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ABSTRACT

Defects in cilia genes, which are critical for cilia
formation and function, can cause complicated cil-
iopathy syndromes involving multiple organs and
tissues; however, the underlying regulatory mech-
anisms of the networks of cilia genes in ciliopathies
remain enigmatic. Herein, we have uncovered the
genome-wide redistribution of accessible chromatin
regions and extensive alterations of expression of
cilia genes during Ellis—van Creveld syndrome (EVC)
ciliopathy pathogenesis. Mechanistically, the distinct
EVC ciliopathy-activated accessible regions (CAAs)
are shown to positively regulate robust changes in
flanking cilia genes, which are a key requirement for
cilia transcription in response to developmental sig-
nals. Moreover, a single transcription factor, ETS1,
can be recruited to CAAs, leading to prominent chro-
matin accessibility reconstruction in EVC ciliopathy
patients. In zebrafish, the collapse of CAAs driven
by ets1 suppression subsequently causes defective
cilia proteins, resulting in body curvature and peri-
cardial oedema. Our results depict a dynamic land-
scape of chromatin accessibility in EVC ciliopathy
patients, and uncover an insightful role for ETS1 in
controlling the global transcriptional program of cilia
genes by reprogramming the widespread chromatin
state.
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INTRODUCTION

Ciliopathies are a group of multiorgan disorders whose ae-
tiologies lie with primary ciliary dysfunction, leading to an
expanding spectrum of diverse developmental and degen-
erative diseases (1,2). Although individual ciliopathy diag-
noses are rare, their total contribution to human disease
burden is surprisingly equal to that of several more com-
mon diseases, with an estimated incidence of ~1:1000 (3).
To date, >20 phenotypically distinguishable symptoms have
been associated with ciliopathies. Although individual dis-
eases are known for the most commonly affected organ, for
each of these ciliopathies remarkable phenotypic variabil-
ity has been observed even between members of the same
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family, making clinical diagnosis a challenge. For exam-
ple, Ellis—van Creveld syndrome (EVC) is one of the skele-
tal ciliopathies that not only exhibits the general clinical
symptoms of ciliopathies, such as polydactyly, characteris-
tic skeletal features, congenital cardiopathy, and develop-
mental and intellectual delays, but may also involve unique
symptoms, such as dental anomalies and ectodermal dys-
plasia (dysplastic nails and hair abnormalities) (4). Emerg-
ing studies have identified numerous cilia genes involving
primary cilia impairment that may explain EVC ciliopa-
thy pathogenesis, indicating that ciliopathies share common
pathway defects in which the cilia act as a nexus (5).

Cilia, whose dysfunction results in ciliopathies, are
microtubule-based structures located on the surface of most
vertebrate cells. The assembly and disassembly of cilia rely
on rigorous transcriptional programs that integrate coop-
eratively to direct cilia and tissue formation and develop-
ment (6-8). Maintenance of cilia formation and function
involves extensive diversity in gene expression and dynamic
interaction between the cilia regulation axis and multimeric
protein complexes that impact the downstream Hedgehog
(HH), Notch and Wingless-Int (WNT) signalling pathways
(9-12). Therefore, these cilia genes are crucial to human de-
velopment, especially when considering their collective con-
tributions to the development of ciliopathies. To date, hun-
dreds of cilia genes have been implicated in established cil-
iopathies; meanwhile, potentially hundreds more cilia genes
associated with ciliary structures and/or functions could re-
sult in as yet unknown or novel ciliopathies (13). Studies
based on candidate gene approaches have provided insight-
ful views for understanding the pathogenesis of ciliopathies
(14,15). Nevertheless, additional diseases have emerged that
were not traditionally considered to be ciliopathies; there-
fore, previous research focusing on individual genes is insuf-
ficient to fully explain the transcriptional alterations that
happen in ciliopathy-critical events. Conversely, very lit-
tle information exists regarding the gene regulatory net-
works involved in ciliopathies. Therefore, to understand
the molecular basis of ciliopathies, it is critical to identify
the regulatory elements governing the changes in cilia gene
expression.

Alterations in epigenetic landscapes are known to con-
tribute to gene regulatory networks (16). As a substan-
tial part of epigenetic regulation, the collaboration of
chromatin accessibility sites with regulatory elements pro-
foundly changes the chromatin state, which subsequently in-
fluences the downstream transcriptional program (17). In-
deed, among the genomic factors that may affect biologi-
cal behaviour at a given locus, chromatin accessibility is the
most important, and pioneer factors that target closed chro-
matin can lead to its opening (18-20). The use of the inno-
vative epigenetic Assay for Transposase-Accessible Chro-
matin with sequencing (ATAC-seq) has advanced our un-
derstanding of the machinery of epigenetic modification
and gene expression regulation in processes such as tumori-
genesis and embryonic development (21-23). Although pre-
viously identified genetic alterations have been recognized
in ciliopathies, the heterogeneity in the specific genetic alter-
ations between patients provides convincing evidence that
epigenomic regulation is crucial to understanding ciliopa-
thy pathogenesis. The disruption of the structure of topo-
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logically associated chromatin domains (TADs) led to ab-
normal limb formation through the rewiring of epigenome-
mediated gene—enhancer interactions in a case of cilia-
related ciliopathy (24). Epigenetic mechanisms, including
DNA methylation and histone modifications, were found to
be vital for cooperation between cilia genes and the regula-
tory network in polycystic kidney disease (PKD)-associated
ciliopathies (25,26). The widespread phenotypic changes in
ciliopathies indicate that extensive alterations in the gene
expression programs that control cilia disassembly and sig-
nalling response must be required for the disease to develop
(27). Therefore, it is imperative to understand the specific
regulatory changes controlling gene expression that lead to
ciliopathy pathogenesis.

In this study, we explored the global redistribution of
chromatin accessibility leading to broad transcriptome ef-
fects in EVC ciliopathy patients. We observed a significant
increase in accessibility sites, defined as EVC ciliopathy-
activated accessibility regions (CAAs), and modulation of
the kinetics of neighbouring cilia genes. Furthermore, the
transcription factor (TF) ETS1 was recruited to the CAAs
and acted as a fundamental regulator for global alterations
of the chromatin state. Suppression of ETS1 reduced the
activity of CAAs and disturbed the expression program
of cilia genes. Consistent with the phenotype of ciliopathy
patients, disruption of ets/ expression in zebrafish caused
body curvature and heart dysfunction. Collectively, our
findings reveal the role of ETS1-driven chromatin acces-
sibility redistribution in the regulatory network modula-
tion of critical cilia genes, indicating a novel appendage-
patterning pathway previously unrecognized in EVC cil-
iopathy pathogenesis.

