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ABSTRACT
Amyotrophic lateral sclerosis (ALS) is a fatal 
neurodegenerative disease with limited treatment 
options and an incompletely understood 
pathophysiology. Although genomewide association 
studies (GWAS) have advanced our understanding of the 
disease, the precise manner in which risk polymorphisms 
contribute to disease pathogenesis remains unclear. 
Of relevance, GWAS have shown that a polymorphism 
(rs12608932) in the UNC13A gene is associated with 
risk for both ALS and frontotemporal dementia (FTD). 
Homozygosity for the C-allele at rs12608932 modifies 
the ALS phenotype, as these patients are more likely to 
have bulbar-onset disease, cognitive impairment and 
FTD at baseline as well as shorter survival. UNC13A 
is expressed in neuronal tissue and is involved in 
maintaining synaptic active zones, by enabling the 
priming and docking of synaptic vesicles. In the absence 
of functional TDP-43, risk variants in UNC13A lead to 
the inclusion of a cryptic exon in UNC13A messenger 
RNA, subsequently leading to nonsense mediated decay, 
with loss of functional protein. Depletion of UNC13A 
leads to impaired neurotransmission. Recent discoveries 
have identified UNC13A as a potential target for therapy 
development in ALS, with a confirmatory trial with 
lithium carbonate in UNC13A cases now underway 
and future approaches with antisense oligonucleotides 
currently under consideration. Considering UNC13A is 
a potent phenotypic modifier, it may also impact clinical 
trial outcomes. This present review describes the path 
from the initial discovery of UNC13A as a risk gene in 
ALS to the current therapeutic options being explored 
and how knowledge of its distinct phenotype needs to 
be taken into account in future trials.

INTRODUCTION
Amyotrophic lateral sclerosis (ALS) is a neurode-
generative disorder predominantly characterised by 
the loss of upper and lower motor neurons.1 Clini-
cally, the loss of motor neurons results in weakness 
and spasticity, leading to progressive and severe 
disability over the course of months to years, and 
eventually death as a result of respiratory failure.2 
The lifetime risk of developing ALS for women 
is 1:400 and is slighter higher for men at 1:350. 
With riluzole, Edaravone, Nuedexta and Albrioza, 
several drugs have now been approved for the treat-
ment of ALS, but they have at best a limited effect 

on disease progression.3–6 As such, the prognosis of 
ALS remains poor, with a median survival of 3 to 
4 years.

Over the past two decades, it has become evident 
that there is a broad clinical spectrum associ-
ated with ALS with multiple subtypes and exten-
sive phenotypic heterogeneity.7 For instance, the 
average age of onset extends from the late teens 
to well over the age of 90. The initial presenting 
symptoms also vary greatly between patients and 
range from a foot drop to dysarthria. Cognitive 
and behavioural changes are present in up to 50% 
of patients and nearly 15% of individuals fulfil 
the criteria for frontotemporal dementia (FTD).1 8 
Finally, survival is also highly variable and can be as 
short as a few months in some cases and well over 
10 years in others.

This clinical heterogeneity may be in part 
attributed to the different subtypes of ALS. The 
disease may be genetic (familial ALS, FALS) or be 
(apparently) sporadic (SALS). FALS constitutes up 
to 10% of all cases and generally follows an auto-
somal dominant pattern of inheritance.9 Repeat 
expansions in the C9orf72 gene are the most 
common cause of FALS (±40%), followed by point 
mutations in SOD1, TARBDP and FUS. Muta-
tions in these genes are also seen in about 10% of 
apparently sporadic cases. Classically, consensus 
was that the disease was caused by genetic risk 
factors in combination with environmental expo-
sures, which together trigger disease.9 10 Despite 
large-scale epidemiological studies, robust envi-
ronmental factors conferring a large risk of disease 
have not been identified. Putative risk factors 
include smoking, repeated head injury and phys-
ical activity.11 Currently, the classical distinction 
between familial and sporadic ALS seems artificial 
and genetic factors contribute considerably to SALS. 
Twin and family-based studies show that the genetic 
basis for the risk of developing SALS is estimated 
to be approximately 50%.12 Indeed, genomewide 
association studies (GWAS) in sporadic ALS have 
successfully identified multiple risk loci, including 
UNC13A.13

