMAR (mean: 0.0 logMAR). No 
significant differences in BCVA was noted between OCA 
carriers or controls (p=0.83). In the OCA carriers, we 
identified previously reported pathogenic variants in TYR, 
OCA2 and SLC45A2, novel OCA2 variants (n=3) and 
heterozygosity of the pathogenic TYR haplotype.
Conclusion  We have, for the first time, identified foveal 
abnormalities in OCA carriers. This provides clinical value, 
particularly in cases where limited phenotype data are 
available. Our findings raise the possibility that previously 
reported mild cases of foveal hypoplasia or isolated 
foveal hypoplasia could correspond to OCA carrier status.

INTRODUCTION
Oculocutaneous albinism (OCA) is a clinically and 
genetically heterogenous disorder characterised by 
reduced pigmentation of the hair, skin and the eyes, 
caused by disruption of the melanin biosynthesis 
pathway.1 2 Ocular characteristics of OCA may 
include foveal hypoplasia, iris transillumination 
defect (TID), fundus hypopigmentation, chiasmal 
misrouting and nystagmus.2 Clinical diagnosis of 
albinism is based on the presence of a combina-
tion of these features, or, when genetic diagnosis 
is confirmed in conjunction with phenotypical 
characteristics.2

OCA is an autosomal recessive disorder, to date 
mutations of six genes have been associated with 
non-syndromic forms of OCA.3 OCA type 1 is 

the most common type of albinism in European 
populations, caused by mutations in the tyrosinase 
gene (TYR).3 4 Ocular albinism (OA) is an X linked 
disorder caused by GPR143 mutations and charac-
terised by predominantly ocular defects.5

Foveal hypoplasia describes the underdevelop-
ment of the fovea, leading to reduced visual acuity. 
Progressive loss of foveal developmental elements 
are represented by increasing grades of foveal hypo-
plasia, as described by Thomas et al.6 Recent reports 
show that grades of foveal hypoplasia can predict 
future vision in preverbal children with nystagmus.7 
In albinism, higher grades of foveal hypoplasia are 
often found, however, there have been reports of 
low grades of foveal hypoplasia or normal foveal 
development.2 6 Ophthalmic characteristics asso-
ciated with albinism, such as iris TID and fundus 
hypopigmentation, have also demonstrated signifi-
cant phenotypic variability.2

In autosomal recessive disorders, carriers may 
present with mild phenotypical characteristics. 
Carriers of Bardet-Biedl syndrome, neuronal 
ceroid lipofuscinoses and retinitis pigmentosa have 
demonstrated abnormal retinal function on electro-
retinogram testing.8–10

Literature reporting ocular characteristics associ-
ated with carriers of albinism is scarce. In X linked 
OA the presence of mud splattered fundus appear-
ance and iris TID in obligate female carriers is 
reported.11 Furthermore, female carriers of GPR143 
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(OA) have recently been identified to demonstrate foveal hypo-
plasia and retinal pigment epithelium mosaicism.12

Phenotypical characteristics specifically associated with 
carriers of autosomal recessive OCA are yet to be reported. The 
presence of subclinical traits in carriers of other autosomal reces-
sive disorders and OA prompted us to investigate the incidence 
of ocular abnormalities in OCA carriers, with particular interest 
in foveal development.

METHODS
Study population
Recruitment and subsequent investigations occurred at the 
Leicester Royal Infirmary (LRI), UK, from April 2017 to 
December 2019.

Sixteen individuals (probands) with OCA were identified at 
LRI using the clinical diagnostic criteria reported by Kruijt et al.2 
Table 1 shows phenotypical characteristics of probands. Individ-
uals with a diagnosis of OA were excluded.

Twenty-eight biological parents of confirmed OCA probands 
were recruited and informed written consent obtained. Exclu-
sion criteria included clinical or genetic diagnosis of albinism, 
significant ocular and/or neurological disease, or a history of 
prematurity. All participants were of Caucasian ethnicity.

Twenty-eight, age, refraction and ethnically matched controls 
were recruited from LRI and the University of Leicester, UK. 
Exclusion criteria for control participants included history of 
prematurity, or any significant ocular or neurological disease or 
history of disease.

Ophthalmic examination
All carrier and control participants underwent an ophthalmic 
examination including best-corrected logMAR visual acuity 
(BCVA) assessment (Precision Vision Visual Acuity Testing V.2.3, 
Precision Vision, Illinois, USA), detailed orthoptic examination 
including ocular movements and stereoacuity assessment (Frisby 
Stereotest).