MATERIALS AND METHODS
Human material and cell culture

Venous blood was collected using standard procedures un-
der ethical approval of the Institutional Ethics Commit-
tee of the Central People’s Hospital of Zhanjiang (KY-YS-
2021-05), with informed consent obtained from the patients
and healthy donors. The peripheral blood mononuclear
cells (PBMCs) were isolated using Ficoll (Cytiva, 17544202,
USA) according to the manufacturer’s instructions.
hTERT RPE-1 cells (ATCC, CRL-4000, USA) were
cultured in F12/Dulbecco’s modified Eagle’s medium
(DMEM) (1:1) supplemented with 10% foetal bovine serum
(GeminiBio, 900-108, USA) and 0.01 mg/ml hygromycin
B under 5% CO, at 37°C. To facilitate ciliation, hTERT
RPE-1 cells were serum starved in DMEM/F12 (1:1) sup-
plemented with 0.01 mg/ml hygromycin B for 24-48 h.

Lentivirus preparation and transfection

The second-generation packaging system plasmids
pMD2.G and psPAX2 (Addgene, USA) were used to
create lentivirus in 293T cells. Transfection was performed
on 5 x 10° 293T cells growing in a 10 cm culture dish
using polyethylenimine (PEI) with 4 pg of lentiviral vector,
3 pg of psPAX2 and 1 pg of pMD2.G (lentiviral vec-
tor:psPAX2:pMD2.G = 4:3:1). Cells were collected every
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24 h between 24 h and 72 h post-transfection, ultracen-
trifugation was used to concentrate the supernatants, and
the virus titre was determined through successive dilutions.

Antibodies
All antibodies are listed in the Supplementary Data.

ATAC-seq and data processing

Fresh isolated PBMCs and hTERT RPE-1 cells were har-
vested and resuspended with cold lysis buffer for 10 min
on ice. Next, 50 000 nuclei were counted using trypan blue
staining and prepared for transposition reactions accord-
ing to the manufacturer’s instructions for the TruePrep
DNA Library Prep Kit V2 for Illumina (Vazyme, TD501,
China). Subsequently, nuclei were pelleted and resuspended
with transposase at 37°C for 30 min. DNA fragments were
then purified with AMPure XP beads (Beckman, A63882,
USA). DNA libraries were constructed after eight cycles of
polymerase chain reaction (PCR) amplification using the
TruePrep DNA Library Prep Kit and sequenced on the No-
vaseq PE150 platform to a depth of 4.0 x 107 reads.

For ATAC-seq data processing, FastQC (version 0.11.7)
was used to evaluate the quality of the sequencing data,
and Trimmomatic was explored to remove the adaptor se-
quences and obtain the clean data, which were subsequently
aligned to the hg38 reference genome using Burrows—
Wheeler alignment (BWA). Multiply mapped reads were re-
moved using SAMtools (version 1.3.1) and the MASCS2
was applied to call significant peaks with a g-value < 0.05.
To identify differentially expressed genes between healthy
donors and patients, the ATAC-seq peaks of each sample
were merged to generate a consensus set of unique peaks.
The number of peaks among this set was counted using bed-
tools (version 2.25.0), and CAAs and ciliopathy-inactivated
accessibility regions (CIAs) were identified using DESeq2
(version 1.16.0) (28), with the thresholds log2FCl > 1 and
P < 0.05. Genomic features of peaks were annotated using
the ChIPseeker R package. Additionally, Homer software
(version 4.6) and CentriMo (version 5.4.1) were applied
to discover binding motifs in CAAs and CIAs. Genome-
wide normalized signal coverage tracks were created by bam
Coverage in deepTools (version 3.3.0) and were visualized in
the Integrative Genomics Viewer (IGV version 2.5.0).

CUT&Tag and data processing

First, 10 000 fresh PBMCs and hTERT RPE-1 cells were
counted and processed according to instructions for the
Hyperactive® Universal CUT&Tag Assay Kit for Illu-
mina (Vazyme, TD903, China). Briefly, ConA beads (con-
canavalin A-conjugated paramagnetic beads) were added
to the cell pellet and incubated at room temperature for
10 min. Subsequently, the mixed complexes were incu-
bated overnight at 4°C with primary antibody. The cells
were then washed, followed by incubation with diluted sec-
ondary antibody at room temperature for 2 h. Antibody—
protein-DNA complexes were then linked by pA/G-Tnp
and incubated at room temperature for 1 h. After wash-
ing, the eluted complexes were subsequently sheared by

adding 5x Trueprep Tagment Buffer L (5x TTBL) pro-
vided in assay kit. Proteinase K and DNA extract beads
were used for obtaining eluted DNA. Sequencing libraries
were established after 11 cycles of PCR amplification. Se-
lected sizes were processed using AMPure XP beads and the
DNAs were sequenced on the Novaseq PE150 platform to
a depth of 2.5 x 107 reads. For CUT&Tag data processing,
FASTQC was used to measure the data quality distribution,
and the clean reads were then aligned to reference genome
sequences using the bwa program. Peaks were called using
MACS?2 peak caller with g-value < 0.05. Genome-wide nor-
malized signal coverage tracks were visualized in the IGV.
Peaks that were >2-fold changed at a false discovery rate
(FDR) < 0.1 were considered differential peaks, while peaks
that did not have a log2 fold change (FC) significantly dif-
ferent from zero were termed constitutive peaks.

ChIP-qPCR analyses

PBMCs were cross-linked with 1% formaldehyde solution
(Sigma, F8775, USA) for 10 min at room temperature.
Glycine was added for 5 min to quench the fixation reac-
tion. Subsequently, the chromatin was sheared into 300-
500 bp fragments using Bioruptor®. The sheared DNA was
pre-cleared by adding 20 w1 of salmon sperm DNA /Protein
A Sepharose beads (Sigma, GE17-5280, USA) and incu-
bated at 4°C for 30 min. Next, 3 pg of primary antibody
was incubated with a 250 wg fraction of beads—DNA mix-
ture and incubated overnight at 4°C. The following day,
antibody—protein—-DNA complexes were pulled down us-
ing 30 wl of Protein A Sepharose bead slurry. After wash-
ing, the eluted complexes were subsequently de-cross-linked
at 65°C for 5 h. Finally, the ChIP (chromatin immunopre-
cipitation) DNA was purified using phenol-chloroform ex-
traction for further quantitative PCR (qPCR) study. The
primers used in ChIP-qPCR are listed in the Supplemen-
tary Data.

