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ABSTRACT
Objective  To explore the interplay between dietary 
modifications, microbiome composition and host 
metabolic responses in a dietary intervention setting of 
a personalised postprandial-targeting (PPT) diet versus a 
Mediterranean (MED) diet in pre-diabetes.
Design  In a 6-month dietary intervention, adults with 
pre-diabetes were randomly assigned to follow an MED 
or PPT diet (based on a machine-learning algorithm 
for predicting postprandial glucose responses). Data 
collected at baseline and 6 months from 200 participants 
who completed the intervention included: dietary 
data from self-recorded logging using a smartphone 
application, gut microbiome data from shotgun 
metagenomics sequencing of faecal samples, and 
clinical data from continuous glucose monitoring, blood 
biomarkers and anthropometrics.
Results  PPT diet induced more prominent changes to 
the gut microbiome composition, compared with MED 
diet, consistent with overall greater dietary modifications 
observed. Particularly, microbiome alpha-diversity 
increased significantly in PPT (p=0.007) but not in 
MED arm (p=0.18). Post hoc analysis of changes in 
multiple dietary features, including food-categories, 
nutrients and PPT-adherence score across the cohort, 
demonstrated significant associations between specific 
dietary changes and species-level changes in microbiome 
composition. Furthermore, using causal mediation 
analysis we detect nine microbial species that partially 
mediate the association between specific dietary changes 
and clinical outcomes, including three species (from 
Bacteroidales, Lachnospiraceae, Oscillospirales orders) 
that mediate the association between PPT-adherence 
score and clinical outcomes of hemoglobin A1c (HbA1c), 
high-density lipoprotein cholesterol (HDL-C) and 
triglycerides. Finally, using machine-learning models 
trained on dietary changes and baseline clinical data, 
we predict personalised metabolic responses to dietary 
modifications and assess features importance for clinical 
improvement in cardiometabolic markers of blood lipids, 
glycaemic control and body weight.
Conclusions  Our findings support the role of gut 
microbiome in modulating the effects of dietary 
modifications on cardiometabolic outcomes, and advance 
the concept of precision nutrition strategies for reducing 
comorbidities in pre-diabetes.
Trial registration number  NCT03222791.

INTRODUCTION
Diet is a major contributor to cardiometabolic health 
and plays a fundamental role in the prevention, 
management and even reversal of many chronic 
diseases, including but not limited to diabetes, 
cardiovascular disease (CVD) and fatty liver 
disease.1 2 Increasing evidence suggests complex 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Previously reported clinical results from 
an randomised controlled trial in pre-
diabetes demonstrated beneficial effects of 
a personalised postprandial-targeting (PPT) 
diet on glycaemic and other cardiometabolic 
outcomes, beyond the established benefits of a 
Mediterranean-style diet.

	⇒ Gut microbiome is intimately linked to host 
diet and cardiometabolic health, but current 
knowledge about gut microbiome at the 
intersection between diet and human health 
mostly relies on observational studies.

WHAT THIS STUDY ADDS
	⇒ PPT diet prompted greater dietary modifications 
and increased microbiome diversity and 
richness.

	⇒ A causal mediation analysis demonstrates a 
partial mediatory role for nine microbial species 
in the association between specific dietary 
changes and clinical outcomes.

	⇒ Machine-learning models trained on dietary 
changes and baseline clinical data predict 
personalised metabolic responses to dietary 
modifications in several cardiometabolic 
markers of blood lipids, glycaemic control and 
body weight.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Our findings suggest concrete microbiota 
species targets, which may form the basis for 
future mechanistic experiments on their role 
in human diet and health, as well as potential 
therapeutic directions to be evaluated in 
preclinical and intervention studies to improve 
cardiometabolic health in pre-diabetes.
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nutrient-disease relationships with numerous factors affecting 
the relative contribution of a specific nutrient to disease risk, as 
has been suggested for example for saturated fatty acids (SFAs) 
and CVD.3 This comprehension has recently led international 
health organisations to shift the focus of nutritional recommen-
dations in dietary guidelines away from macronutrient composi-
tion towards the quality of foods and dietary patterns.4 However, 
there is high interpersonal variability in metabolic responses to 
dietary interventions even when evaluating nutritional intake by 
means of specific foods or dietary patterns rather than macronu-
trient composition.5–7 This suggests that while dietary guidelines 
are based on population averages, a deeper understanding of the 
factors that drive the variation between individuals in metabolic 
response to dietary modifications may inform more effective 
and precise dietary recommendations to individuals in clinical 
practice.8

The gut microbiota, which consists of trillions of bacterial 
microorganisms, has a central role in human health and disease.9 10 
Specifically, its role in cardiometabolic health has been studied 
extensively in recent years, including in diabetes,11 12 obesity13 14 
and CVD.15 16 Gut microbiome is also intimately linked in a bidi-
rectional relationship with the host diet. On the one hand, gut 
microbiome significantly affects host metabolism and how one 
responds to food.5 6 17 On the other hand, gut microbial compo-
sition is responsive to the host diet which may exert downstream 
effects on human health.18–20 Additionally, since the gut micro-
biome is highly individualised in its nature, it is reasonable to 
hypothesise that it has a significant role in the highly variable 
effects that specific dietary interventions have on individual 
cardiometabolic outcomes. However, despite the recognition of 
strong links between microbiomes with both cardiometabolic 
health and the host diet, most studies that explored the interplay 
between these three elements in humans were observational,21 22 
and only few formally tested it in interventional settings.23–26

We recently reported the clinical results of a randomised 
controlled trial (RCT) in adults with pre-diabetes that demon-
strated beneficial effects of a personalised postprandial-targeting 
(PPT) diet, which is based on a machine-learning algorithm for 
predicting personal postprandial glucose responses (PPGR), 
on primary glycaemic outcomes and other secondary meta-
bolic outcomes, beyond the established metabolic benefits of a 
Mediterranean-style diet.27 In the current work, we perform ad 
hoc analyses aimed at evaluating other exploratory outcomes 
of the 6-month dietary intervention, including high-resolution 
assessment of the dietary changes and microbiome compo-
sitional changes observed on both arms. We further explore 
associations between changes in multiple dietary features, micro-
biome species and metabolic readouts across the cohort (regard-
less of arm assignment) and evaluate the role of microbiota 
species in mediating the effects of dietary changes on metabolic 
outcomes. Finally, we devise machine-learning models trained 
on dietary changes and baseline clinical data, to predict person-
alised metabolic responses to dietary modifications and assess 
features importance for clinical improvement in cardiometabolic 
markers of blood lipids, glycaemic control and body weight in 
this RCT setting.