At a cellular level, the mislocalisation and cyto-
plasmatic aggregation of hyperphosphorylated 
and ubiquitinated TAR DNA-binding protein 43 
(TDP-43) is a pathological hallmark of ALS that 
is seen in 98% of all cases.14 TDP-43 appears to 
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cause neurotoxicity through both dysregulation of nuclear RNA 
processing as well as cytoplasmic TDP-43 aggregation, which 
causes a series of aberrant processes including cellular stress, 
aberrant stress granule formation, mitochondrial dysfunction, 
altered translation, reduced autophagy and proteosomal dysfunc-
tion.15 More recently, the molecular mechanisms by which 
genetic variation in the UNC13A gene confers risk and modifies 
the ALS phenotype have been linked to TDP-43 pathology.16 17

This current review describes the path from the initial 
discovery of UNC13A as a risk gene and its effect on the ALS 
phenotype through to the understanding of its molecular action 
and yet-to-come elucidation of its pathophysiological impact 
and potential as a therapeutic target. The strategies and chal-
lenges associated with developing a targeted treatment for the 
UNC13A subgroup of ALS patients will likely also apply to other 
subgroups. As our understanding of the genetics of ALS grows, 
the lessons learnt here are likely to be more broadly applicable.

GENETIC ASSOCIATION STUDIES IN ALS
Genetic research in ALS, as well as in other fields, was initially 
focused on the identification of pathogenic mutations through 
classical linkage in ALS pedigrees in which there was a clear 
Mendelian pattern of inheritance. Using this approach, the first 
FALS gene (superoxidase dismutase 1, SOD1) was discovered 
in 1993,18 which led the subsequent discovery of major ALS 
genes like TARDBP and Fused In Sarcoma (FUS)/TLS. Given the 
large genetic contribution to SALS, researchers also started to 
look for genetic risk factors in sporadic cases through candidate 
gene approaches which were based on existing knowledge of 
gene/protein function and pathophysiology. Although state-of-
the-art at the time, candidate gene approaches were inherently 
vulnerable to bias and did not significantly further our under-
standing of ALS. It was not until the introduction of large-
scale, high-throughput genotyping techniques that ALS genetics 
progressed.19

Initially, this was through GWAS that allow the screening of 
common genetic variation in large populations. GWAS makes 
use of high throughput genotyping and linkage disequilib-
rium (LD) to screen the genome for common variants (single-
nucleotide polymorphisms, SNPs) associated with the trait of 
interest.20 GWAS were first applied in ALS in 2007 with initially 
varying success to identify new risk loci.21 Over time, GWAS 
methodology improved, and increasing sample size allowed the 
interrogation of both common (>1%) and rare (<1%) variants, 
which led to the identification of robust and replicable genetic 
risk factors.13 Importantly, GWAS identified the chromosome 
9p21.2 locus that was already shown to be linked to familial 
ALS and 2 years later found to harbour the C9orf72 repeat 
expansion.22–25

The latest and largest GWAS, to date, with 29 612 cases and 
122 656 controls, identified 15 risk loci, 7 of which had not been 
previously described.13 Through the use of novel sequencing 
techniques, over 60 different genes have been identified for 
ALS and combined have demonstrated a monogenetic basis in 
±70% of FALS cases and in 10% of SALS.19 21 Genetic mutations 
which are known to be monogenetic are also detected though 
GWAS.13 The depths of the human genome combined with the 
aforementioned developments in the genetic research of ALS 
lead to believe that more different genetic risk factors and more 
certainty about their role in the pathophysiology will be discov-
ered in the future.