Immunofluorescence and microscopy

In brief, PBMCs and hTERT RPE-1 cells for immunofluo-
rescence were seeded on coverslips in 100 mm culture dishes.
At 70-80% confluence, cells were washed twice with 1 x ice-
cold phosphate-buffered saline (PBS) and fixed with 4%
paraformaldehyde at room temperature for 20 min. Subse-
quently, the cells were blocked with 1% bovine serum albu-
min (BSA) at room temperature for 30 min and incubated
overnight at 4°C diluted in 1% BSA with primary antibody.
Subsequently, the cells were washed and incubated with 150
wl of secondary antibody at room temperature for 2 h. 4',6-
Diamidino-2-phenylindole (DAPI) stain was added with a
final concentration of 2 ng/p.l, and staining time was limited
to 3 min. Finally, slides were sealed with 5 .l Fluoromount-
G® mounting medium, and observed under a fluorescence
microscope after 5 h.

All the centrosomal and cilia proteins were observed at
room temperature using a TH4-200 fluorescence micro-
scope (Olympus, Japan) equipped with a x60, 1.42 numer-
ical aperture (NA) Apo oil objective lens (Olympus, Japan)
or an A1-SHR LFOV confocal microscope (Nikon, Japan)
equipped with a x60,1.42 NA and x100, 1.4 NA objec-



tive lens (Nikon). Images were acquired using DP Con-
troller software (Olympus, Japan) or NIS-Elements soft-
ware (Nikon, Japan). For images observed using z-stacking,
sections were acquired with 0.5 wm distance between z-
steps. All images were reconstructed to maximum projec-
tions. Images were processed using ImageJ and Photoshop
(Adobe, USA).

Cilia measurement analyses

The Pythagorean theorem (PyT) was used to achieve the
optimal type of measurement of cilia anatomy/structure in
3D space. Knowing the length of two sides in a right-angle
triangle, the third side can be calculated using the PyT for-
mula: a®> + b> = ¢2. To calculate the precise cilium length c,

the formula can be rewritten as: ¢ = (a® + b?)?, where the
length of the cilium on the maximum intensity projection is
a, and the thickness of z-slices is b (29).

Expression analysis

For western blotting, the total protein was isolated us-
ing TRIzol reagent (Invitrogen, 10296028, USA) accord-
ing to the manufacturer’s protocol. The proteins were dis-
solved in 1% sodium dodecylsulphate (SDS), separated us-
ing SDS—polyacrylamide gel electrophoresis (PAGE), and
transferred to a nitrocellulose membrane. The membranes
were pre-stained using Ponceau S buffer and blocked in
5% BSA for 1 h. The tailored membranes were incubated
overnight at 4°C with the primary antibodies. After wash-
ing, the membranes were incubated with a diluted sec-
ondary antibody for at least 2 h at room temperature,
washed three times with PBST, and finally visualized using
the Odyssey infrared imaging system (Odyssey, USA).

For total RNA analysis and data processing, the total
RNA was extracted using TRIzol reagent according to stan-
dard protocols, followed by analysis using an Agilent 2100
BioAnalyzer (Agilent Technologies, USA) to verify RNA
integrity. Library construction and high-throughput RNA-
seq were performed with the Novaseq PE150 platform to a
depth of 1.5 x 107 reads. The sequencing adaptors were re-
moved from the raw RNA-seq reads, and the obtained clean
data were aligned to the human reference genome (hg38) us-
ing HISAT?2 software (version 2.1.0.). For gene expression
quantification, the sequencing reads within each gene were
counted, and the counts were normalized using edgeR (30).
Enriched Gene Ontology (GO) terms were identified with
MGI Gene Ontology Term Finder using llog2FCI > 1 and
P-value < 0.05 as thresholds.

RNA interference (RNAI)

For the knockdown experiment, two verified small inter-
fering RNAs (siRNAs) of ETS1 (31) from GenePharma
were transfected into hTERT RPE-1 cells. The cells were
analysed 48-72 h after siRNA transfection. To obtain
siRNA-resistant ETS1 (resETS1), silent mutations were in-
corporated into the siRNA-targeted ETS1 sequence. All se-
quences are provided in the Supplementary Data.
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Zebrafish maintenance and microinjections

Zebrafish experiments were performed under ethical ap-
proval of the Institutional Ethics Committee of the Central
People’s Hospital of Zhanjiang (ZJDY2022-13). Adult ze-
brafish stocks of the AB strain were maintained under stan-
dard aquaculture conditions. All embryos were incubated at
28.5°C.

Morpholinos were designed and synthesized by Gene
Tools, LLC (Philomath, USA), including a standard con-
trol morpholino and a morpholino targeting the start codon
region (AUG) of ets] transcripts to block translation. Mor-
pholino oligonucleotides of 2 ng/embryo of control or etsl
were separately injected into the yolk at the one-cell stage.
Morpholino sequences are provided in the Supplementary
Data.

The ets! coding sequence (CDS) was ligated to the
PCS2 + vector at the BamH: site through Gibson assem-
bly. ezs/ mRNA was in vitro transcribed using the mMES-
SAGE mMACHINE SP6 kit (Invitrogen, AM 1340, USA).
For overexpression and rescue, 200 pg of ets] mRNA was
injected into each embryo at the one-cell stage.

Whole-mount ir situ hybridization (WISH)

The ¢mlc2 RNA probe was in vitro transcribed and digox-
igenin labelled using the DIG RNA Labeling Kit (Roche,
11277073910). WISH was performed as reported (32).

Whole-mount immunofluorescence staining for zebrafish
embryo

Embryos were fixed at the 8-somite stage using 4%
paraformaldehyde at 4°C overnight. Anti-acetyl-alpha-
tubulin antibody (1:500, Sigma, MABT868, USA) was used
to label the cilia in Kupffer’s vesicles (KVs). Immunoflu-
orescence staining was performed as previously described
(33). Before permeation with acetone, embryos were equili-
brated in Tris—=HCI (0.1 M, pH 9.0) for 5 min at room tem-
perature and then heated at 70°C for 15 min for antigen re-
trieval. After staining, embryos were flattened and imaged
using the z-stack function of the confocal microscope with
a x 60 oil objective.

Behavioural assays

The behavioural assay was performed using a ZebraBox
system and video tracking software (ViewPoint Life Sci-
ences, France). At 5 days post-fertilization (dpf), an indi-
vidual larva was placed in each well of a 96-well plate con-
taining 500 wl of embryo medium without light exposure.
Plates were sealed with an optical adhesive film to prevent
evaporation. The movement of each larva was recorded over
a period of 20 min. A transparent background mode with
a detection threshold of 20 was set. Behavioural endpoints
were swimming distance (cm) and time (s).

