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ABSTRACT 

In this paper, we introduce Gene Knoc kout Infer -
ence (GenKI), a virtual knockout (KO) tool for gene
function prediction using single-cell RNA sequenc-
ing (scRNA-seq) data in the absence of KO sam-
ples when only wild-type (WT) samples are available.
Without using any information from real KO samples,
GenKI is designed to capture shifting patterns in
gene regulation caused by the KO perturbation in an
unsupervised manner and pr o vide a r ob ust and scal-
able framew ork f or gene function studies. To achieve
this goal, GenKI adapts a variational graph autoen-
coder (VGAE) model to learn latent representations
of genes and interactions between genes from the
input WT scRNA-seq data and a derived single-cell
g ene regulator y network (scGRN). The virtual KO
data is then generated by computationally removing
all edges of the KO gene ––the gene to be knocked
out for functional study ––from the scGRN. The differ-
ences between WT and virtual KO data are discerned
by using their corresponding latent parameters de-
rived from the trained VGAE model. Our simulations
show that GenKI accurately approximates the pertur-
bation profiles upon gene KO and outperforms the
state-of-the-art under a series of evaluation condi-
tions. Using publicl y a vailable scRNA-seq data sets,
we demonstrate that GenKI recapitulates discoveries
of real-animal KO experiments and accurately pre-
* To whom correspondence should be addressed. Tel: +1 979 324 1715; Email: yj
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dicts cell type-specific functions of KO genes. Thus,
GenKI pr o vides an in-silico alternative to KO experi-
ments that may partially replace the need for geneti-
cally modified animals or other genetically perturbed
systems. 

GRAPHICAL ABSTRACT 

INTRODUCTION 

Gene perturbation experiments are a proven powerful ap-
proach to elucidate the role of a gene in a biological pro-
cess. Commonly used designs include gene knockout (KO)
experiments with genetically altered animals and CRISPR
gene perturbations. In a KO experiment, the function of
a target gene is inferred by contrasting phenotypes be-
tween KO and wild-type (WT) animals and then identifying
their differences. Often, gene expression profiles serve as a
yang027@tamu.edu 

cids Research. 
ns Attribution License (http: // creati v ecommons.org / licenses / by / 4.0 / ), which 
he original work is properly cited. 

https://orcid.org/0000-0002-4135-5014
https://orcid.org/0000-0002-8081-6725


Nucleic Acids Research, 2023, Vol. 51, No. 13 6579 

q  

c
a
s
i
p
s

c
l
o
p
a
s
s
l
p
p
t
n

8
e
e
t
s
s  

s
c
(
s
r
s
H
o
c
d
i
h
s
n
t
a
m

 

g
(  

t
a
t
t
c
p
d
e
K
f
n
w
o

fi
c
u
l
S
f
t
i
d
r

M

S

T
r
S
1
i
A
d
1
w
F
m
t
i
p
b
f
u
a
r
t
s
r
a
G
t
b
n
n
g
p
o
g
u
i
i
p

P

T
t
f
u
n

uantitati v e phenotype at the molecular le v el ( 1 ). The re-
ent advent of single-cell RNA sequencing (scRNA-seq) ( 2 ) 
llows the transcriptomic information from tens of thou- 
ands of cells to be gathered in parallel, and thus it greatly 

mproves cellular phenotyping resolution. It has become a 

owerful method for molecular phenotyping and compari- 
on in KO experiments. 

Conv entional KO e xperiments, often requiring signifi- 
ant amounts of experimental and animal r esour ces, ar e 
abor-intensi v e and time-consuming ( 3 ). Recently de v el- 
ped techniques such as Perturb-seq ( 4 ) combine CRISPR 

erturbations and scRNA-seq to perform genetic screens, 
llowing gene function to be studied in many cells in a mas- 
i v ely parallel manner. Ne v ertheless, the creation of large- 
cale CRISPR libraries presents a major technical chal- 
enge. For these reasons, computational tools serve as a 

ossib le alternati v e solution to facilitate or guide the ex- 
erimental design through in-silico screening of perturba- 
ion responses. Such a computational tool would reduce the 
eed for experimental measurements. 
Indeed, se v eral such computational tools ( 5– 