Genetic analysis
Saliva samples were collected using Oragene DNA sample 
collection kits (DNA Genotek, Ontario, Canada) and DNA 
was extracted as per manufacturer’s guidelines. Genetic anal-
ysis was performed using targeted next-generation sequencing, 
as previously described.13 Sequence analysis was performed in 
12 probands (75%) (online supplemental table 1). PCR and 
Sanger sequencing was performed where possible in biolog-
ical parents. Genotype was obtained in 16 parents (57.1%) 
(online supplemental table 1). We included the following addi-
tional TYR variants in our analysis: rs1042602 (c.575C>A: 
p.(Ser192Tyr)), rs1126809 (c.1205G>A: p.(Arg402Gln)) and 
rs147546939.14

OCT acquisition
Macular hand-held OCT (HH-OCT) scans were acquired and 
analysed based on previously approved and published method-
ology.15 High-resolution macular scans were obtained for all 
participants with a spectral-domain, HH-OCT (Envisu C2300 
(Leica Microsystems, Wetzlar, Germany)) mounted on a table 
with a chin rest, ensuring stability. All HH-OCT examinations of 
OCA carriers were performed without pupil dilation. The acqui-
sition protocol consisted of a scanning window of 10×5 mm 
(500 A scans×50 B scans, each B scan averaged 5 times) centred 
on the macula. Poor quality foveal OCT scans were excluded if 
the foveal contour was not clearly seen on inspection by expert 
graders.

Acquired OCT volumetric scans were exported from Leica 
(Envisu) HH-OCT and analysed using custom-written macros in 
ImageJ (V.1.48 (National Institutes of Health, Bethesda, Mary-
land, USA; available at http://rsbweb.nih.gov/ij/; accessed 24 
April 2020)). The central scan of the fovea was selected based on 
the deepest pit. All foveal analysis was performed by examiner(s) 
masked to the group identity to eliminate bias and all segmenta-
tion lines were manually checked for errors.

Table 1  An overview of phenotypical characteristics associated with recruited probands, and the foveal morphology description of their biological 
parents
Probands Parents