Heart failure assessment

The zebrafish larvae were subjected to video recording
under a Zebralab Blood Flow System (ViewPoint Life
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Sciences, France). To determine differential atrial and ven-
tricular heart rate, heart videos were analysed using Mi-
croZebralLab (ViewPoint Life Sciences). The pixel density
changes detected by the software correlate with cardiac
muscle contractions and chamber filling, which are used to
estimate cardiac muscle contractions in beats per minute
(bpm).

Blood flow videos were analysed using ZebraBlood
(ViewPoint Life Sciences). The pixel density changes de-
tected by the software are combined with vessel diameter
to determine the flow rate for each frame. Quantitative as-
sessments were performed using video-based analysis, from
which the linear velocity, blood flow and vessel diameter
were evaluated.

Statistical analysis

Either a two-tailed unpaired Student’s #-test or a one-
way analysis of variance (ANOVA) with Dunnett’s mul-
tiple comparisons test was applied to determine the dif-
ference between groups, unless otherwise noted, using
GraphPad Prism 5 (version 5.01; GraphPad, USA). The
results are presented as the mean 4+ standard error of
the mean (SEM), and P < 0.05 was considered to indi-
cate a statistically significant difference, unless otherwise
stated.

RESULTS

Open chromatin landscape undergoes distinct global remod-
elling in EVC ciliopathy patients

One of the common malformations associated with cil-
iopathies is post-axial polydactyly. Here, we recruited pa-
tients with polydactyly predominantly of the hands and/or
of the feet; based on previous reports and sequencing in-
formation, four of these patients were clinically diagnosed
with the EVC ciliopathy, due to the additional presence
of chondrodysplasia (dental abnormalities, short rib), con-
genital cardiopathy, intellectual disability and variable de-
grees of ectodermal dysplasia (dysplastic nails, hair abnor-
malities) (Figure 1A; Supplementary Data). Since cilia de-
fects are responsible for the phenotypes in ciliopathies, and
since it has been reported that PBMCs can be ciliated (34),
we first examined the cilia morphology of PBMCs isolated
from the patients. We found that the cilia in the PBMCs
of these patients were longer than those in normal indi-
viduals, demonstrating the structural cilia defects in the
patients, which strengthens the correlation between cilia
malfunction in patient-derived cells and the symptoms ob-
served in the patients (Figure 1B). Additionally, the tran-
scriptional expression levels of several well-recognized cilia
genes in the PBMCs, including CEPI31, NEKS and other
cilia genes recorded in the SCGSv2 gold standard list, were
substantially elevated in the genome-wide transcriptome
profile of EVC ciliopathy patients (35) (Supplementary Fig-
ure SIA-C). Notably, the differentially expressed genes
were always enriched in multiple signalling processes—such
as body morphogenesis, metabolic processes and immune
responses—that have been shown to be closely associated

with cilia genes (36-39) (Supplementary Figure S1D, E). In
particular, the genes overexpressed in patients were always
enriched in cilia-related pathways, reinforcing that a com-
mon set of cilia genes were activated during EVC ciliopathy
pathogenesis (Figure 1C).

Chromatin accessibility is a reflection of and corresponds
to the transcriptome profile that determines the cellular
state (40). Given the unique alterations in cilia genes and the
enrichment of cilia-related pathways, we conducted ATAC-
seq analyses in isolated PBMCs from both patients and
healthy donors (Supplementary Figure S2A). As expected,
the ATAC-seq data showed clear nucleosome phasing in the
insert size distributions, and the reads were appropriately
enriched at transcription start sites (T'SSs) (Supplementary
Figure S2B, C). Peaks representing the chromatin accessi-
bility regions were primarily located in the intergenic re-
gions containing abundant cis-regulatory elements; further-
more, genome annotation revealed that a large fraction of
these ATAC-seq peaks overlapped with promoter and en-
hancer regions, consistent with previous findings (41) (Fig-
ure 1D, E). Additionally, the gene expression profile alter-
ations always coincided with changes in promoter accessi-
bility, reinforcing the idea that the ATAC-seq-detected ac-
cessible regions co-localize extensively with promoter ele-
ments (Supplementary Figure S2D). After comparing our
ATAC-seq data with public data from the Encyclopedia of
DNA Elements (ENCODE), a large fraction of our ATAC-
seq peaks overlapped with the signals in promoters marked
by the histone modification H3K4me3 (Supplementary Fig-
ure S3A, B). For instance, the HOXA and PTCHI genes
involved in regulating limb morphology exhibited strong
ATAC-seq H3K4me3 signals in the promoters, but not en-
hancer signals marked by H3K4mel and H3K27ac (42,43)
(Figure 1F; Supplementary Figure S2E), indicating pro-
moter occupancy of the chromatin accessibility signal in
EVC ciliopathy.

Identification of specific chromatin accessible regions in EVC
ciliopathy patients

To identify chromatin remodelling that potentially con-
tributes to EVC ciliopathy pathogenesis, we defined >10
000 differentially accessible regions (DARs) between EVC
ciliopathy patients and healthy donors based on quanti-
tative peak signals; these DARs included 402 EVC CAAs
and 568 EVC CIAs (Figure 2A; Supplementary Figure
S4A, B). As expected, promoter elements were enriched
in both CAAs and CIAs according to chromatin state
analysis (Figure 2B). Furthermore, most CAAs and CIAs
were located ~2 kb from TSSs, indicating the mapping
of the potential promoter elements in the peaks men-
tioned above (Supplementary Figure S4C-E). Using ChIP-
gqPCR of H3K4me3, randomly selected peaks in CAAs
and CIAs were validated based on their promoter sig-
nal alterations (Supplementary Figure 4F). By compar-
ing our data with public DNase-seq data from ENCODE,
we found that >50% of the peaks in CIAs overlapped
with the chromatin open regions in data from healthy
donors, whereas the fractions of overlapped peaks in CAAs
were substantially lower in all healthy donors, represent-
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ing the unique accessibility pattern of CAAs in patients
(Figure 2C).

CAAs regulate adjacent cilia gene expression

Because promoters have the ability to act as enhancers
to regulate the expression of nearby and distal genes in
cell fate decision (26), we investigated the impact of EVC
ciliopathy-specific DARs on global gene expression. Inter-
estingly, CAA-neighbouring genes were up-regulated, while
those adjacent to CIAs were down-regulated (Figure 2D).
Additionally, genes known to be up-regulated in patients,
such as NEKS, showed substantial elevations in both chro-
matin accessibility and expression level (Figure 2E). Verifi-
cation of the H3K4me3 signal near NEKS underscored the
previous evidence for increased promoter activity at CAAs
(Figure 2F).