METHODS
Recruitment to the study
This randomised clinical trial (​ClinicalTrials.​gov ID: 
NCT03222791) was carried out at the Weizmann Institute 
of Science, Israel, between January 2017 and March 2020. 
All details regarding recruitment to the study were previously 

published in the primary publication of this RCT.27 In short, 
inclusion criteria included: (1) fasting plasma glucose (FPG) 
levels between 100 and 125 mg/dL (5.6 and 6.9 mmol/L), (2) 
HbA1c level between 5.7 and 6.5% (39 and 48 mmol/mol), (3) 
age of 18–65 years and (4) capability to work with a smartphone 
app on a daily basis (for dietary intake logging). Key exclusion 
criteria were any use of diabetes or weight loss medications, 
use of antibiotics in the 3 months before enrollment, diag-
nosed chronic diseases or chronic use of medications that affect 
glucose/energy metabolism or HbA1c. Volunteers from Israel 
who self-reportedly declared themselves as having pre-diabetes 
on the trial website were invited for a screening visit to deter-
mine eligibility according to measured FPG and HbA1c at the 
trial’s central laboratory. Eligible participants were then invited 
for a ‘profiling’ visit at the trial’s site (Weizmann Institute of 
Science) during which they were informed in detail of all study 
procedures and requirements, provided a stool sample for base-
line microbiome analysis (required for algorithm predictions), 
and were connected to continuous glucose monitoring (CGM) 
sensors (FreeStyle Libre, Abbott Laboratories) for a run-in period 
of 2–4 weeks before the start of the intervention. All participants 
signed an informed consent prior to participation.

Study design, randomisation and interventions
Design and interventions of this RCT, as well as primary and 
secondary clinical outcomes of the trial, were previously 
reported in detail.27 The current report is focused on explor-
atory outcomes of this trial, including high-resolution assessment 
of the 6-month dietary and microbiome compositional changes 
observed in the 200 participants who completed the interven-
tion (baseline characteristics summarised in online supplemental 
table 1), and investigation of the gut microbiota’s role at the 
intersection between diet and human health (figure 1A). Briefly, 
the study was a biphasic, randomised, controlled, single-blind 
dietary intervention. Phase 1 included a 6-month intervention 
that compared two diets targeting glycaemic control, while phase 
two included a 6-month follow-up period. The two dietary inter-
ventions included (1) an MED diet and (2) an algorithm-based 
personalised PPT diet aimed at lowering PPGRs with real-time 
feedback through a smartphone application (app). After comple-
tion of the run-in period, participants were randomly assigned 
in a 1:1 ratio to an MED or a PPT diet, while ensuring minimal 
differences between the groups in six prognostic baseline char-
acteristics: sex, age, weight, body mass index (BMI), HbA1c and 
FPG. Participants and medical lab examiners were blinded to 
arm assignment, while the investigators and dietitians were not. 
Dietary guidance was provided by certified dietitians, with iden-
tical number and length of sessions and other monitoring and 
mentoring tools to ensure equal support and intervention inten-
sity in both arms.

Dietary recommendations for both groups were administered 
as menus, with meals selected from a meal bank generated for 
this study. The selection of meals for the menus relied on the 
diet principles in each group, as previously described in detail.27 
In short, menus were designed in a way that will allow diversity, 
guarantee safety (a balanced diet) and suit personal taste. Partic-
ipants also received, on inquiring, recommendations or discour-
agement to consume any other desired food or meal outside 
their menus, depending on the principles of the diet arm they 
were assigned to (for PPT, based on the algorithm; for MED, 
based on dietitian judgement). Meals were self prepared by 
participants at home. By design, no total calorie restriction was 
advised and menus were designed with a daily caloric target that 
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was personally set to each participant to match their estimated 
energy expenditure.

The design of the two diets in this RCT was previously 
described in detail.27 In short, the MED diet was based on 
standard-of-care recommendations as commonly advised by 
certified dietitians in Israel.28 Recommended foods on the MED 
diet included whole-wheat bread and grains, legumes, low-fat 
dairy products, fish, poultry, olive oil, fruits and vegetables. 
Discouraged foods included commercial bakery goods, sweets 
and pastries, fried foods and snacks, fatty and processed meat, 
and high-fat dairy products. Menus in this diet arm were designed 
with the following diet composition: 45%–65% of energy intake 
from carbohydrates, 15%–20% from protein and <35% from 
fat, with <10% from saturated fat. The PPT diet was based on 
personal predicted glucose responses according to a previously 
published algorithm that integrates clinical and gut microbiome 
features to predict PPGR to meals, and that was adjusted for 
use in a clinical setting.5 27 In short, among the features used 
by the algorithm to predict PPGR to meals were anthropomet-
rics, blood tests (FPG, HbA1c% and haemoglobin), lifestyle 
features derived from questionnaires, and microbiome features: 
abundances of species estimated by MetaPhlAn2 and functional 
modules estimated with mapping to KEGG database. Addition-
ally, macronutrient and micronutrient composition of the meal 
was used and features extracted from a person’s CGM (percen-
tiles of blood glucose). Since no events around the meal were 

used for prediction, trained predictors could predict response 
for any profiled participant to any given meal. By design, macro-
nutrient composition was not predetermined for the PPT diet.

Dietary and adherence assessment
As part of the study design, participants in both arms were asked 
to record their full dietary intake in real time every day for the 
full study period using a designated smartphone app (‘Person-
alised Nutrition Project’) that we developed. Each food item 
within every meal was logged along with its weight or portion 
units by selecting it from a database of >7000 foods with full 
nutritional values based on the Israeli Ministry of Health data-
base that we further expanded with additional items from certi-
fied sources. Adherence to the prescribed diets was evaluated 
during the intervention by the self-recorded dietary intake in the 
logging app and by monthly follow-up questionnaires.