Best-corrected VA  �  Foveal hypoplasia6 7

ID Gender
Age
(at examination) BE RE LE VA test Nystagmus

Iris transillumination
defect2 VEP Foveal hypoplasia6 7 Mother Father

1 M 5 0.275 0.45 0.275 Crowded Kay Pictures Present Grade 1 NT Grade 1a Grade 1a N

2 F 4 0.85 0.85 0.95 Crowded Keeler Present Grade 4 Misrouting Grade 3 N N

3 F 15 0.18 0.18 0.18 Crowded Keeler Present Grade 2 Misrouting Grade 2 N NT

4 M 5 0.625 0.75 0.825 Crowded Kay Pictures Present Grade 3 Misrouting Grade 3 Grade 1b N

5 F 21 0.6 0.78 0.6 Crowded Keeler Present Grade 3 Misrouting Grade 4 N NT

6 F 22 0.6 0.78 0.6 Crowded Keeler Present Grade 2 Misrouting Grade 3 N Grade 1a

7 F 13 0.34 0.4 0.4 Crowded Keeler Present Grade 2 NT Grade 4 N N

8 M 13 0.6 0.64 0.74 Crowded Keeler Present Grade 2 Misrouting Grade 3 N NT

9 M 22 0.48 0.6 0.48 Crowded Keeler Present Grade 3 NT Grade 3 NT N

10 M 24 0.48 0.6 0.6 Crowded Keeler Present Grade 3 Misrouting Grade 3 Grade 1a N

11 M 5 0.9 0.085 0.9 Crowded Kay Pictures Present Grade 3 Inconclusive Grade 3 Grade 1b N

12 F 10 1.2 1.2 1.28 Crowded Keeler Present Grade 3 Misrouting Grade 4 Grade 1a N

13 F 4 0.7 0.8 0.75 Crowded Kay Pictures Present Grade 4 NT Grade 3 Grade 1a N

14 F 3 0.6 NT NT Crowded Kay Pictures Present Grade 1 Inconclusive Grade 4 N Grade 1a

15 M 9 0.78 0.78 0.78 Crowded Keeler Present Grade 2 NT Grade 4 N N

16 M 3 0.55 0.7 0.575 Crowded Kay Pictures Present Grade 2 NT Grade 3 Grade 1a N

BE, both eyes; F, female; LE, left eye; M, male; N, normal ; NT, not tested ; RE, right eye ; VA, visual acuity in logMAR; VEP, visual evoked potentia.
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Qualitative foveal analysis
The final averaged result was saved as a JPEG file. Five experi-
enced graders inspected all central foveal B scans from carriers 
and controls. In rare instances, where there were conflicts in 
grading a senior grader would reassess scans to achieve consensus. 
Grading of foveal hypoplasia was based on the scheme described 
by Thomas et al, with grade 1 subdivided into 1a and 1b as per 
Wilk et al and Rufai et al (online supplemental figure 1).6 7 16 
Grade 1a foveal hypoplasia was identified by the continuation of 
the inner retinal layers, the presence of a nearly normal foveal 
pit, outer segment (OS) layer lengthening and outer nuclear 
layer widening. A classification of grade 1b foveal hypoplasia 
was identified where there was continuation of the inner retinal 
layers, a shallow foveal pit, OS layer lengthening and outer 
nuclear layer widening. Grade 2 foveal hypoplasia was identi-
fied when all features of grade 1 were present, except there was 
no foveal pit. A classification of grade 3 foveal hypoplasia was 
identified when all features of grade 2 foveal hypoplasia were 
present, minus OS lengthening. Grade 4 was identified where 
all features of grade 3 foveal hypoplasia were present, however 
there is no outer nuclear layer widening.

Quantitative foveal analysis
The averaged central B-scans were uploaded to ImageJ to execute 
quantitative analysis. Retinal layer segmentation was performed 
using a customised macro in ImageJ, as previously described.15 
Briefly, this included implementing a spline-based segmentation 
to derive individual retinal layer thickness.

Thickness measurements of the total retinal layers (TRL), inner 
retinal layers (IRL) and outer retinal layers (ORL) were calcu-
lated for statistical analysis. IRL comprised retinal nerve fibre 
layer, ganglion cell-inner plexiform layer complex (GCL-IPL 

complex) and inner nuclear layer. ORL consisted of outer plexi-
form layer, outer nuclear layer, external limiting membrane, 
ellipsoid zone, interdigitation zone and retinal pigment epithe-
lium. Retinal thickness measurements were obtained at 0 µm 
(central fovea), 1000 µm (parafoveal) and 2000 µm (perifoveal), 
nasally and temporally from the fovea (figure 1A,E).

Statistical analysis
Based on retinal thickness measurements from Mohammad et 
al, a sample size of 25 in each group has 80% power to detect a 
difference between means of 12.16 µm with a significance level 
(alpha) of 0.05 (two-tailed).17 Statistical analysis was executed 
using SPSS software (V.26.0, IBM, Armonk, New York, USA). 
Shapiro-Wilk test was applied to test normality of the foveal 
measurements’ distribution. Retinal thickness measurements at 
the central fovea demonstrated non-normally distributed data. 
Retinal thickness measurements at perifoveal and parafoveal 
regions demonstrated normal distribution.

The Mann-Whitney U test assessed for statistical differ-
ences between carriers and controls for retinal thickness at the 
central fovea for three parameters: TRL, IRL and ORL. For 
central retinal thickness, the average of right and left eye data 
was calculated, and subsequently used, for each participant to 
control for repeated measures. Differences in retinal thickness 
for each parameter at perifovea and parafovea were compared 
between the carrier group and the control group using linear 
mixed models (LMM). LMM were implemented for the analysis 
of six parameters at both nasal and temporal retinal locations: 
(1) parafoveal TRL, (2) perifoveal TRL, (3) parafoveal IRL, (4) 
perifoveal IRL, (5) parafoveal ORL and (6) perifoveal ORL. The 
independent variable in the LMM was the retinal parameter (ie, 

Figure 1  (A) Tomogram representing a horizontal B-scan through the central fovea with indicated retinal layers and central, nasal and temporal 
measurement locations. Inner retinal layers (RNFL, GCL-IPL complex and INL) are indicated by the yellow border. Outer retinal layers (OPL, ONL, IS, 
OS and RPE) are indicated by the red border. (E) Thickness measurements were obtained at the central fovea (0 µm; white dashed line) in addition to 
parafoveal (±1000 µm; green dashed line) and perifoveal locations (±2000 µm; purple dashed line). (B) Foveal tomogram of a control demonstrating 
normal foveal morphology. (C-D, F) Foveal tomograms of carriers demonstrating grade 1a foveal hypoplasia, with continuation of inner retinal layers 
posterior to the foveola, a nearly normal foveal pit, OS lengthening and ONL widening. (G–H) Carrier tomograms demonstrating grade 1b foveal 
hypoplasia with a shallow foveal indent, OS lengthening and ONL widening. ELM, external limiting membrane; GCL, ganglion cell layer; IPL, inner 
plexiform layer; INL, inner nuclear layer; IS, inner segment; IZ, interdigitation zone; OPL, outer plexiform layer; ONL, outer nuclear layer; RNFL, retinal 
nerve fibre layer; RPE, retinal pigment epithelium.