Despite the contribution of GWAS to our knowledge of ALS, 
translating these ALS risk SNPs into disease models has been 

challenging. SNPs serve as markers to highlight a genetic locus, 
leaving the true causal mutation unknown.26 The SNPs found by 
GWAS typically covey a limited effect on disease risk compared 
with classical Mendelian genes, which is reflected by small ORs 
(typically <1.5).26 27 The SNP at rs12608932 in UNC13A was 
one of the first and most robust ALS-associated loci to be identi-
fied through GWAS (figure 1A,B). In the latest GWAS, it has an 
OR of 1.12 and modestly increases the risk for ALS from 1 in 
350 to 1.12 in 350.1 13 Interestingly, early studies found strong 
effects of this SNP on survival, which prompted further interro-
gation of UNC13A as a phenotypic modifier.28

UNC13A-ALS: A DISTINCT PHENOTYPE
The association between rs12608932 (located in UNC13A) 
and ALS was first described in 2009.23 Since then, this associ-
ation has been replicated repeatedly in larger GWAS cohorts of 
patients with ALS of European ancestries.13 28–31 Another SNP 
in UNC13A, rs12973192, was found to be associated with ALS 
in 2018.32 This SNP is in high LD with rs12608932 only in 
European populations and seems to have an additive pathophys-
iological effect.17 33 This finding might explain the less robust 
association for both SNPs with ALS in South-East Asian popu-
lations.13 34–36

Homozygosity for the C-allele at rs12608932 was found to 
lead to a shorter survival when compared with homozygous (A/A) 
or heterozygous individuals (A/C), with a decrease in median 
survival reported ranging from 5 months to 1 year.13 28 30 37 38 This 
is seen in figure 2 under a recessive model. Survival under an 
additive model and adjusted survival curves are found in online 
supplemental material. Associations between homozygosity for 
the C-allele at rs12608932 and age of onset are less robust, with 
one study finding a higher median age of onset (65.5 vs 63.5 for 
A/A homozygosity).37 Other research found no significant rela-
tion for UNC13A and age of onset.13 30

Patients homozygous for the C-allele at SNP rs12608932 
were more likely to have a bulbar onset of symptoms (43.1% vs 
30.6%) and a lower functional vital capacity at baseline (86.5% 
vs 90.1%).37 Furthermore, behavioural disinhibition (13.2% 
vs 7.1%) and cognitive deficits were more frequent and there 
was a marked thinning in several frontal and temporal cortical 
regions.37 39 Pathological examination of the middle frontal, 
temporal and motor cortices of patients with ALS homozygous 
for the C-allele at rs12608932 were found to have strongly 
increased burden of TDP-43 compared with AA-homozygous 
patients, indicating that these individuals were more severely 
affected.39 An overview of clinical characteristics of UNC13A 
C/C homozygosity is found in figure 3.

UNC13A AS A COMMON RISK FACTOR FOR ALS AND FTD 
WITH TDP-43 PATHOLOGY
ALS forms a disease spectrum with FTD, with clinical phenotypes 
displaying characteristics of both disease.1 8 FTD is a progres-
sive dementia characterised by either behavioural disinhibition 
or several different types of aphasia and has a yearly incidence 
of 15 to 22 per 100.000.15 40 Pathologically, FTD is character-
ised by clustering of either TDP-43, which is most common with 
~50% of cases, Tau or FUS, which all three are associated with 
different phenotypes.14 The relation for ALS and FTD specifi-
cally concerns FTD with TDP-43 inclusions (FTD-TDP).41

Approximately 10%–15% of all patients with ALS meet 
criteria for FTD at baseline, and inversely, 15% of patients with 
FTD develop motor neuron symptoms over the course of the 
disease.1 8 Presence of FTD in patients with ALS is associated 
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with a worse survival.42 The C-allele at rs12608932 was found 
to convey risk for both ALS and FTD-TDP.43 Later findings 
confirmed that UNC13A is part of a shared genetic basis for both 
diseases, among other genes such as C9orf72.13 44 Patients with 
ALS homozygous for the C-allele at rs12608932 in UNC13A 
were found to have an increased risk of FTD at baseline, inde-
pendent of age at onset.37 Inversely, rs12608932 in UNC13A was 
found to confer risk of TDP-43-associated FTD, both with and 
without motor neuron symptoms.41 44 A specific association was 
found for subtype B of FTD-TDP, and rs12973192 in UNC13A, 
which is in LD with rs12608932.41 Type B FTD-TDP is patho-
logically characterised by round TDP-43 inclusions throughout 
the depths of cortical layers and is clinically associated with 
both behavioural FTD and FTD with motor neuron symptoms; 
patients with type B FTD-TDP have a markedly shorter survival 
than other subtypes.41