In the current work, we conducted a high-resolution assess-
ment of the actual dietary changes observed, by extracting dietary 
data from the extensive self-reported meal logging (mean±SD 
of 747±299 meals (range 26–1618) and 242 000±97 000 
kcal (range 12 084–521 330) per person). Analyses include 21 
macronutrients and micronutrients and 18 food categories. For 
macronutrients (carbohydrates, protein, total dietary fat, satu-
rated fatty acids (hereafter ‘SatFat’), monounsaturated fatty acids 
(hereafter ‘MUFA’) and polyunsaturated fatty acids (hereafter 

Figure 1  PPT intervention induces greater changes in multiple dietary features compared to MED intervention. (A) Study design scheme and total 
sample count by category. Artwork created with ‘BioRender.com’. (B) CIs of 6 months changes in nutrients consumption. For each nutrient on the y-
axis, the upper and lower thin lines indicate CIs of change within the MED and PPT arms, respectively. CIs length is normalised by the mean change 
in the respective dietary feature across the cohort. The thick purple line indicates CI of between group change difference (PPT change minus MED 
change). Red and black lines denote significant (p<0.05) and non-significant changes within arms, respectively (one-sided t-test). Asterisks on the 
right side of the panel denote between-group significant differences (two-sided t-test, *p<0.05, **p<0.01, ***p<0.001. n.s, non significant). (C) 
As in B but for 6 months changes in food categories consumption (presented as per cent of total energy intake). (D, E) Principal component analysis 
(PCA) of dietary consumption by arm and study phase (baseline vs intervention) evaluated based on nutrients (D) or food categories (E). (F) Box plots 
showing the PPT adherence score by arm and study phase (baseline vs intervention). Bars on top denote significance level for difference within arms 
(***p<0.001. n.s, non significant). PPT, personalised postprandial-targeting.
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‘PUFA’)), values were computed as proportion (%) of kcal intake 
per day. Total dietary fibre was evaluated as gram per 1000 kcal 
consumed per day, as accepted. For micronutrients (cholesterol, 
calcium, magnesium, iron, potassium, sodium, vitamin A (RAE), 
vitamin B1 (thiamin), vitamin B3 (niacin), vitamin B6 (pyri-
doxine), vitamin B9 (total folate) vitamin B12, vitamin C, vitamin 
E), values were computed as absolute amount consumed (mg or 
µg) per day, as accepted. Micronutrients with counts close to 0 or 
that were not correctly annotated across the food database were 
not included in the analysis (eg, vitamin K, vitamin B7 (biotin), 
iodine, trans fatty acids). Food categories were determined by 
assigning all food items recorded by participants on the mobile 
app (>10 counts) into 18 common food categories (based on 
botanical and nutritional properties). Consumption of food cate-
gories was evaluated as proportion (%) from energy intake per 
day. Dietary changes in all features were assessed as the delta 
between mean daily consumption over the 6-month intervention 
and mean daily consumption over the run-in (profiling) phase.

To encourage dietary adherence and self-monitoring during 
the intervention, we originally devised composite adherence 
scores on a scale of 0–100 (from worst to best) for both MED 
and PPT diets, based on their respective dietary principles. These 
diet scores were delivered to participants during the interven-
tion, aiming to motivate and convey to them their compliance to 
their assigned diets in terms of meal composition, as previously 
described in detail.27 Here, we took advantage of the thorough 
dietary data collected from participants’ logging and our ability 
to run algorithm PPGR predictions for every profiled partici-
pant, to compute, as a post hoc analysis (ie, retrospectively), the 
PPT adherence score across the entire cohort (ie, regardless of 
arm assignment). In short, the PPT adherence score was devised 
to indicate how well one sticks to algorithm-based recommenda-
tions. As such, the calculation of the PPT adherence score was 
based on our meal recommendation scoring system, which stands 
at the core of the PPT approach (meal scores 1–5, best to worst, 
as previously described in detail).27 Each meal recommendation 
score was assigned with an adherence score as follows: meal 
score 1=adherence score 100; meal score 2=80; meal score 
3=50; meal score 4=25; meal score 5=0. These meal adher-
ence scores were averaged calorie-wise (meal energy trimmed 
to be within 100–500 kcal interval) in order to proportionally 
account for the contribution of large versus small meals to the 
overall adherence score. For example, if a person logged three 
meals: 600 kcal of meal score 2, 1000 kcal of meal score 5 and 
80 kcal of meal score 1, he received a PPT adherence score of: 
(500×80+500×0+100×100)/(500+500+100)=45. The PPT 
adherence scores were computed per day and averaged over the 
run-in and intervention phases. If too few (100 by default) calo-
ries were logged (overall), we did not compute an adherence 
score for that day.

Blood, CGM and anthropometric measurements
Blood samples were obtained at baseline and 6 months, at 
the trial site (Weizmann Institute of Science) or at the central 
medical laboratory of the trial (AMC Medical Center Labora-
tory). All blood specimens were processed and biochemical 
assays performed by one technician at the central laboratory, 
who was not aware of arm assignment or any other characteris-
tics of participants. All blood biochemical assays were previously 
described in detail.27

To obtain the most informative view of glucose levels possible, 
participants in both arms were continuously connected to 
CGM sensors throughout the run-in and the entire intervention 

period (15 727±4430 glucose measurements per person), with 
sensors replaced every 2 weeks and participants being blinded to 
glucose tracings. The CGM measurements were used to calculate 
measures of glycaemic control, including daily time of glucose 
levels above 140 mg/dL (7.8 mmol/L) (hereafter ‘time>140’) 
and mean CGM glucose levels.

Anthropometric measurements were taken at the trial site 
(Weizmann Institute of Science) during the monthly follow-up 
meetings with dietitians. Body weight, and body composition 
measures (‘BMI’; basal metabolic rate (hereafter ‘BMR’); body 
fat percentage) were measured using a BC-418MA Segmental 
Body Composition Analyser; Tanita. Hips and waist circumfer-
ence were measured in each participant by their respective dieti-
tian using a standard measuring tape. Blood pressure and heart 
rate were measured using an automated blood pressure monitor 
(M6 model, Omron, Hoofddorp, the Netherlands).

Stool collection, microbiome sequencing and processing
Stool samples for microbiome analysis (at baseline and 6 months 
time points) were collected by participants at home using an 
OMNIgene GUT (OMR-200; DNA Genotek) stool collection 
kit. Participants were asked to collect the stool sample as close as 
possible to their scheduled visit to the trial site and store it in a 
home freezer (−18°C) until then. When arrived at the trial site, 
samples were transferred to −20°C pending DNA extraction. 
The stool samples were processed to extract and sequence bacte-
rial DNA, as previously described in detail.27 A total of 382 
samples from 191 participants (94 from PPT and 97 from MED 
arm) were included in the analysis. The relative abundance (RA) 
of bacterial species was obtained from metagenomic sequencing 
via an expanded microbial genome reference recently published 
by our lab29 with default parameters. After filtering by species 
present in at least 20% of samples we obtained 320 species, and 
out of these, 296 that were present in both baseline and 6-month 
samples were included in the analysis. Changes in microbiome 
features were calculated as follows: log(RAt6)−log(RAt0).