https://dx.doi.org/10.1136/bjophthalmol-2020-318192
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parafoveal TRL) and fixed factors included eye (right or left) and 
group (carrier or control).

All analyses were considered statistically significant when a 
probability value of p≤0.05 was identified.

RESULTS
Fifty-six foveal OCT scans from 28 carriers (15 females and 
13 males; mean age±SD=40.43±8.07 years) were acquired. 
Foveal OCT data from one eye of a carrier were excluded from 
analysis due to a previously identified unilateral localised perifo-
veal elevation, thus reducing the carrier dataset from 56 eyes to 
55. Foveal OCT scans of 55 healthy eyes from 28 controls (17 
females and 11 males; mean age±SD=38.04±10.27 years) were 
subsequently selected for analysis.

Clinical features
Clinical features for the probands and foveal morphology details 
of biological parents are described in table  1. All included 
probands satisfied the clinical/molecular diagnostic criteria for 
OCA described by Kruijt et al.2 Carriers had BCVA between 
−0.16 and 0.18 logMAR (mean±SD=0.00±0.06 logMAR). 
Controls had BCVA between −0.20 and 0.08 logMAR 
(mean±SD=−0.02±0.07 logMAR). There was no statistically 
significant difference between BCVA of carriers and controls 
(p=0.83) or between the BCVA of carriers with foveal hypo-
plasia (mean±SD=0.01±0.07 logMAR) and carriers without 
foveal hypoplasia (mean±SD=−0.02±0.06 logMAR) (p=0.12). 
However, the two carriers identified with grade 1b foveal hypo-
plasia demonstrated worse BCVA (0.08 and 0.12 logMAR) than 
those with no foveal hypoplasia or grade 1a. There was no mani-
fest strabismus for either carriers or controls. All controls and 
27/28 carriers (96.4%) demonstrated stereovision of 110” of arc 
or better. One carrier demonstrated gross stereopsis (600” of 
arc).

Genetics
Genetic variants in TYR, OCA2 and SLC45A2 were identified. 
Details of the genetic variants and predicted amino acid changes 
in probands and parents are shown in online supplemental table 
1. Mutation types identified included: missense, deletions and 
frameshift mutations.

We identified a total of four previously reported pathogenic 
variants in TYR,18–20 six variants in OCA221 22 and one variant 
in SLC45A2 (online supplemental table 1).19 We reported 
three novel variants in OCA2 classed as variants of unknown 
significance: c.2159G>A: p.(Arg720His); c.2051T>G: p.(Ph-
e684Cys); c.1117–20A>G (online supplemental table 1). The 
presence of hypomorphic variants in TYR: p. Ser192Tyr and p. 
Arg402Gln are shown in online supplemental table 1.

Overall, among the carriers where sequence analysis was 
performed, we identified a heterozygous pathogenic variant in 
13/16 (81.3%) carriers. In the remaining three carriers (father 
of proband 1, mother of proband 3 and father of proband 
15), interestingly we identified heterozygosity of the recently 
described TYR pathogenic haplotype which is responsible for the 
partial albinism phenotype in Europeans.14

Visual inspection of foveal morphology
Visual grading of foveal OCT scans identified foveal hypoplasia in 
9/28 carriers (32.14%) (figure 1C,D,F–H). All carriers with foveal 
hypoplasia were recognised as either grade 1a or grade 1b, demon-
strating continuation of IRL in conjunction with OS lengthening, 
widening of the outer nuclear layer and a shallow foveal pit. All 

controls demonstrated a normal, fully developed foveal pit and no 
evidence of foveal hypoplasia (figure 1B).

Foveal measurements
Carriers had a significantly thicker TRL (median difference (d): 
13.46 µm, p=0.009) (figure 2A) and significantly thicker IRL at 
the central fovea, compared with controls (d=8.98 µm, p<0.001) 
(figure 2B). The difference in thickness at central fovea was consis-
tently significant in individual retinal layers: retinal nerve fibre 
layer, GCL-IPL complex, inner nuclear layer and outer plexiform 
layer (online supplemental table 2). There was no significant differ-
ence between ORL thickness in carriers and controls (d=0.35 µm, 
p=0.432) (figure 2C).