STRUCTURE AND FUNCTION OF UNC13A
UNC13 was first described in the worm species Caenorhabditis 
Elegans, named as such because mutant worms were grouped 
based on their movement phenotypes. Defects in this gene were 
associated with ‘uncoordinated’ movement and paralysis.45 
In 1995, the Mammalian UNC13 (Munc-13) protein group 
was discovered in the central nervous system of rats, of which 
Munc13-1 was most ubiquitous.46 Munc13-1 is a large protein 
with a molecular weight around 200 kDa, containing several 
binding domains with different functions at its C-terminal and 

Figure 1  Manhattan plot and fine locus mapping describing the location of risk SNPs in the genetic structure of UNC13A. (A) shows a Manhattan plot of 
cross-ancestry data available through Project MinE, showing the relation of SNP hits at different chromosome locations (x-axis) with a corresponding −log p-
value (y-axis). The red line (5.0x10−8) indicates the threshold for genome wide significance. Significant SNP hits on chromosome 19 are highlighted in green, 
with the top variant (rs12608930) annotated. (B) shows SNP locations on the UNC13A gene on chromosome 19 (x-axis) with their significance in relation to 
ALS (y-axis), derived from data available through project Mine. rs12608932 is indicated by a red dot, rs12973192 is indicated by a yellow dot. The genetic 
intronic/exonic structure of UNC13A is depicted, read from 5’ to 3’. The detailed graph depicts the location of risk SNPs in relation to the cryptic exon. Parts 
of the image were adapted from Locuszoom.101 (C) shows a schematic representation of the canonical UNC13A protein with associated domains.67 The CaM 
domain is the Calmodulin binding domain. (D) shows the evolutionary stability through different species. The core of the UNC13 protein is conserved both 
through different species as well as in different subforms.67 ALS, amyotrophic lateral sclerosis; SNP, single-nucleotide polymorphism.

Figure 2  Overall survival for rs12608932 polymorphism. The p-value 
indicates the difference in cumulative risk between homozygous C-allele 
carriers versus non-carriers under a recessive model. Based on data from 
Van Rheenen et al.13
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N-terminal parts, and is exclusively found in presynaptic termi-
nals of the nervous system.46 47 UNC13A is the human orthologue 
of Munc13-1, and these proteins were found to be evolutionary 
stable, meaning that their structure and function are similar 
across species. A schematic representation of UNC13A and its 
conservation through species are seen in figure 1C,D. UNC13A 
is important for facilitating several crucial steps in neurotrans-
mission, enabling sustained neurotransmission and maintaining 
and constructing the sites where neurotransmission can take 
place in so called ‘active zones’.48

Neurotransmitters are collected and placed into synaptic vesi-
cles (SVs) by the Golgi apparatus which then, through media-
tion of UNC13A, collect at the active zone in the presynaptic 
membrane.49 50 Here, SVs undergo a series of processes mediated 
by UNC13A, which make SV fusion competent. First, UNC13A 
is recruited by Rab3-interacting molecule (RIM) proteins, 
which activate UNC13A and bind calcium channels to recruit 
them to the docking site.51 The C1/C2B domain of UNC13A, 
together with UNC18, mediates the further stages of docking 
by assembling soluble N-ethylmaleimide-sensitive factor attach-
ment receptor (SNARE)-complexes, a collection of water soluble 
bridging molecules consisting of synaptobrevin, SNAP-25, which 
connect to the SVs, and syntaxin-1, which connects to the 
presynaptic membrane.48 52–54 UNC13A interacts independently 
of UNC18 with syntaxin-1 and induces a structural transition 
to a functional open state; through this, UNC13A mediates the 
assembly of SNARE complexes and binds a total of 6 SNAREs to 
each SV.48 52 53 55 56 Through undergoing several structural tran-
sitions,57 UNC13A is involved in sequential steps of SV priming. 
Priming by UNC13A C1-domain activation decreases the energy 
needed to fuse to the cell membrane, makes SV ready to fuse 
and makes it possible for all the collected SVs to fuse at the same 
time.58 59 The final step of neurotransmitter release is the fusion 
of the vesicles itself triggered by the influx of Ca2+, after which 

neurotransmitters are released into the synapse where they bind 
to the corresponding receptors and are eventually recycled.59 60 
UNC13A limits the site where neurotransmission can take place 
by initiating and maintaining synaptic active zones.61 UNC13A 
inhibits axonal growth both in vitro and in vivo in mice62 and 
triggers axonal branching, suggesting expression of UNC13A is 
typical for fully grown neurons and makes it possible for connec-
tions with nearby cells to be formed.