Statistical analysis
All statistical analyses were performed in Python V.3.7. To assess 
dietary changes within and between arms we used one-sided 
and two-sided t-test, respectively. To assess microbiome changes 
within and between arms we used one-sided t-test and Mann-
Whitney U test, respectively. All multiple hypothesis testing were 
controlled for false discovery rate (FDR) on the level of 0.1

Assessing the mediatory effect of microbiome species at the 
intersection between dietary changes and clinical outcomes, 
we applied causal mediation analysis as previously described,30 
where changes in dietary features were treated as independent 
variables (X), changes in clinical outcomes as dependent vari-
ables (Y) and changes in microbiome species abundances as 
potential mediators (M). A total of 456 potential mediation 
paths (based on correlation matrices of diet features change vs 
clinical biomarkers change and diet features change vs micro-
biome species change) were applied into a mediation analysis 
pipeline using the Python package ‘pingouin.mediation_anal-
ysis’. Age, gender and BMI change were treated as covariates 
to correct for their possible effect as confounders that distort 
mediator-outcome associations. Significance of the mediation 
effects was determined based on bootstrapping and a p<0.05 
for the indirect effect (average causal mediation effect; ACME).

For predicting 6-month changes (delta) in various clinical 
parameters of blood lipids, glycaemic and anthropometric 
measures, we devised gradient-boosted decision trees (GBDT) 
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using the LightGBM Python-package (Sklearn._version_‘1.0.2’) 
with default parameters except for: feature_fraction=0.6 and 
bagging_fraction=0.6. Fivefold cross-validation was generated 
six times for each predictor with a different random state, and 
the score from each cross-validation was used to estimate the 
predictor’s accuracy and calculate SE. The models were trained 
with different combination sets of dietary and personal clin-
ical input features (47 and 31, respectively). Dietary features 
included PPT score, 27 nutrients and 19 food categories. 
Personal clinical features included age, gender and all blood 
biomarkers, CGM and anthropometric measures collected in 
the study. For each clinical readout, four different models were 
trained with the following sets of input features: (1) baseline 
levels of the respective clinical feature that we wish to predict its 
outcome (‘Basic’ model); (2) baseline levels of all personal clin-
ical features measured in this trial, plus age and gender (‘Person-
alised’ model); (3) as model 1 plus dietary changes (PPT score, 
nutrients and food categories features) (‘Basic+Diet’ model) and 
(4) as model 2 plus dietary changes (PPT score, nutrients and 
food categories features) (‘Personalised+Diet’ model). To study 
the relative contribution of different features to the final predic-
tion in the ‘Personalised+Diet’ models, the ‘SHAP V.0.41.0’ 
library of Python was used.

RESULTS
PPT intervention induce greater changes in multiple dietary 
features compared with MED intervention
As we previously described in the primary publication of this 
RCT,27 the study design included full dietary records logged by 
the study participants on a mobile application during the run-in 
phase (baseline) and throughout the entire 6-month intervention 
(figure  1A). This allowed us to extract extensive dietary data 
and assess in high resolution the actual changes in dietary intake 
adopted by participants during the intervention compared with 
baseline, including changes in 21 nutrients (macronutrients and 
micronutrients) and in 18 food categories (see the Methods 
section) (figure 1B,C). To evaluate the overall pattern of dietary 
modifications that characterised the two diet arms (MED vs PPT), 
we conducted a principal component analysis (PCA) using either 
nutrients or food categories as features. In accordance with the 
distinct dietary approaches that the two arms were based on (an 
algorithm-based PPGR-targeting approach vs a Mediterranean-
style dietary pattern approach), the PCA analysis demonstrated, 
as expected, distinct 6 months shifts in dietary intake between 
arms, both by means of nutrients and food categories intake 
(figure 1D,E). Notably, since the Mediterranean diet is consid-
ered the standard-of-care in Israel and generally represents the 
local typical diet, the overall dietary shift that the MED arm 
exhibited was smaller than that of the PPT arm (figure 1D,E).

Following the high-level assessment of dietary changes, we also 
assessed specific 6-month changes in nutrients intake. Indeed, 
we found that the two arms differed significantly in most of the 
nutrients evaluated. In terms of macronutrients, the PPT arm 
significantly decreased carbohydrate intake compared with base-
line (95% CI −17.9% to −15.6% kcal) while MED arm slightly 
increased carbohydrate intake (95% CI 1.0% to 2.5% kcal). 
Intake of total dietary fat and the different fat subtypes (‘SatFat’, 
‘MUFA’ and ‘PUFA’) were all significantly increased within the 
PPT arm (95% CI 12.8% to 14.9%; 2.8% to 3.7%; 5.1% to 
6.3%; 3.5% to 4.5% kcal, respectively) and decreased in MED 
arm (95% CI −5% to −3.4%; −2.1% to −1.4%; −1.6% to 
−0.9%; −1.1% to −0.4% kcal, respectively). Protein intake was 
slightly, though significantly, increased in both PPT and MED 

arms (95% CI 2.6% to 3.7% and 1.4% to 2.3% kcal, respec-
tively). Total dietary fibre intake was significantly decreased 
within the PPT arm (95% CI −2.4 to −1.0 g/1000kcal) and 
increased in MED (95% CI 2.9 to 4.0 g/1000 kcal) (figure 1B). 
Notably, the overall low-carbohydrate and high-fat pattern of 
the PPT intervention was expected as previously described,27 
since meal carbohydrate content constitutes an important 
component in PPGR prediction. However, we found greater 
variation in change of these (and other) dietary features within 
the PPT arm as compared with MED (online supplemental table 
2), supporting the personalised design of the PPT approach. In 
terms of micronutrients, among the 14 micronutrients assessed, 
the most substantial changes within the PPT arm included 
increases in intake of cholesterol, vitamin E, calcium, vitamin 
B12 (95% CI 80.2 to 121.1 mg; 0.7 to 1.6 mg; 52.7 to 116.1 mg; 
0.4 to 1.0 µg, respectively) and decreases in thiamin (vitamin B1) 
total folate (vitamin B9), sodium and potassium (95% CI −0.2 to 
−0.1 mg; −76.7 to −47.3 µg; −552.5 to −303.5 mg; −396.0 
to −219.8 mg, respectively). In the MED arm most substantial 
changes included increase in intake of iron, magnesium, niacin 
(vitamin B3) and vitamin B6 (95% CI 0.6 to 1.8 mg; 12.2 to 47.1 
mg; 1.0 to 3.3 mg; 0.1 to 0.2 mg, respectively) and a decrease 
in intake of cholesterol (95% CI −42.1 to −5.7 mg) (figure 1B).