 ) have been developed (Table 1 ). With only one 
xception –– scTenifoldKnk ( 8 ), all these tools r equir e 
 xtensi v e input data sets including outcomes of per- 
urbation experiments or data from other modalities. 
cTenifoldKnk is the only protocol that does not r equir e 
uch e xpensi v e input data sets. Instead, it mer ely r equir es
cRNA-seq data from the WT samples as its input and 

onsiders information from the gene regulatory network 

GRN). The working principle of scTenifoldKnk is to 

im ultaneousl y project WT and virtual KO single-cell gene 
egulatory networks (scGRNs) to a joint low-dimensional 
pace and then calculate the projection differences of genes. 
owe v er, the inference of scTenifoldKnk entirely relies 

n the WT scGRN, which is constructed using principal 
omponent (PC) r egr ession from the WT scRNA-seq 

ata. It is known that constructing high-quality scGRNs 
s technically challenging with respect to the presence of 
eterogeneous sources of noise ( 9 ). Also, a fully connected 

cGRN computed by the r egr ession-based method may 

ot correspond to real biological processes ( 10 ). A method 

hat takes full advantage of scRNA-seq expression data 

nd tolerates imperfect scGRN in a robust and unbiased 

anner is still lacking. 
Her e, we pr esent GenKI ( Gen e K O I nference), a virtual

ene KO tool based on a variational graph autoencoder 
VGAE) ( 11 ). GenKI sim ultaneousl y learns latent r epr esen-
ations of scRNA-seq gene expression data of WT samples 
nd the underlying scGRN responsible for observed pheno- 
ypes. The highly compressed representations of genes are 
hen used for the subsequent inference. The scGRN can be 
onstructed using the input gene expression data. GenKI 
ropagates the transcriptomics information in the network 

uring training and compares the WT data (including the 
xpression data matrix and the scGRN) with its virtual 
O counterpart to predict KO-responsi v e genes –– i.e. genes 

unctionally associated with or linked to KO gene. As a de 
ovo inference tool, GenKI identifies KO-responsi v e genes 
ithout requiring prior knowledge of gene regulation or bi- 
logical mechanisms. 
The remainder of this paper is structured as follows: we 
rst present an ov ervie w of the GenKI workflow and then 

ompare its inference performance to se v eral benchmar ks 
sing simula ted da ta. Following these steps, we use pub- 

icly available scRNA-seq data sets (Supplementary Table 
1) to predict KO-responsi v e genes and compare enriched 

unctions of them with those introduced and validated in 

he original studies, to highlight the performance of GenKI 
n real-data applications. Next, we compare GenKI to the 
iffer ential expr ession (DE) anal ysis. Finall y, we study the 
obustness and scalability of GenKI. 

ATERIALS AND METHODS 

imulated data sets and evaluation 

he predefined GRNs were obtained from the GitHub 

epository of SERGIO ( 12 ) https://github.com/PayamDiba/ 
ERGIO . The simulated data sets contained 100, 400, and 

200 genes (all containing 2700 cells), respecti v ely. Edges 
n the predefined GRNs were treated as the ground truth. 
 random classifier that ranks genes by probabilities ran- 
omly drawn from a uniform distribution between 0 and 

, a classifier that ranks genes by the Pearson correlation 

ith the KO gene, and scTenifoldKnk, which ranks genes by 

C (used for the chi-squared test), were included for bench- 
arking purpose. For each data set, we randomly selected a 

arget gene with more than ten edges and virtually knocked 

t out using GenKI and the other three benchmarks inde- 
endently. Each run outputs a gene list with scores assigned 

y each method. Roc auc score and average precision score 
unction from the Python package sklearn (v.1.1.1) were 
sed to compute the Area Under Recei v er Operating Char- 
cteristic (AUROC) and the average precision (AP) at each 