Next, GO analysis was used to identify the biological
functions of DAR-adjacent genes. Notably, CAA-adjacent
regions were enriched in morphogenesis-associated path-
ways, including embryonic digit morphogenesis, cell mor-
phogenesis and morphogenesis of other organs, which are
crucial for the development process (Figure 3A). Mean-
while, genes neighbouring CIAs were predominantly en-
riched in metabolism-associated pathways such as protein

ubiquitination and keratinization (Figure 3B). Consistent
with the GO analysis results, CAA-adjacent genes were
significantly up-regulated, including the well-known cilia
genes CEP131, CEP41 and CDC20 (Figure 3C, D; Supple-
mentary Figure S5A, B). Conversely, RNF216, the key regu-
lator of protein ubiquitination in development, was flanked
by CIAs and showed decreased expression in patients (Fig-
ure 3C; Supplementary Figure S5C). Since we showed that
the genes neighbouring the CAAs always displayed up-
regulated expression, and that many of these aberrant ele-
vated CAA-adjacent genes were well-known cilia genes, we
wondered whether these cilia genes had a regulatory role in
chromatin accessibility dynamics. Therefore, we quantified
the ATAC-seq intensities from the gold standard SCGSv2
list, and found that peaks in patients led to substantial en-
richment of cilia genes compared with the signal in healthy
donors, while the randomly selected gene set displayed un-
changed signals in patients and healthy donors (Figure 3E).
Collectively, our results suggest that the CAA-harbouring
EVC ciliopathy accompanied by multiorgan developmen-
tal abnormalities is due to the impaired cellular signalling;
moreover, the newly activated CAAs are tightly coupled to
a robust increase in the expression of adjacent cilia genes,
which may serve as a prerequisite or contributing factor for
the aberrant elevated cilia gene expression seen in patients.
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Figure 2. Genome-wide identification and characterization of EVC ciliopathy-related DARs. (A) Insertion tracks of EVC CAAs and EVC CIAs at chro-
mosome 4 (left) and chromosome 2 (right) loci. Differentially open regions are marked with arrows. (B) The defined enrichment of chromatin states at
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Dunnett’s multiple comparisons test.
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Recruitment of ETS1 to CAAs contributes to regulation of
the expression of cilia genes

To identify the potential TFs involved in chromatin remod-
elling at CAAs, thus contributing to the regulation of down-
stream cilia genes, we carried out motif enrichment analy-
ses using the algorithms HOMER and MEME. The top-
ranked motifs were observed in the consensus binding sites
for ETS, bHLH, ZF and the STAT family, but only the
ETS motif was strongly over-represented in CAAs (Figure
4A; Supplementary Figure S6A, B). Therefore, we carried
out footprinting analyses and found considerable TF occu-
pancy around the ETS motif site in EVC ciliopathy patients
relative to healthy donors, suggesting a protracted ETS-

DNA interaction on CAAs during EVC ciliopathy patho-
genesis (Figure 4B). The ETS family of proteins comprises
28 TFs that contain a highly conserved DNA-binding ETS
domain (44) (Supplementary Figure S6C). To identify pu-
tative TFs that regulate CAAs, we subsequently screened
the ETS TFs exhibiting expression changes and found that
ETS1 expression—both for mRNA and for protein—was
notably higher in EVC ciliopathy patients relative to healthy
donors (Figure 4C; Supplementary Figure S6D, E).

To further determine whether ETS1 maintains the chro-
matin landscapes, we assessed ETS1 occupancy in PBMCs
from both EVC ciliopathy patients and healthy donors by
using CUT&Tag. Notably, ETSI displayed a genome-wide
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signal increase in EVC ciliopathy patients relative to healthy
donors (Supplementary Figure S6F). We quantified and
compared the motif scores of the CUT&Tag peaks of con-
trols and EVC ciliopathy patients, and found that, on aver-
age, peaks that were differentially occupied had lower motif
scores than peaks that were constitutively occupied, which
is consistent with the finding that increased ETS1 expres-
sion enables binding of lower affinity sites (Figure 4D).
Moreover, the differential accessibility and CUT&Tag sig-
nal were relatively correlated, indicating that a high frac-
tion of differential accessibility is attributable to differen-
tial ETS1 occupancy (Figure 4E). In particular, the ETS1
enrichment signal on CAAs was elevated in EVC ciliopathy
patients relative to that in healthy individuals, reinforcing
the potential function of ETSI in modulating the activity
of CAAs (Figure 4F).

Since we have revealed that CAAs are responsible for ro-
bust downstream cilia gene expression, ETS1 enrichment
among randomly selected genes was compared with the sig-
nal around cilia genes in the SCGSv2 gold standard list.
Indeed, these cilia genes exhibited pronounced ETS1 en-
richment flanking their TSSs relative to a randomly selected
gene set (Figure 4G). Moreover, ChIP-qPCR of ETS1 was
performed to examine its signal on CAAs flanking cilia
genes, which showed that the signal strength of ETSI was
substantially increased on these CAAs (Figure 4H). IGV
mapping of ETS1 occupancy on CEPI31 and NEKS also
emphasized the role of ETSI in recruitment to this subset
of CAAs (Figure 4I). Altogether, these results suggest that
the recruitment of ETS1 to CAAs substantially altered the
chromatin state transitions, ultimately causing downstream
transcriptional alterations associated with increased expres-
sion of cilia genes.

ETSI1 is required for cilia formation

Previous studies have hypothesized the potential function
of genes from the ETS family in regulating the expression
of cilia genes during tumour progression (45). As a mem-
ber of the ETS family, ETSI is suspected to be an oncogene
involved in various cancers and to have a vital function in
haematopoietic cell development (46,47). To further inves-
tigate the potential role of ETS1 in EVC ciliopathy, we per-
formed ETSI1 overexpression and knockdown experiments
in hTERT RPE-1 cells and observed the impact on cilia
formation after serum starvation. It was demonstrated that
forced ETS1 expression resulted in severe cilia morphol-
ogy impairments including bulge, truncation (< 3 pm) and
elongation (> 8 pm), with a higher percentage of elongated
than truncated cells (Figure 5SA-D), although the increase
in the overall percentage of ciliated cells was insignificant
(Figure 5A, E). Conversely, it was found that ETS1 knock-
down led to almost the opposite effects of its overexpres-
sion. ETS1 knockdown impaired cilia morphology with re-
markably increased bulged cilia, a higher percentage of cells
with truncated cilia than elongated cilia and a slight increase
in the overall percentage of cells that underwent cilia forma-
tion. These morphology impairments, along with the quan-
tity of ciliated cells, were rescued by treatment with exoge-
nous siRNA-resistant ETS1 (Figure SF-J; Supplementary
Figure S6G). Collectively, these results revealed the criti-
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cal and unexpectedly bidirectional regulator role of ETS1
in cilia formation.