To gain more insight about the actual dietary changes adopted 
by participants during the intervention in terms of dietary 
patterns and food choices, we assessed participants’ consump-
tion of 18 food categories (evaluated as proportion of total 
energy intake per day) during the intervention as compared 
with baseline. Importantly, this analysis demonstrated signifi-
cant 6 months changes within the PPT arm for 17 out of 18 
food categories evaluated, while the MED arm had significant 
changes in 11 categories (figure 1C). Among the most substantial 
changes within the PPT arm were increases in ‘Nuts and Seeds’ 
(95% CI 6.1% to 8.1% kcal); ‘Med Oil and Fats’ (3.3% to 4.7% 
kcal); ‘Eggs and products’ (2.6% to 3.6% kcal); ‘Milk and Dairy’ 
(2.3% to 4.3% kcal), and decreases in ‘Refined-grains cooked 
side dishes’ (−7.4% to −5.6% kcal) and ‘Refined-grains Bread’ 
(−7.4% to −5.2% kcal). In MED arm most substantial changes 
included increases in ‘whole-grains bread’ (5.5% to 7.5% kcal) 
and ‘whole-grains cooked side dishes’ (95% CI 1.9% to 2.9% 
kcal). Notably, both PPT and MED arms increased intake of 
‘vegetables’ and decreased intake of ‘refined-grains bread’ and 
‘sweets and snacks’ (figure 1C), indicating that both interven-
tions were overall promoting healthy dietary modifications in 
that respect.

Finally, to assess the effects of the PPT-based dietary approach 
on microbiome and clinical outcomes, we devised a ‘PPT-
adherence score’ ranging from 0 to 100, that indicates the adher-
ence level of participants to PPT-based recommendations, (see 
the Methods section). Importantly, as a post hoc analysis for this 
RCT, we were able to compute this score across the entire cohort 
(regardless of arm assignment). As expected, the PPT adherence 
score significantly increased within the PPT arm during the 
intervention, while for the MED arm there was no significant 
difference between adherence to PPT-based recommendations at 
baseline and during the intervention (figure 1E).

PPT intervention increases microbiome diversity and 
richness and exerts specific microbiome species changes that 
associate with clinical outcomes
To examine the effects of the dietary intervention on gut micro-
biome composition, we used shotgun metagenomic sequencing 
data from faecal samples collected from participants at baseline 
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and at 6 months, and assessed high-level features of microbiome 
diversity and richness as well as the RA of observed taxa. Consis-
tent with the overall greater dietary shifts that characterised 
the PPT intervention as compared with MED, the overall gut 
microbiome diversity and richness were both increased more in 
the PPT arm (one-sided t-test, p=0.007 and p=0.00017, respec-
tively), than in MED arm (one-sided t-test, p=0.18 and p=0.04, 
respectively) (figure  2A,B). However, the change difference 
between arms in these high-level features of the microbiome 
was not statistically significant (MW test, p=0.55 and 0.17, 
respectively).

To better understand the specific compositional changes that 
occurred following the dietary interventions, we also assessed 
changes in bacteria RA at the species level, and identified 69 and 
33 bacterial species that changed significantly within the PPT 
and MED arms, respectively (one-sided t-test, p<0.05, FDR 
corrected) (figure 2C). Notably, 24 of these identified changes 
in microbiome species within arms were significantly distinct 
between arms (MW test, p<0.05; figure 2C and online supple-
mental table 3) and in some cases are in agreement with findings 
from other studies that reported links between these species and 
specific dietary patterns or components. For example, Bifidobac-
terium adolescentis, a bacterial species consistently linked in the 
literature to various dietary fibres intake,31–33 was significantly 

enriched in the MED arm following the intervention, but not 
in the PPT arm (figure 2C), which is inline with the increase in 
dietary fibre consumption by MED arm participants in this trial 
(figure 1A). On the other hand, Flavonifractor plautii, a bacte-
rium previously reported to participate in the metabolism of 
the flavonoid ‘catechin’ in the gut,34 was significantly enriched 
in the PPT arm following the intervention but not in the MED 
arm (figure 2C). Catechins are flavonoids (a type of polyphe-
nols) naturally occurring in certain plant-based foods and are 
well recognised for their antioxidative properties in vitro and 
potential to exhibit health benefits in vivo.35 36 Notably, the 
consumption of some catechin-rich foods including dark choc-
olate, walnuts, almonds and cashews,36 37 was increased signifi-
cantly more in PPT arm than in MED arm (online supplemental 
table 4), which may indicate the underlying mechanism for the 
enrichment in F. plautii species among PPT dieters. Notably, 
the RA of F. plautii was also positively associated with almonds 
consumption across the cohort at baseline. Interestingly, oral 
administration of F. plautii was recently reported by Mikami et 
al to attenuate obesity-induced chronic inflammation in mice,38 
suggesting a potential therapeutic effect for this species in 
cardiometabolic health.

Next, in an attempt to explore how microbiome changes are 
linked to clinical outcomes and whether these are attributable to 

Figure 2  PPT intervention increases microbiome diversity and richness and exerts specific microbiome species changes that are associated with 
clinical outcomes. (A) Boxplots showing microbiome diversity (Shannon's diversity index) by arm and time point (baseline vs 6 months). Asterisks 
on top denote significance level for difference within arms (one-sided t-test). n.s, non significant; *p<0.05, **p<0.01, ***p<0.001. (B) Same as in 
A but for microbiome richness (# of species). (C) Heatmap of species-level microbiome taxa significantly changed within arms compared to baseline 
(p<0.05, one-tailed t-test, FDR corrected). Red and blue cells denote enrichment and reduction, respectively. White cells denote no significant change. 
Asterisks next to species names denote significant differences between arms in the respective species (MW-test, *p<0.05, **p<0.01, ***p<0.001). 
Species are grouped based on taxonomy hierarchy, with family-level taxonomy represented by colours in the inner circle and in the legend in 
the centre. (D) Heatmap showing significant associations (p<0.05) between 6 months changes in microbiome species (those distinctly changed 
between arms) and 6 months changes in clinical readouts or PPT adherence score across the cohort. ALT, alanine transaminase; AST, aspartate 
aminotransferase; BMI, body mass index; BMR, basal metabolic rate; BP, blood pressure; FDR, false discovery rate; FPG, fasting plasma glucose; 
HbA1c, hemoglobin A1c; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; OGTT, oral glucose tolerance test; PPT, 
personalised postprandial-targeting.
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PPT adherence, we first examined which of the 24 microbiome 
species that distinctly changed between arms were significantly 
associated with clinical outcomes or PPT-adherence score across 
the entire cohort. We identified 22 species with significant associ-
ations (p<0.05, figure 2D), out of which 17 were PPT adherence-
associated species (14 positively and 3 negatively associated with 
PPT score). Notably, most of these PPT adherence-associated 
species were also significantly associated with multiple clinical 
readouts, suggesting that the beneficial effects of PPT adherence 
on metabolic readouts may be partially related to these specific 
bacterial changes (figure 2D). For example, change in the bacte-
rial species Alistipes onderdonkii was positively associated with 
PPT adherence and negatively with change in clinical readouts of 
triglycerides, body weight, BMI and BMR. Notably, this species 
was recently suggested to suppress proliferation of pancreatic 
primary cancer cells.39