un for each method. We repeated the procedure above ten 

imes for each data set. The simulated BEELINE ( 13 ) data 

ets were downloaded from Zenodo. GSD is the largest cu- 
ated r efer ence data set of BEELINE containing 19 genes 
nd 2000 cells. Its underlying GRN was used to replace the 
RN construction step in this evaluation. Since the ground 

ruth GRN was known, we divided genes into two groups 
ased on their shortest path to the KO gene, with the close 
eighbors group containing all genes within the two-hop 

eighborhood of the KO gene and the distant neighbors 
roup containing all other genes. To compare the inference 
ower of GenKI and scTenifoldKnk, we virtually knocked 

ut each gene iterati v ely and obtained the scores of all the 
enes computed by both methods. For each method, we 
sed the Wilco x on Rank Sum test to quantify the difference 

n scores between the two groups of genes. A lower p- value 
ndicates a larger difference, thus implying greater inference 
ower of the method for detecting KO-responsi v e genes. 

rocessing of real data sets 

he specifics and source of real scRNA-seq data sets used in 

his paper can be found in Supplementary Table S1. We per- 
ormed r egular pr eprocessing for all scRNA-seq data sets 
sing Seurat (v.4.0.2) package ( 14 ). We first performed log 

ormalization using the NormalizeData function. Highly 

https://github.com/PayamDiba/SERGIO
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Table 1. Summary of existing virtual KO methods and feature comparison with GenKI 

Name 
Input data 
r equir ed Method 

Supervised / 
unsupervised Description Reference 

scGen scRNA-seq 
(WT and KO 

samples) 

Transfer learning Supervised Train a variational autoencoder that learns 
to generalize the response of the cells in the 
training set of perturbations 

( 5 ) 

CPA scRNA-seq 
(KO samples) 

Generati v e 
modeling 

Supervised Train an autoencoder with adversarial that 
decomposes the data into a collection of 
embeddings associated with the cell type, 
perturbation, and other external covariates 
to study combinatorial genetic perturbation 

( 6 ) 

CellOracle scRNA-seq and 
scATAC-seq 
(WT sample) 

Graph-based 
modeling 

Unsupervised Simulate gene expressions in response to 
transcription factor (TF) perturbation by 
signal propagation through an inferred gene 
regulatory network 

( 7 ) 

scTenifoldKnk scRNA-seq 
(WT sample) 

Manifold 
alignment 

Unsupervised Sim ultaneousl y project inferred WT and 
virtual KO gene regulatory networks to a 
joint low dimensional space 

( 8 ) 

GenKI scRNA-seq 
(WT sample) 

VGAE Unsupervised Train a VGAE model that learns the latent 
gene r epr esentations of WT sample and 
virtually construct a virtual KO counterpart 
to discern similarity 

This study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

variable genes were selected using the FindVariableFea-
tures function (selection.method = ‘vst’) and by default,
the top 3000 highly variable genes were included in subse-
quent analyses. We then standardized the data by the Scale-
Data function, and the resulting transformed data served
as the gene expression profile for the GenKI input. Cell an-
notations from original studies were retained and used if
provided. 

Gene regulatory network construction 

We constructed scGRNs using the PC r egr ession method
which was first proposed in scTenifoldNet ( 15 ). Let X ∈
R 

p×n r epr esent the scRNA-seq gene expression matrix of
the WT samples, which contained gene expression levels
for p genes in n cells. We used the PC r egr ession method
to build the scGRN denoted with its adjacent matrix A .
Specifically, each time one gene was selected as the response
variable, while the remaining genes served as explanatory
variables. Principal component analysis ( 16 ) was performed
on the e xplanatory variab les, and then we r egr essed the r e-
sponse variable on the first d leading PCs, where d � n .
Next, we transformed the obtained r egr ession coefficients
of the d-leading PCs into the coefficients of the original
e xplanatory variab les, which should reflect the interaction
strengths between the response gene and all other genes. In
the final step, we assembled the coefficients of p r egr ession
models into a p × p adjacency matrix A , where the ( i, j )
entry r epr esents the r egr ession coefficient of the i -th gene
on the j -th gene. Ther efor e, A accumulates the interaction
strength between each pair of genes. 