Disrupted chromatin accessibility caused by ETS1 silencing
underlies the impaired transcriptional program of cilia genes

To determine if prolonged ETSI expression is required to
sustain an open chromatin state of CAAs, we performed
a stable ETS1 knockdown in hTERT RPE-1 cells; using
ATAC-seq on siETSI samples and negative controls, we
found that ETSI1 silencing caused extensive alterations in
chromatin accessibility (Supplementary Figure S7A). The
peak annotation suggested that the closure of accessibil-
ity in ETS1 knockdown cells occurred primarily in inter-
genic regions enriched in ETS-family motif sites (Supple-
mentary Figure S7B, C). Notably, ETS1 knockdown sub-
stantially reduced accessibility, revealing an ETSI-driven
disruption of the global open chromatin state, supporting
the view that ETS1 is capable of inducing chromatin remod-
elling by evicting nucleosomes directly from nucleosome-
bound DNA (48) (Figure 6A). In contrast to the elevated
CAA peaks mentioned above, the suppressed expression of
ETS1 resulted in a robust decrease of CAA activity (Fig-
ure 6B). Meanwhile, considering that nucleosomes and TFs
are in competition for DNA-binding sites, we evaluated nu-
cleosome occupancy after ETS1 knockdown by calculat-
ing the ATAC-seq data insert sizes. We observed an in-
crease in nucleosome occupancy at ETS motif sites in ETS1-
silenced cells, leading to less ETS1 occupancy on CAAs
(Supplementary Figure S7D). Additionally, the closed chro-
matin regions in ETS1 knockdown cells were generally anti-
correlated with accessibility changes in CAAs, highlighting
the function of ETSI in restructuring chromatin accessibil-
ity during EVC ciliopathy pathogenesis (Figure 6C).

Given that the SCGSv2 genes exhibited substantially de-
creased densities after ETSI silencing relative to randomly
selected genes, we then tested ETS1 occupancy in hTERT
RPE-1 cells by using CUT&Tag techniques (Figure 6D;
Supplementary Figure S7E). In ETS1 knockdown cells that
always displayed ETS1 occupancy, we observed the collapse
of CAA activity in regions including the well-described cilia
genes KDM3A and SMO, further supporting the role of
ETSI1 in harbouring CAAs that flank cilia genes (49,50)
(Figure 6E). To verify whether ETS1 alone can sufficiently
regulate the expression of cilia genes, we carried out tran-
scriptome profiling in ETS1 knockdown cells and found
extensively decreased expression of cilia genes adjacent to
CAAs corresponding to ETSI silencing (Supplementary
Figure S7F, G). Gene set enrichment analysis (GSEA) of
the transcriptome profiling revealed that many cilia-related
signalling pathways, including the HH pathway, were im-
paired after ETS1 depletion (Supplementary Figure S7TH-
J). This finding inspired us to investigate whether ETS1
is required for ciliary signalling transduction. GLI Family
Zinc Finger 3 (Gli3), a critical TF in HH signalling, exists
in two forms: a full-length activator (Gli3-FL) or a repres-
sor (Gli3-R). Gli3-FL activates the HH pathway and mod-
ulates HH genes by targeting the Glil promoter, whereas
Gli3-R—produced by degradation of Gli3-FL—inhibits
HH functions. In this study, Gli3-R expression decreased
and Glil expression substantially increased in Smoothened
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Figure 6. ETSI1 loss induces aberrant expression of cilia genes by remodelling the signals of flanking CAAs. (A) Heatmaps and enrichment plots showing
normalized read densities of ATAC-seq signals after down-regulation of ETS1 expression in hTERT RPE-1 cells. Tracks are centred at the peaks and
extend £ 3 kb. (B) The enrichment of ATAC-seq signals at CAAs after down-regulation of ETS1 expression in control (siCtrl) and ETS1-depleted (siETS1)
hTERT RPE-1 cells. Tracks are centred at the peaks and extend + 3 kb. (C) Spearman’s correlation of CAA accessibility changes and regions that close
after ETS1 suppression in hTERT RPE-1 cells (r = —0.727). (D) Enrichment plots showing normalized read densities of ATAC-seq signals from hTERT
RPE-1 cells at the TSS for randomly selected genes (n = 700, left) and SCGSv2 genes (right) after ETS1 knockdown. Tracks are centred at the TSS and
extend + 3 kb. (E) IGV snapshot showing the ATAC-seq, CUT&Tag and RNA-seq signals from hTERT RPE-1 cells in loci of KDM3A4 and SMO genes.
(F) Immunoblots of Glil and Gli3 in control (siCtrl), ETS1-depleted (siETS1) and ETS1-rescued (siETS1 + Flag-ResETS1) hTERT RPE-1 cells. The
intensity of Glil and the ratio of Gli3-FL/Gli3-R was quantified. Tubulin was used as a loading control. (G and H) Immunostaining of Gli3 (green) (G)
or Smo (green) (H) and y-tubulin (cyan) in control, ETS1-depleted and ETS1-rescued hTERT RPE-1 cells transfected with mCherry—Arl13b (red) with
(right) or without (left) Smoothened agonist (SAG). Scale bars, 1 pm.
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(SMO) agonist (SAG)-treated ETS1-overexpressing cells,
indicating that forced ETS1 expression activated the HH
signalling pathway (Supplementary Figure S§A). Further-
more, depletion of ETS1 inhibited the HH signalling path-
way, and exhibited the opposite response in Glil and Gli3
expression patterns compared with ETSI1 overexpression
(Figure 6F). These results demonstrated that ETS1 plays a
critically positive role in the HH signalling pathway.

Consistently, SAG-treated ETS1-overexpressing cells ex-
hibited activated HH signalling with a notable increase
in Gli3 accumulation at the cilia tip (Supplementary Fig-
ure S8B, C). Meanwhile, SAG-induced ciliary SMO local-
ization was apparently enhanced in ETSI-overexpressing
cells (Supplementary Figure S8D, E). Conversely, deple-
tion of ETS1 inhibited HH signalling transduction with
impaired Gli3 accumulation at the cilia tip and weakened
SMO localization along the cilia (Figure 6G, H; Supple-
mentary Figure SS8F, G). Therefore, these phenomena fur-
ther confirmed that ETSI is a positive regulator of the
canonical HH signalling pathway. Altogether, our data sup-
port a EVC ciliopathy model in which ETS1 is recruited
to CAAs to stabilize the open chromatin state, thereby
inducing a genome-wide program of expression of cilia
genes related to cilia-associated processes such as signalling
transduction.