Changes in specific gut microbiome species partially mediate 
the effects of dietary modifications on clinical outcomes
To infer whether the microbiome compositional changes causally 
mediated the effects of dietary changes on host clinical outcomes, 
we applied causal mediation analysis as previously described,30 
where changes in dietary features were treated as independent 
variables (X), changes in clinical outcomes as dependent variables 
(Y) and changes in microbiome species abundances as potential 
mediators (M). First, we constructed correlation matrices across 
the entire cohort (regardless of arm assignment) of changes in 
dietary features (nutrients or food categories) against changes 
in clinical markers or against changes in microbiome species 
abundance, while correcting for multiple testing (FDR at 0.1). 
We detected multiple significant correlations (diet vs clinical, 
figure  3A,B; diet vs microbiome, figure  3C,D), comprising a 
total of 384 potential mediation paths (dietary features that 
significantly correlate with both a clinical outcome and a bacte-
rial species change), that we then applied into a mediation anal-
ysis pipeline (see the Methods section). We found 30 significant 
mediation effects (indirect effect, also termed ACME; p<0.05), 
comprising 9 bacterial species that partially mediate the effect 

Figure 3  Changes in specific gut microbiome species partially mediate the effect of dietary changes on clinical outcomes. (A) Heatmap showing 
significant associations (p<0.05, FDR corrected) between 6 months changes in clinical readouts and 6 months changes in nutrient consumption 
or PPT adherence score across the cohort. (B) Heatmap showing significant associations (p<0.05, FDR corrected) between 6 months changes in 
clinical readouts and 6 months changes in food categories consumption across the cohort. (C) As in A but for microbiome species versus nutrients 
or PPT adherence score. (D) As in B but for microbiome species versus food categories. (E) Alluvial plot showing significant mediatory effects of 
microbiome species (middle) in the association between dietary changes (left) and clinical outcomes (right). (F, G) Two examples of mediation paths 
with assessment of the proportional mediatory effect of microbiome species. ACME, average causal mediation effect; ADE, average direct effect; AST, 
aspartate aminotransferase; BMI, body mass index; BMR, basal metabolic rate; BP, blood pressure; FDR, false discovery rate; FPG, fasting plasma 
glucose; HbA1c, hemoglobin A1c; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; MUFA, monounsaturated 
fatty acids; PPT, personalised postprandial-targeting.
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of different dietary changes on clinical outcomes (figure 3E and 
online supplemental table 5). For example, change in the bacte-
rial species UBA11471 sp000434215 (from Bacteroidales order) 
was found to partially mediate the effect of change in ‘Med Oil 
and Fats’ consumption on HbA1c outcome (proportion medi-
ated by bacteria change, 38% figure 3F).

To evaluate whether PPT adherence exerts its beneficial effects 
on metabolic outcomes through modulation of specific micro-
biome species, we also estimated the causal mediation effect of 
microbiome species on metabolic outcomes, using 72 poten-
tial mediation paths, based on significantly associated clinical 
outcomes and microbiome species changes with change in PPT 
score (figure 3A,B). We found three bacterial species (from Bacte-
roidales, Lachnospiraceae and Oscillospirales orders) that had a 
significant partial mediation effect on the association of PPT 
adherence with clinical outcomes of HbA1c, HDL-cholesterol 
and triglycerides (figure  3E and online supplemental table 5). 
For example, change in the bacterial species ‘Negativibacillus 
sp000435195’ (from the Ruminococcaceae family) was found to 
partially mediate the effect of PPT adherence on HDL-C outcome 
(proportion mediated by bacteria change, 13%) (figure  3G 
and online supplemental table 5). Notably, all three bacterial 
species found to significantly mediate the association between 
PPT adherence and clinical readouts also came up as significant 
mediators of the association between other dietary features and 
corresponding clinical outcomes (figure  3E), suggesting that 
these species had a profound effect in mediating the association 
between dietary modifications and clinical outcomes in this trial.

Machine-learning models trained on dietary changes and 
baseline clinical data predict clinical outcomes
Lastly, as part of the objective to explore the interplay between 
dietary modifications, microbiome composition and clinical 
outcomes, we sought to look beyond the mean effects of the 
dietary intervention on clinical readouts and to infer what 
drives personalised metabolic responses to dietary modifica-
tions. Traditionally, dietary guidelines are based on population 
average response to dietary components or patterns. However, 
in different research settings as well as in clinical practice, high 
interpersonal differences in metabolic response to similar dietary 
modifications are often observed.5–7 40 To examine the variation 
in metabolic response to similar dietary modifications in this 
RCT setting, we ranked the entire cohort by changes in major 
dietary features (PPT score and macronutrients) and compared it 
to ranked changes in major clinical readouts. Indeed, we found 
large variation in clinical response to similar dietary changes at 
the individual level, in both arms (figure 4A, online supplemental 
table 6). Specifically, subjects that adopted similar dietary modi-
fications, in terms of PPT adherence and macronutrients compo-
sition, exhibited in some cases vastly different clinical results in 
terms of glycaemic, blood lipids or BMI outcomes (figure 4A).