Several domains of the UNC13A protein are involved in 
synaptic plasticity,51 63 the ability of neurons to change their 
connections based on activity either over short periods of time, 
which is involved in processes such as motor control, and longer 
periods, involved in learning and memory. Heterodimerisation 
of the C2A domain of UNC13A with RIM,64 65 which recruits 
Ca2+-channels in the active zones, is important for docking 
and priming. In order to effectuate short-term plasticity, SVs 
are recruited into readily releasable pools (RRPs), which are 
stand-by in the presynaptic terminal in order to effectuate rapidly 
fuse when needed, for which the DAG-binding C1 domain of 
UNC13A plays a crucial role.63 UNC13A and UNC18 interact 
with the SNARE complex in order to prevent NSF/SNAPa 
depriming,66 67 which keeps the RRP fusion competent. The 
calmodulin binding domain is involved in activity-dependent 
RRP refilling,68 which is attenuated to residual Ca2+, shaping 
short-term plasticity during sustained neurotransmission. Finally, 
the C2B-domain of UNC13A regulated the recovery from high 
frequency stimulation through interaction with voltage-gated 
calcium channels,69 70 further enabling short-term plasticity.

PATHOFYSIOLOGICAL MECHANISMS IN UNC13A
Mutations in UNC13A have also been reported in other diseases. 
A homozygous nonsense loss of function mutation in the N-ter-
minal of UNC13A was identified in a patient with severe hypo-
tonia, cortical hyperexcitability and fatal myasthenia.71 In vitro 
analysis of cultured muscle cells of this patient showed end 
plate potentials which were 2% of normal, indicating a severe 
decrease in neurotransmission. These clinical signs were thought 
to be the result of a loss of functional syntaxin-1B, which was left 
in a non-operational state due to the loss of UNC13A.72 A gain 
of function mutation in UNC13A was shown to have opposite 
effects72; a Pro814Leu exchange was found to lead to a dyski-
netic movement disorder caused by an increase in the probability 
of SV release. This gain of function mutation was induced in 
neuronal cultures and was shown to increase synaptic strength of 
hippocampal and striatal neurons of mouse models and cholin-
ergic neurons in neuromuscular junctions due to a higher SV 
release rate.

Based on the known variation in UNC13A,33 genetic muta-
tions leading to nonsense mutations or mutations leading to loss 
of function are much more rare than is to be expected based 
on chance. As such, UNC13A is a very constrained gene, which 
could lead to believe that mutations leading to an alteration or 
loss of its function is more often than not inviable. Importantly, 
the UNC13A SNPs associated with ALS are intronic and do not 
lead to changes in translation of the main UNC13A transcripts.17 
Indeed, although rs12608932 and rs12973192 are associated 
with ALS, they also occur at a high frequency in healthy individ-
uals,13 and around 10% of the European population is homozy-
gous without pathophysiological consequences. This makes their 
role in ALS pathogenesis more elusive and questioning whether 
they had a direct effect or were merely tagging other yet-to-be 
identified changes.