ETS1 is sufficient for cilia development in zebrafish larvae

ETS1-driven redistribution of transcriptome profiling in
cilia genes in patients provides an important context for un-
derstanding organ development. Here, we evaluated these
developmental changes in zebrafish, a powerful model sys-
tem for the study of cilia structure, and examined the
changes in cilia formation and subsequent morphological
and physiological effects caused by alterations in ETS1 ex-
pression. A morpholino targeting the ‘AUG’ site of the ets/
transcript was designed and synthesized (Supplementary
Figure S9A). At 72 hours post-fertilization (hpf), ets/ mor-
phants displayed various typical cilia defect phenotypes,
including body curvature (29.1%) and pericardial oedema
(82.6%). Intriguingly, overexpression of ETSI1 also led to
these cilia defect phenotypes, but with lower frequency
(body curvature, 20.8%; pericardial oedema, 43.9%) (Fig-
ure 7A, B). Meanwhile, we performed WISH using a c¢mlic2
probe to examine heart position distribution. In ets/ mor-
phants, 15.2% and 3.1% of embryos displayed middle and
right-sided heart, respectively. In line with the morpho-
genetic phenotype results, ETS1-overexpressing embryos
also displayed left-right asymmetry defects; however, only
3.3% and 0.7% of the control embryos displayed middle and
right-sided heart, respectively (Figure 7C, D). These results
imply that ets/ plays a vital role in determining left-right
patterning. Notably, an increased percentage of truncated
cilia compared with the control group could be detected not
only in ETS1-deficent cells but also in ETS1-overexpressing
cells, although with a lesser effect. Thus, we observed cilia
defect phenotypes—including body curvature, pericardial
oedema and disorder of left-right asymmetry—in both ets/
morphants and ETS1-overexpressing zebrafish. Moreover,
we note that both depletion and overexpression of a protein
called nuclear distribution gene C (NudC) that regulates cil-

iogenesis can lead to the above-mentioned cilia defect phe-
notypes in zebrafish (51), indicating that both excessive and
insufficient expression of cilia-related genes in zebrafish can
result in the occurrence of cilia defect phenotypes, and that
the precise expression of cilia genes is critical for zebrafish
development.

In zebrafish, left-right asymmetry patterning is regulated
by the ciliated organ the KV (52). Hence, we also labelled
the cilia in the KV at the 8-somite stage, measured the length
of the cilia and discovered that those of ets/ morphants
were significantly shorter than those of control embryos
(Figure 7E, F). To validate the specificity of phenotypes in
ets] morphants, we co-injected a mixture of in vitro tran-
scribed ets] mRNA with ets/ morpholino. Notably, all of
the defects caused by ets/ morpholino, including body cur-
vature, pericardial oedema, disruption of left-right asym-
metry, and cilia length defects in the KV, were effectively
rescued by exogenous ets/ mRNA (Figure 7B-F). These re-
sults rule out morpholino-induced toxicity or secondary ef-
fects, and validate the specificity of the phenotypes in ets/
morphants.

Since ETS1 has been shown to have an essential func-
tion in angiogenesis, we speculated that heart pumping ca-
pacity and blood flow would change after ETS1 repression
or overexpression, which may lead to pericardial oedema
in zebrafish (53). Hence, we measured the heart rate in ze-
brafish larvae over a 10 min period and found that the
atrial and ventricular beat rates were robustly reduced in
ets] morphants relative to controls, whereas rescuing ezs/ in
the ets] morphants partially restored the heart rates toward
the levels of the controls (Figure 7G, H). As expected, in
larvae overexpressing etsl, heart rates were decreased rela-
tive to controls (Supplementary Figure S9B, C). These find-
ings suggest that a specific level of ezs/ gene expression is
necessary for heart development. Cardiac morphology is
one of the important indicators to evaluate cardiac func-
tion, which affects systemic blood circulation. To further
address the impact of ETS1 on blood circulation, we quan-
tified the blood flow dynamics by evaluating linear velocity,
blood flow and vessel diameter, and discovered severe vas-
cular stenosis in ets/ morphants and larvae overexpressing
etsl (Figure 71; Supplementary Figure SOD-F). Moreover,
restoring ets/ expression with mRNA in ezs/ morphants
ameliorated the symptoms of vascular stenosis (Figure 71;
Supplementary Figure S9D). This finding explains the heart
pumping defects induced by either ETS1 repression or over-
expression. Swimming is a highly complex behaviour that
involves deeply integrated physiological processes, and or-
gan defects are known to profoundly affect exercise abil-
ity. Therefore, we analysed zebrafish locomotor trajectories
to further assess behavioural changes in response to alter-
ations in ETS1 expression. During a 20 min test, we no-
ticed that the ETS1-suppressed and ETS1-overexpressing
zebrafish had substantially decreased swimming distance
and swimming time relative to control zebrafish, while res-
cue of etsl expression with mRNA in zebrafish with ezs/
knockdown resulted in increased swimming distance and
swimming time relative to zebrafish with ETSI1 repression
(Figure 7J, K; Supplementary Figure S9G, H). In summary,
our results provide evidence that ETSI1 functions as the im-
portant regulator in organ development, the malfunction of
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which negatively affects the fins and heart, in line with the
characteristics of ciliopathies.

DISCUSSION

A myriad of cilia genes involved in cilia formation and func-
tion profoundly affect cilia signalling transduction, lead-
ing to changes in physiological and developmental func-
tions. Deciphering the cilia gene expression program within
complex networks and pathways is crucial for understand-
ing the underlying mechanism of multiorgan-associated cil-
iopathies. Nevertheless, knowledge of the effects of cilia
gene regulation on ciliopathies is currently limited; there-
fore, it is vital to thoroughly characterize the chromatin
state-dependent mechanism for the cilia regulatory net-
work. In this study, we investigated the dramatic remod-
elling of the chromatin state in EVC ciliopathy patients. The
distinct CAAs were activated by a single TF, ETS]1, leading
to further up-regulation of the expression of flanking cilia
genes. We also confirmed aberrant ETS1 activation in EVC
ciliopathy patients, while suppression of the ETS1-induced
open chromatin state collapsed, leading to cilia defects in
both cellular and organismal contexts. These data suggest
the strong likelihood that cilia genes require ETS1-induced
chromatin state alterations as their mechanism for EVC cil-
iopathy pathogenesis; moreover, these findings underscore
the powerful combination of genome-wide epigenetic ap-
proaches with individual molecular studies to uncover pre-
viously unknown variations in rare diseases.