Next, in an attempt to explore which dietary changes and 
personal features modulate metabolic responses, we devised 
GBDT models to predict the 6 months change (Δ) in various clin-
ical parameters of blood lipids, glycaemic and anthropometric 
measures. To infer the role of dietary versus personal clinical 

Figure 4  Machine learning models trained on dietary changes and baseline clinical data predict clinical outcomes. (A) Heatmap showing the 
interindividual variation in clinical response to similar dietary modifications across the cohort. Participants (columns) are ordered by the 6 months 
change in PPT adherence score (top row). Ranked changes in major dietary features and clinical outcomes (rows) are presented in the upper and 
lower panels, respectively. (B) Box-plots showing the prediction accuracy (R) of different clinical outcomes for models trained with different sets 
of input features using GBDT (LightGBM, see Methods). Error bars in each box plot are based on repeated full cross validation. (C) Top six features 
contributing to BMI prediction (‘Personalised+Diet’ model), using the SHAP analysis. (D) As in C but for the ΔBMR prediction model. (E) Scatter 
plot of the correlation between baseline levels of one bacterial species from the Lachnospiraceae family (‘KLE1615_Unknown’) and the difference 
(Δ) between measured and predicted change in BMR outcome. (F) As in E but presented as violin plots for three quantiles of difference (Δ) from 
prediction (participants with zero levels of this bacterial species at baseline were filtered out). ALT, alanine transaminase; BMI, body mass index; BMR, 
basal metabolic rate; BP, blood pressure; CGM, continuous glucose monitoring; FDR, false discovery rate; FPG, fasting plasma glucose; GBDT, gradient-
boosted decision trees; HbA1c, hemoglobin A1c; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; MUFA, 
monounsaturated fatty acids; PPT, personalised postprandial-targeting; PUFA, polyunsaturated fatty acid.
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data in predicting clinical outcomes, we compared for each clin-
ical readout four different models, trained with different sets of 
input features as follows: (1) baseline levels of the clinical feature 
that we wish to predict its outcome (hereafter ‘Basic’ model); (2) 
baseline levels of all personal clinical features measured in this 
trial (blood biomarkers, CGM and anthropometric measures), 
plus age and gender (hereafter ‘Personalised’ model); (3) as 
model 1 plus dietary changes (nutrients and food categories 
features) (hereafter ‘Basic+Diet’ model) and (4) as model 2 
plus dietary changes (nutrients and food categories features) 
(hereafter ‘Personalised+Diet’ model). Overall, for 9 out of 
21 clinical outcomes tested, a diet-based model (‘Basic+Diet’ 
or ‘Personalised+Diet’ model) yielded a significant predic-
tion accuracy. Among these, for eight clinical outcomes the 
‘Personalised+Diet’ model yielded the best correlation between 
measured and predicted outcome as compared with the other 
three models (HDL-C, R=0.2, p=0.004; Trig/HDL-C, R=0.52, 
p<0.001; fructosamine, R=0.33, p<0.001; time>140, R=0.64, 
p<0.001; mean CGM glucose, R=0.37, p<0.001; BMI, 
R=0.25, p<0.001; BMR, R=0.23, p=0.001; body-weight, 
R=0.2, p=0.005) (figure  4B and online supplemental figures 
S1). To infer which specific dietary and personal clinical features 
are the main drivers of the 6 months change in these clinical 
outcomes, we used a feature attribution analysis (SHapley Addi-
tive exPlanations, SHAP)41 and computed the individual-level 
contribution of each dietary and clinical feature in the model 
(termed SHAP values) to prediction accuracy (figure 4C,D and 
online supplemental figures S2). Interestingly, for both ΔBMI 
and ΔBMR prediction models, baseline ‘mean CGM glucose’ 
was among the top personal clinical features and change in 
‘Refined-grains Bread’ intake was among the top dietary features 
that attributed to prediction accuracy (figure 4C,D).

Lastly, we sought to infer whether prediction accuracy per 
person also relies on the RA of specific microbiome species at 
baseline. To address this, we ranked the cohort by the difference 
(Δ) between measured and predicted change in the respective 
clinical parameter and then regressed this ranked difference 
against all baseline microbiome species. We identified five 
significant correlations (p<0.05, FDR corrected) composed of 
four bacterial species (from Lachnospiraceae, Ruminococca-
ceae and Coriobacteriaceae families) that correlated with the 
ranked difference between measured and predicted change in 
the predictors of BMR, time>140, mean CGM glucose and 
low-density lipoprotein cholesterol (LDL-C) (figure  4E,F and 
online supplemental table 7). For example, for ΔBMR predictor 
(‘Personalised+Diet’ model) we found a significant negative 
correlation between the baseline levels of a bacterial species 
from the Lachnospiraceae family (KLE1615 Unknown) and the 
difference (Δ) between measured and predicted change in this 
outcome (R=−0.26, p=0.0002), suggesting that the higher 
this bacteria was at baseline the better was the actual clinical 
outcome compared with prediction (figure  4E,F). Interstingly, 
this species was recently reported to be positively correlated 
with nuts consumption and with urinary urolithins (secondary 
polyphenol metabolites derived from the gut microbial action on 
ellagitannins-rich foods such as pomegranate, berries and nuts) in 
a dietary intervention study in overweight and obese subjects.23 
Importantly, urolithin production was negatively associated with 
serum hs-CRP, triglycerides, body fat mass, body weight, BMI 
and urinary carnitine in that study, suggesting overall a beneficial 
role for that bacterial species in weight loss. To further validate 
the link between ‘KLE1615 Unknown’ species (from the Lachno-
spiraceae family) and diet or metabolic measures, we tested for 
associations of this species with clinical markers and dietary data 

in another independent and larger cohort (n=7000) of healthy 
adults, from an ongoing observational study conducted in our 
lab (the ‘10K’ cohort).42 Interestingly, we found that this species 
was negatively associated with several metabolic markers, 
including BMI (R=−0.08, p=6.4×10−11), weight (R=−0.1, 
p=8.2×10−17), hips (R=−0.07, p=2.2×10−9), waist (r=−0.1, 
p=8×10−20), triglycerides (R=−0.08, p=4.8×10−11), and posi-
tively associated with HDL-C (R=0.08, p=7.4×10−11), vitamin 
B12 status (R=0.05, p=2.8×10−4) and with dietary consump-
tion of brazil nuts (R=0.04, p=5×10−4), pinenuts (R=0.04, 
p=1.2×10−3) and walnuts (R=0.05, p=1.8×10−5) (data not 
shown). Together, the findings from these different cohorts 
suggest a beneficial role for that species at the intersection 
between diet and body weight.