Figure 3  Overview of the clinical phenotype of ALS patients conveyed by 
rs12608932. The left frame depicts brain regions with increased pTDP-43 
burden in patients with C/C genotype in rs2608932 when compared to 
A/A: middle frontal cortex (8.26 times higher), temporal cortex (4.40 times 
higher) and motor cortex (3.04 times higher).39 The right frame depicts 
regions with increased cortical thinning associated with homozygosity for 
the C-allele at rs2608932, found through magnetic resonance imaging: 
the right fusiform cortex and the left inferior temporal cortex.37 The right 
part depicts clinical characteristics more likely to be present in patients 
homozygosity for the C-allele at rs2608932.37 Percentages are compared 
to the AA/AC. Brain images were adapted using Brainpainter.101 ALS, 
amyotrophic lateral sclerosis; ECAS, Edinburgh Cognitive and Behavioural 
ALS Screen, FTD, frontotemporal dementia, FVC, forced vital capacity, 
pTDP-43, phosphorylated 43kDa TAR DNA-binding protein.
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Cryptic exon inclusion secondary to TDP-43 mislocalisation
Cryptic exons have recently been identified as the basis of 
UNC13A ALS pathophysiology.16 17 The process of splicing is 
regulated by TDP-43,14 73 74 a widely expressed protein which 
plays a role in RNA processing and transport. Specifically, one of 
TDP-43’s functions is that of binding to intronic sequences and 
repressing the inclusion of certain segments into mature RNA. On 
TDP-43 depletion, this repression is lost and normally intronic 
sequences, called cryptic exons, are included in messenger RNA 
(mRNA). Cryptic exons often introduce premature stop codons 
or frameshift mutations,16 74 which lead to nonsense-mediated 
decay of mRNA. In ALS-FTD, TDP-43 cytosolic aggregates are 
found in up to 98% of sporadic ALS cases and in 60%–83% of 
FTD pathology,75 depending on the clinical phenotype and are 
often accompanied by a nuclear depletion of TDP-43, leading 
to the appearance of cryptic exons.15 73 The cryptic exon is 
detected specifically in tissues affected by TDP-43 pathology 
(motor cortex and spinal cord in ALS patients and frontal 
and temporal cortices in FTD patients) and is absent in the 
(although small) percentage of non-TDP-43-related ALS-FTD.17 
The two previously described SNPs (rs12608932(A>C) and 
rs12973192(C>G)) and a novel third mutation (rs56041637) 
are located either within the UNC13A cryptic exon or the intron 
it originates from, as is seen in figure 1B. Although on TDP-43 
depletion, the cryptic exon appears also in the absence of these 
variants, their presence was shown to alter the affinity of TDP-43 
binding and make the inclusion of cryptic exon in mRNA more 
likely.16 17 23 Therefore, the loss of TDP-43, combined with the 
presence of these risk variants, leads to a drastic reduction in 
viable UNC13A mRNA and proteins, as can be seen in figure 4A. 
The above described mechanism linking TDP-43 pathology with 
UNC13A loss explains how risk SNPs can occur frequently in 
the general population, as they exert their action only when the 
TDP-43 pathology has started and might also explain in part the 
effect of the SNPs on disease progression.

Furthermore, TDP-43 pathology seems to affect neurons in 
a cell-specific manner, indicating that downstream processes, 
such as UNC13A pathology, are also selective to these groups of 
cells.76 Finally, TDP-43 pathology has been found to be associ-
ated with impaired synaptic transmission and synaptic loss, but 
it is as of yet unclear if, or in what manner, this is dependent on 
loss of UNC13A.77–80

Loss in synaptic transmission
As can be expected according to the main function of UNC13A, 
loss of UNC13A leads to impairment of neurotransmis-
sion (figure  4B). Loss of UNC13A leads to less efficient or 
total absence of evoked neurotransmission, with cells lacking 
UNC13A releasing SVs at a nearly four times slower rate, 
mainly due to a dramatic decrease in the RRP and a lack in 
bridging.48 50 52 59 UNC13A was shown to mediate SV release 
through activity-dependent Ca2+—phospholipid binding in the 
C2B domain; a point mutation induced to abolish Ca2+ binding 
in this domain showed a slower recovery rate of the RRP.70 The 
decrease in RRP recovery increased the latency between stimulus 
and recovery, leading to believe that Ca2+ binding to UNC13A is 
instrumental in fidelity of neurotransmission during maintained 
firing of action potentials.

In cultivated hippocampal cells, loss of UNC13A was shown to 
mainly affect glutamatergic neurotransmission.50 58 GABAergic 
neurons seem to have an inherently lower threshold for vesic-
ular fusion and are more affected by the loss of all UNC13 
proteins, instead of UNC13A specifically.58 59 This might 

indicate that mutations in UNC13A mainly affect excitatory 
neurotransmission.