ETS-family TFs have been well characterized in several
types of solid tumours. Although their role in ciliopathies
has not been studied, a recent study attempted to establish
the link between ETS-family TFs and modulation of cilia
gene expression at the tumour-microenvironment (TME)
interface (45). Our findings resolve the question of the
mechanism by which ETS1 drives the redistribution of chro-
matin accessibility, thereby directing the regulatory network
of critical cilia genes in EVC ciliopathy patients, coinciding
with a previous study showing that ETS1 can maintain the
function of cilia by binding to the IFT20 promoter to fa-
cilitate its expression (54). In our study, the ETS1-regulated
ciliary genes can be primarily divided into two groups based
on their effects on cilia: the ciliary positive factors that form
the majority of ETS1-regulated genes, and include WDR34,
RSPHI, CEP41, NEKS, CEPI131 and FUZ, and the ciliary
negative factors that include only a few genes responsible for
ciliary disassembly, such as CDC20 and KDM3A. There-
fore, it is reasonable that the ETS1-overexpressing cells ex-
hibited more elongated cilia than truncated cilia, thus creat-
ing a net positive effect including the slightly increased cilia
formation and activation of HH signalling seen in ETS1-
overexpressing cells, with a different but not completely op-
posite effect on cilia in ETS1-deficient cells. Therefore, un-
like most unidirectional regulation of cilia in single gene
defects, ETS1 demonstrates bidirectional regulation in cilia
structure and function. Notably and consistently, continu-
ously high ETSI expression in EVC ciliopathy patients will
lead to the aberrant activation of cilia genes; however, lack
of ETSI expression leads to failure to open accessible re-
gions that regulate correct expression of cilia genes, imply-
ing the essential role of ETS1 for development.

Usually, polydactyly and bone defects are related to de-
fective HH signalling. Notably, ectopic expression of Shh
in the anterior limb bud also causes the formation of ex-
tra anterior digits (55). Previous studies have reported that
ETS/ETV-family TFs regulate Shh expression at E11.5 dur-
ing the maintenance/expansion phase of Shh expression,
and these studies also indicate that ETS1 activates HH sig-
nalling (56,57). Moreover, a recent study has found that
overexpressed ETV2 can displace the chromatin of limb en-
hancers that ectopically activate Shh signalling and induce
polydactyly (58). Thus, it is reasonable that EVC ciliopa-
thy patients who have enhanced HH signalling induced by
ETS1 overexpression exhibit the symptom of polydactyly.

Additionally, there are now well-supported experi-
mental distinctions between confirmed and suspected
cilia/ciliopathy genes, primary and motile cilia genes, and
cilia genes that encode proteins that are active only within
cilia and those that encode proteins that are active both
within and outside of cilia. In our study, for example, many
of these screened cilia genes function within cilia, such as
CEP131 and CEP41, while others function both within and
outside of cilia, such as FUZ—which governs trafficking of
intraflagellar transport (IFT) proteins from the cytoplasm
to the basal body and then to the ciliary tip (59)—and
KDM3A, which regulates recruitment of IFT proteins into
the cilia by modulating actin dynamics through actin cy-
toskeleton binding (49). Collectively, these results indicate
the comprehensive modulation of the transcriptional pro-
gram of cilia genes by ETSI1.

Apart from ETSI, it is well demonstrated that RFX and
FOXJ1 TFs directly regulate genes for core ciliary com-
ponents. RFX TFs play essential roles in the generation
of both motile and sensory cilia. The RFX proteins acti-
vate core components such as IFT122, IFT172, Dync2lil,
Dnah9 and Dnahll, thereby regulating a series of ciliary
genes that positively regulate cilia formation and function.
Meanwhile, FOXJ1 programs motile cilia by activating a
network of motile cilia genes that promote cilia formation
and function, for different cilia types, in selected cell types
and organisms. However, the TFs of the Forkhead (FOX)
and RFX families either could not be recruited by acces-
sible chromatin regions or were not activated in our TF-
CAAs-—cilia genes axis (Supplementary Figure SI0A-C). In
contrast to RFX proteins and FOXJ1, ETS1 activates two
groups of cilia genes that can positively and negatively mod-
ulate cilia formation and function, leading to bidirectional
phenotypes very different from those generated by the cil-
iogenesis ‘master regulator’ TFs, including RFX proteins
and FOXJ1. Notably, manipulation of ETS1 expression in
different cell types may produce distinct cilia phenotypes,
paralleling species-specific differences in the ability of TFs
such as FOXJ1 to regulate cilia.

Recent research shows that ETS-family TFs can serve
as transcriptional activators and/or repressors according
to gene and context, revealing the complicated multidirec-
tional function of ETS-family TFs in cilia regulation (45).
Whether and to what extent the other ETS TFs function
in cilia modulation, and how these family members pre-
cisely orchestrate cilia formation and function requires fur-
ther elucidation. In addition to the ETS family, the TFs
of other families may also participate in the control of



expression of cilia genes, which will probably further vali-
date the great importance of chromatin dynamics and epi-
genetics in ciliopathies (14,60).

Based on previous findings, the ETS family members are
oncogenic TFs connected to wide-ranging cellular processes
such as self-renewal, DNA damage, metabolism, TME
modulation, dynamic chromatin remodelling and epigenet-
ics (61); furthermore, cilia also take part in these processes.
Recent studies have strengthened the genetic and functional
links between the DNA damage response (DDR) and cil-
iary factors including CEP63, CEP152, CEP164, CEP290,
MCPHI1, NEKS8 and PCNT (62). Additionally, primary
cilium, as a spatially localized platform for various signal
transduction pathways, plays a crucial role in the TME,
since paracellular signalling between tumour cells and other
cells in the TME strongly affects initiation, progression and
therapeutic efficacy in tumours (63). The signal transduc-
tion, mediated by primary cilium, also participates in en-
ergy and steroid metabolism (64), which affects tumour cell
survival. Recently, the function of ETS-family TFs in mod-
ulating cilia gene expression at the TME interface has been
partially elucidated (45). We have demonstrated that ETS1
regulates the expression of cilia genes via dynamic chro-
matin remodelling epigenetics. Combining our results with
the previously reported close relationship among the ETS
family, cilia and tumour formation, it is plausible that the
modulation of ETS1 oncogenic efficacy is accomplished, at
least in part, by primary cilia, which provides new insight
into the mechanism for the oncogenic efficacy of ETS TFs,
which needs further verification.

Moreover, the signalling pathway via primary cilium may
also in turn affect the activity of the ETS TFs, such as FLII.
Meanwhile, Wnt/B-catenin signalling, primarily mediated
by primary cilia, antagonizes the EWS-FLI1-dependent re-
pression of transforming growth factor (TGF)-B receptor
type 2 in Ewing sarcoma cells (65). Therefore, we speculate
that there is a feedback loop between the ETS family and
primary cilia and that this feedback loop is the means by
which cells accomplish the precise regulation of cilia struc-
ture to ensure cilia function.
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