DISCUSSION
In the current study, we conducted ad hoc analyses aimed at 
exploring the interplay between dietary modifications, micro-
biome composition and cardiometabolic health outcomes in 
an RCT setting of a 6-month dietary intervention comparing a 
PPT diet versus MED diet in 200 adults with pre-diabetes. We 
demonstrate that the PPT diet prompted greater changes in gut 
microbiota composition, consistent with overall greater dietary 
modifications observed, as compared with the MED interven-
tion. Specifically, at the species level, we demonstrate that the 
PPT diet induced significant changes to 2-fold more species 
than the MED diet (69 vs 33 species, respectively, figure 2C), 
some of which are inline with findings from other studies that 
indicated links between microbiome species and specific dietary 
elements, while others, to the best of our knowledge, are first 
to be recognised. A notable example for a novel finding from 
this work is of the newly-classified bacterial species ‘UBA11471_
sp000434215’ (from Bacteroidales order), which differentially 
changed between arms (enriched on PPT and decreased on 
MED, figure 2C and online supplemental table 3). Indeed, this 
species is largely uncharacterised but was recently reported to 
be a diet-associated taxa that is highly associated with complex 
foods, rather than specific nutrients.43

Beyond the comparison of dietary and microbiome compo-
sitional changes between arms, our study provides a compre-
hensive view of the associations between changes in multiple 
dietary features (including PPT adherence), microbiome species 
and metabolic readouts across the entire cohort. Notably, as a 
post hoc analysis for this RCT, we were able to compute a PPT-
adherence score across the entire cohort, thus achieving greater 
statistical power in assessing the effects of a PPT diet approach 
on microbiome composition and host clinical outcomes. Further-
more, using causal mediation analysis, we demonstrate the medi-
atory role of nine microbial species in the association between 
specific dietary changes and clinical outcomes, including 3 
species (from Bacteroidales, Lachnospiraceae and Oscillospirales 
orders) that mediate the association between adherence to PPT-
based recommendations and clinical outcomes of HbA1c, HDL-
cholesterol and triglycerides (figure 3E). Interestingly enough, a 
subanalysis that we conducted at a greater, food-level resolution, 
also indicated a partial mediatory role for the latter three species 
in the effect of ‘wholemeal bread’ and ‘almonds’ consumption on 
the clinical outcome of ‘time>140’ (online supplemental figure 
S3 and online supplemental table 8). Importantly, two of these 
species were also found to be similarly associated with clinical 
markers and dietary consumption in an independent and larger 
cohort from an ongoing observational study conducted in our 
lab (n=7000; the ‘10K’ cohort).42 Specifically, the two bacterial 
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species UBA11774 sp003507655 (from Lachnospiraceae family) 
and UBA11471 sp000434215 (from Bacteroidales order) were 
reported here to partially mediate the association between PPT-
adherence and clinical improvements in triglycerides and HbA1c, 
respectively. Notably, in the 10K cohort, these two species were 
also positively associated with blood HDL-C and with dietary 
intake of nuts, vegetable oils and animal protein-rich foods, 
and negatively associated with triglycerides and body-related 
measures and with dietary intake of wheat-based and other 
carbohydrate-rich foods (online supplemental table 9). On the 
other hand, the species CAG-81 sp000435795 (from Lachno-
spiraceae family), reported here to mediate the effects of dietary 
modifications on glycaemic control outcomes (‘time>140’ and 
‘mean CGM glucose’) seems to have inverse associations in the 
10K cohort and in few other studies. In the 10K cohort, this 
species is positively associated with various metabolic markers, 
including triglycerides, ALT, blood glucose, HbA1c and BMI 
(online supplemental table 9). Other studies suggested a positive 
association of this species with a Fatty Liver Index44 and with 
TMAO levels in urine.45 This controversial finding suggests that 
specific microbes may function differently in different ecological 
environments or metabolic contexts, and requires further inves-
tigation in future studies.

Traditionally, nutrition research is focused on populations’ 
average response to diets as the leading approach for drawing 
global dietary recommendations. Here, we look beyond the 
mean effects of the dietary intervention on clinical readouts 
and try to infer what drives personalised metabolic responses 
to dietary modifications, which may inform more effective and 
precise dietary recommendations to individuals in clinical prac-
tice. Using machine-learning models trained on dietary changes 
and baseline clinical data of the entire cohort, we predict person-
alised clinical outcomes in several cardiometabolic markers of 
blood lipids, glycaemic control and body weight. Importantly, 
SHAP analyses of these predictors demonstrated the top dietary 
and clinical features attributing to prediction accuracy, including 
for example baseline glucose levels and change in consump-
tion of refined-grains bread as most predictive for improve-
ment in BMI and BMR outcomes (figure 4C,D). This important 
finding suggests that the consideration of these clinical and 
dietary features may be specifically important in clinical prac-
tice for achieving treatment goals of weight loss in individuals 
with pre-diabetes. Lastly, we identify that for our predictors of 
BMR, time>140, mean CGM glucose and LDL-C the predic-
tion accuracy per person partially relies on the baseline levels of 
specific bacterial species (online supplemental table 7). A notable 
example is of the bacterial species ‘KLE1615 Unknown’ (from 
Lachnospiraceae family), for which high baseline levels were 
indicative for greater measured improvement in BMR outcome 
than predicted by our ‘Personalised+Diet’ prediction model 
(figure 4E,F).

Our study has several limitations. First, as opposed to obser-
vational studies which typically use large cohorts, the data from 
this RCT is based on a relatively small sample size (n=200). 
As such, it has a limited statistical power to detect associations 
between diet, microbiota and clinical features, and specifically to 
devise prediction models. To partially overcome this limitation, 
we analysed the cohort as a whole (regardless of arm assignment) 
to gain more insight about the causal relationships between 
dietary features, microbiome taxa and cardiometabolic markers. 
Nevertheless, since the trial was not originally designed to 
answer these exploratory research questions then results should 
be interpreted with caution. Second, with respect to the angle 
of microbiome, the current work focuses solely on microbiome 

compositional aspects. Broader analyses of other omics layers, 
such microbiome functional changes and metabolomics, were 
beyond the scope for the current paper, but are of great interest 
for future work as these may potentially improve our mecha-
nistic understanding of the microbiome’s role at the intersection 
between diet and host clinical outcomes.

Together, while the research on gut microbiota at the inter-
section between diet and human health is mostly based on 
observational studies, our findings from this 6-month dietary 
intervention support a causal role for diet in shaping the gut 
microbiome composition and, for gut microbiota in turn, in 
modulating diet’s impact on host cardiometabolic markers. 
Our findings suggest concrete microbiota species targets, which 
may form the basis for future mechanistic experiments on their 
role in human diet and health, as well as potential therapeutic 
directions to be evaluated in preclinical and intervention studies 
to improve cardiometabolic health through precision nutrition 
strategies.
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