Maintaining neuronal health and function
Apart from its role in neurotransmission, loss of UNC13A 
affects neuronal structure and health.71 81 82 Absence of UNC13A 
decreased the release of dense core vesicles up to 60%.81 Dense 
core vesicles contain neuropeptides, neurotrophic factors and 
other regulatory substances which develop neurons in the adult 
brain and are important in the formation of synaptic active 
zones.83 A downstream effect of the loss in UNC13A is a simul-
taneous loss of syntaxin-1, which is instrumental in both vesicle 
docking and maintaining neuronal health, as it leads to increased 
rates of degradation in both developing and adult neuronal 
cells.71 82 Expression levels of both syntaxin-1B, an isoform, and 
UNC13A were lowered in the transcriptome of ventral horns of 
ALS patients.84 Furthermore, there was reduced expression of 
circulating microRNA related to either UNC13A or UNC18 in 

Figure 4  Pathological cryptic exon inclusion and the putative disease 
mechanisms in UNC13A.  
1. Cryptic exon inclusion has been found to be the pathological basis in 
UNC13A associated ALS. As a result of mislocalisation of TDP-43 outside 
of the cell nucleus, transcripts of UNC13A (1a) are spliced incorrectly, 
leading to the inclusion of the cryptic exon in mature UNC13A transcripts. 
This leads to nonsense mediated decay of proteins produced by reading 
messenger RNA containing the cryptic exon and vastly lower functional 
protein levels (1c).  
2. UNC13A has been found to be involved in several processes pertaining 
to synaptic transmission. UNC13A forms and maintains synaptic active 
zones due, which orchestrates the localisation of several proteins 
essential to neurotransmission, such as calcium channels, RIM-molecules, 
synaptobrevin and syntaxin-1 (2a). UNC13A maintains the readily 
releasable pool, a collection of synaptic vesicles able to fuse quickly in 
order to facilitate neurotransmission (2b). UNC13A induces a change in 
conformation of syntaxin-1 to an open state, which activates it and enables 
the assembly of SNARE-complexes. UNC13A orchestrates the docking 
of 6 SNARE-complexes to each synaptic vesicle in order for it to tether 
to the presynaptic membrane. RIM interacts with UNC13A and recruits 
calcium (Ca2+) channels to the docked vesicle (2d). UNC13A primes 
synaptic vesicles in order to lower the Calcium (Ca2+) threshold needed for 
fusion with the presynaptic membrane (2e). Due to an influx of Ca2+, the 
synaptic vesicles fuse fully and neurotransmitters are released. A decrease 
in function of UNC13A could lead to a decrease in several or all of the 
aforementioned processes.
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ALS, implicating a loss of neuronal transmission in part in the 
pathophysiology of ALS.85

POTENTIAL TREATMENTS TARGETING UNC13A
Lithium carbonate
The application of lithium carbonate in treating ALS has been 
researched extensively. Initially, the results of a phase two trial 
showed a very promising effect on survival in patients with ALS 
when compared with treatment with riluzole alone.86 After 
this initial publication, five randomised controlled trials were 
conducted with none finding a benefit of lithium carbonate 
compared with control.87–89 A meta-analysis confirmed that 
there is no benefit of lithium carbonate to the ALS population 
as a whole.90 In post-hoc analyses, it was interrogated whether 
genetic subgroups (C9ORF72 and UNC13A) responded differ-
ently to treatment with lithium carbonate.90 Strikingly, patients 
homozygous for the C/C genotype of rs12608932 allocated 
to lithium carbonate exhibited a significantly higher 12 month 
survival probability compared with those in controls arms 
(69.7% compared with 40.1%, respectively).90 Although these 
data suggested that lithium carbonate might be effective in this 
genetic subgroup, these represent results will need to be repli-
cated in a confirmatory trial. Therefore, an international, multi-
centre, double-blind, placebo-controlled study enrolling patients 
with ALS with homozygous for the risk SNP rs12608932 has 
been initiated. The study is being undertaken in 15 ALS centres 
originating from seven countries in Europe and Australia 
(EudraCT 2020-000579-19). A total of 171 patients homozy-
gous for the C-allele at rs12608932 will be included. A protocol 
for this study has recently been published.91