Parafoveal and perifoveal retinal layer thickness
In the temporal parafoveal region, carriers demonstrated a signifi-
cantly thinner TRL thickness than controls (F=13.89, p<0.001); 
a result of the significant thinning of the IRL in the temporal 
parafoveal retina (F=18.51, p<0.001) (figure  3A,B). Temporal 
IRL thinning occurred due to thinning of the GCL-IPL complex 
(F=21.71, p<0.001) (online supplemental table 2). We identified 
significant thinning of perifoveal nasal TRL in carriers (F=5.76, 
p=0.02) (figure 3D). Perifoveal nasal TRL thinning arises due to 
significant thinning of the nasal IRL observed in carriers (F=5.72, 
p=0.02) (figure 3E).

There was no significant effect of groups on parafoveal and 
perifoveal ORL thickness in either temporal or nasal retina 
(figure 3C,F, online supplemental table 2). There was no signifi-
cant effect of eye (right or left) on thickness for all six parameters.

DISCUSSION
We have described for the first time, foveal abnormalities asso-
ciated with carriers of autosomal recessive OCA. We identified 
that approximately a third of our OCA carrier study population 
(32.1%) had foveal hypoplasia. Of the OCA carriers with foveal 
hypoplasia, the majority (25%) had grade 1a foveal hypoplasia 
and only 7.1% had grade 1b. Furthermore, the cohort of all OCA 
carriers demonstrated an overall increased central macular thick-
ness in comparison to matched controls. Our findings suggest there 
is an element of arrested retinal development that occurs in OCA 
carriers, indicative of reduced TYR activity despite only carrying 
one mutant allele.

Despite the presence of foveal hypoplasia, we only found 
minimal visual consequence in OCA carriers. Visual acuity relies 
on cone specialisation, which occurs in the ORL. We identified no 
significant difference of ORL thickness between OCA carriers and 
controls. Specifically, we find no differences in cone photoreceptor 
outer segment thickness (figure 2D). Previously, Mohammad et al 
showed that in albinism, visual acuity is correlated to OS length.17 
Furthermore, Wilk et al identified OS length as a surrogate marker 
for cone spacing, and subsequent visual resolution.23 In OCA 
carriers, we therefore suggest cone photoreceptor specialisation 
successfully occurs, allowing for high levels of visual acuity to be 
achieved. Moreover, our identification of only grade 1 foveal hypo-
plasia in OCA carriers suggests retinal development is disrupted at 
a later stage of specialisation.

This study has identified significant differences in temporal 
parafoveal IRL thickness between carriers and controls (figure 3B). 
In albinism, abnormal projection of retinal ganglion cell axons 
occurs, where the proportion of temporal retinal fibres projecting 
onto the contralateral hemisphere is greater than normal.24 This 
midline shift consequently disrupts retinal development and results 
in a temporal to central shift in albinism. Ganglion cell layer (GCL) 

https://dx.doi.org/10.1136/bjophthalmol-2020-318192
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thickness in albinism with foveal hypoplasia has previously been 
identified as demonstrating this shift, consequently resulting in the 
thinning of the temporal GCL.25 Temporal parafoveal IRL thick-
ness in our carrier participants demonstrated significant thinning 
in comparison to controls, thus indicative of a similar pattern of 
a temporal to central shift. Interestingly, we recently reported 
the nasotemporal asymmetry of retinal thickness measurements 
between patients with SLC38A8 mutations and controls.26 In 
SLC38A8 mutations, we find a thinner temporal parafovea with 
GCL thinning. SLC38A8 mutations, like albinism have chiasmal 
misrouting but with no evidence of hypopigmentation. Further 
studies in other forms of foveal hypoplasia (such as PAX6 muta-
tions, isolated cases and AHR mutations)27 will help elucidate 
whether these observations are specific to the reported temporal 
to midline shift.