While the mechanism by which lithium carbonate could influ-
ence disease progression in UNC13A-ALS remains unclear, pre-
clinical studies show that lithium induces sprouting of pyramidal 
neurons and induces synaptogenesis, which might counter-effect 
the previously described loss in synaptic transmission resulting 
from UNC13A depletion.92 93 Other proposed mechanisms 
relate to regulation of intracellular calcium homeostasis and an 
increase in autophagy, a process through which cells are able 
to degrade intracellular components, which was shown to be 
activated by lithium.93 94 Furthermore, it may also be that the 
effect of lithium can be detected in the trial context in faster-
progressing individuals, which are more likely to be homozygous 
for the risk SNP.

Other potential therapeutic strategies
Drugs with a similar structure to DNA and RNA, called nucleic 
acid therapeutics, can be used to specifically target mRNA in 
order to regulate protein expression.95 Single-stranded synthetic 
antisense oligonucleotides (ASOs) are able to bind the junc-
tions between introns and exons in mRNA in order to regu-
late splicing and induce exon skipping.96 This could be used to 
inhibit the inclusion of the cryptic exon in UNC13A induced 
by TDP-43 pathology, leading to a rescue of functional protein 
levels. Splicing modulating therapies are already being used to 
treat spinal muscular atrophy, which has been a tremendous step 
forward for these patients, but importantly also demonstrates 
proof-of-concept.97 ASO trials are currently underway for other 
genetic targets associated with ALS,98 such as SOD1, FUS and 
C9ORF72 and Ataxin-2 repeat expansions.

Of relevance, Bryostatin 1 was discovered to target UNC13A 
in vitro.99 Bryostatin 1 is a natural compound isolated from a 
specific genus of moss animals, which is a diglyceride (DAG) 
homologue. DAG interacts both with protein kinase C (PKC) 

domain as well as the C1-domain of Munc13-1, which were both 
found to have similar structures. Bryostatin 1 induces plasma 
membrane translocation of UNC13A and upregulates UNC13A 
expression. In this manner, it could contribute to maintaining 
synaptic structure and health, but it is unlikely that these poten-
tially beneficial effects take place when there is no functional 
protein due to cryptic exon inclusion or that it could be used 
without side effects due to its simultaneous activation of PKC.16

Trial design
Knowledge of UNC13A should be taken into account when 
designing clinical trials for the treatment of ALS. Due to the asso-
ciation of UNC13A with survival, having an over-representation 
of patients homozygous for the C-allele at rs12608932 in treat-
ment or control groups could, respectively, decrease the chance 
of detecting treatment effects or introduce bias; for example, 
a study of 25 patients, there is a 85% risk of an imbalance of 
5% for C/C homozygosity at rs12608932.100 Similar risks for 
imbalance in frequency of C9orf72 repeat expansions apply. 
These findings seem to warrant incorporating genetics into the 
design and conduct of clinical trials.100 101 Finally, as UNC13A 
is a shared genetic cause for ALS and FTD, compounds that are 
effective in patients with ALS could also warrant examination in 
patients with FTD.

CONCLUSION
Here, we have reviewed the association of UNC13A with 
ALS, its effect on survival and the distinct clinical phenotype 
associated with it. We described how TDP-43 pathology, the 
hallmark of ALS, leads to the inclusion of a cryptic exon in 
UNC13A and subsequent nonsense-mediated decay lowering 
functional protein levels, in turn likely affecting neurotrans-
missions, synaptic plasticity and neuronal health. Finally, we 
have described possible treatment strategies, in particular, those 
targeting UNC13A sub-populations, such as lithium carbonate 
and exon skipping ASOs. Clinical, genetic and biological find-
ings all demonstrate that UNC13A is a potent phenotypic modi-
fier in ALS, but with a much smaller effect on disease risk. This 
finding warrants further research on genetic modifiers of ALS 
phenotypes as further knowledge of these modifiers could guide 
trial design and therapy development.
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