In contrast, the nasal perifoveal IRL thickness was significantly 
thinner in carriers compared with controls (figure  3E). Ocular 
maldevelopment in albinism is not only localised to the fovea, 
but also occurs at the optic nerve head. Peripapillary RNFL thick-
ness has been identified to be significantly thinner in albinism 

compared with healthy controls, the greatest thinning observed 
in the temporal quadrant.28 Subsequently in albinism, thinning of 
the temporal peripapillary RNFL extends to the nasal perifoveal 
RNFL. Our identification of reduced nasal perifoveal IRL thick-
ness in OCA carriers is likely explained by illustrating a similar, 
although milder, pattern. Further studies investigating optic nerve 
changes in OCA carriers would provide more insight and enable 
comparisons with optic nerve changes previously observed in 
albinism.28

For TYR and OCA2 mutations, carrier frequency is reported 
as approximately 1%.29 30 The controversial TYR allelic variants 
resulting in amino acid substitutions p.Ser192Tyr and p.Arg402Gln 
are frequent in Caucasian populations, with reported minor allele 
frequencies of 36% and 27%, respectively in European popula-
tions.31 The exact pathogenicity of these variants are yet to be 
determined, but there is in vitro evidence of reduced enzymatic 
activity of tyrosine hydroxylase and DOPA oxidase when the 
Tyr192 variant allele was compared with the Ser192 wild-type 
allele.32 Similarly, in vitro studies of the R402Q variant have 
shown the variant results in a thermolabile enzyme that undergoes 

Figure 2  (A–C) Box plot showing the median, IQR and distribution of retinal thickness parameters (TRL, IRL and ORL) in carriers of OCA and healthy 
controls. (D) Bar graph demonstrating the mean thickness for intraretinal layers at the fovea for OCA carriers and controls. TRL, total retinal layers; 
IRL, inner retinal layers; ORL, outer retinal layers; OCA, oculocutaneous albinism; RNFL, retinal nerve fibre layer; GCL, ganglion cell layer; IPL, inner 
plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; IS, inner segment; OS, outer segment; COST, cone outer 
segment tips; RPE, retinal pigment epithelium; *P<0.05.
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structural unfolding at higher temperatures with reduced affinity 
for L-tyrosine resulting in approximately 75% reduction in cata-
lytic activity.33

The exact structural and functional consequence of isolated 
S192Y and R402Q variants are unclear.3 The occurrence of contin-
uation of IRL in the general population, with no visual abnormal-
ities, is reported at a frequency of between 1% and 3%.34 Thus, 
raising the question as to whether a potential association between 
carriers of certain genetic variants and subtle structural abnormal-
ities exists. Furthermore, it is possible that some cases with mild 
(grade 1) ‘idiopathic foveal hypoplasia’ could be a manifestation 
of carrier status for albinism, as many people considered with idio-
pathic foveal hypoplasia are not genetically tested.

Despite the introduction of a clinical classification system for 
albinism, developed by Kruijt et al, many clinicians base albinism 
diagnosis on the presence of albinotic phenotypical characteristics, 
irrespective of severity.2 Subsequently, there is a large phenotyp-
ical spectrum associated with albinism. Previous literature has 
described cases of partial or mild albinism, which present with low 
grades of foveal hypoplasia or iris TID, significantly contrasting 
to the typical presentation of albinism which observes a consid-
erably more severe phenotype.35 Our observation of low grades 
of foveal hypoplasia associated with carriers of OCA may provide 
one potential explanation for some milder cases of albinism. Previ-
ously identified cases of partial albinism may in fact correspond 
to people with carrier status. Our findings have the potential to 
improve phenotyping in albinism. Clinical findings of persistence 
of the IRL in carriers of OA have previously been described.12 The 
observation of foveal abnormalities in carriers of OCA may add 
clinical value, particularly in cases where limited phenotype data 
are available (eg, uncooperative infants/young children) and in the 
absence of a history of prematurity and other ocular disease. Exam-
ining and subsequently identifying subtle carrier signs in parents 
increases the index of suspicion for the child to have albinism and 
adds to the diagnostic accuracy. The presence of OCA carrier signs 

may be used as additional criterium for an OCA diagnosis. This 
study therefore further emphasises the importance of examining 
the whole family in the context of a suspected Mendelian disorder.

A limitation to our study was the incomplete genetic data, 
presenting the inability to fully characterise the genotype-
phenotype relationships of our carriers. In our study, the number 
of subjects was relatively small; however, the sample size calcula-
tion (see ‘Methods’ section) showed that the power was sufficient.

This adds to the body of evidence demonstrating another auto-
somal recessive disease in which carriers can be subtly affected. Our 
findings provide the groundwork for future studies, expanding on 
the presence of subtle ocular characteristics and the genotype-
phenotype relationships in carriers of OCA.
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