Note that the output of this PC r egr ession method is a
fully connected scGRN, in which some links between genes
might not correspond to real biological interactions, as in
general, ther e ar e v ery fe w connections between TFs and
genes ( 10 ). Ther efor e, for such an scGRN, we assumed that
the edge is activated if the absolute value of its weight is
greater than a certain threshold, i.e. edges with a greater
weight ar e mor e likely to be the true r egulatory r elationships
between genes than those with a lower weight. The average
absolute w eight betw een TF-target gene pairs constructed
scGRNs was indeed significantly greater than that between
random gene pairs, as described in ( 15 ). Based on these find-
ings, for a particular scGRN, we filtered edges and, by de-
fault, conservati v el y onl y kept the top 15% of edges. A more
thorough evaluation of the cutoff selection can be found in
Supplementary Figure S1, which shows a heatmap of Spear-
man correla tion coef ficients between scores of Kullback–
Leib ler (KL) di v ergence gi v en by GenKI across four differ-
ent cutoffs. Within an optimal range of the cutoff, the rank-
ing results gi v en by GenKI were found to be highly con-
sistent. Howe v er, we contend that extremely conservati v e
choices of the cutoff would overlook potential links. No-
tably, we allow users to modify this default setting to accom-
modate their own biological scenarios. For example, those
who belie v e their gene regulatory networ ks ar e scale-fr ee
are encouraged to use the poweRlaw package ( 17 ) to deter-
mine the best-fit threshold. Next, we converted the scGRN
into an adjacent Boolean matrix as the input requested for
the VGAE model of GenKI. As a result, although obtained
without an y inf ormation on TFs and their targets or knowl-
edge of regulatory elements, these remaining edges could
be deemed biolo gicall y responsi v e. By abuse of notations,
we still denoted this new scGRN as A and we r eferr ed to it
as the thresholded scGRN for later use. Although the filter
step removed potential false positive edges, it inevitably in-
troduced false negati v e findings, i.e. missing some truly con-
nected edges. Ther efor e, we tr eated this thr esholded scGRN
as an incomplete network, and our goal was to reconstruct
an scGRN from this incomplete network to learn the latent
embeddings of nodes, namely, genes in our setting. This can
be interpreted as a transducti v e link prediction task ( 18 ).
Alternati v el y, users can suppl y their own GRN at this step
to replace the PC regression-deri v ed networ k. 

VGAE model 

The VGAE model used in GenKI is similar to the frame-
work described in ( 11 ). It is made up of a two-layer graph
convolutional network (GCN) encoder and an inner prod-
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wher eas differ ent σ values would result in different le v els 
ct decoder. We utilized a two-layer GCN ar chitectur e be- 
ause deeper graph convolutional networks are prone to 

ver-smoothing ( 19 ). Recall that X is the gene expres- 
ion matrix and A is the adjacent matrix, and we denoted 

he normalized adjacent matrix as ˜ A = D 

− 1 
2 A D 

− 1 
2 , where 

D = diag( d 11 , d 22 , . . . , d pp ) is a diagonal matrix with en- 

ries d i i = 

p ∑ 

i = 1 
A i j , where A i j is the ( i, j )-th entry of the ma-

rix A . Then, the two-layer GCN is defined as: 

GCN ( X , A ) = 

˜ A ReLU 

( ˜ A X W 0 
)

W 1 

here ReLU ( x ) = max ( 0 , x ) is the activation function in- 
roduced in the first GCN layer, and W 0 and W 1 are pa- 
ameters of the neural networks. We assumed that the 
ata were generated by certain random processes involv- 

ng an unobserved latent continuous random variable 
Z . Let p( Z ) be the prior distribution of Z , for which 

e chose a bivariate Gaussian distribution for conve- 
ience. For the encoder part, we introduced a recognition 

odel q( Z | X , A ) = 

p ∏ 

i= 1 
q( z i | X , A ) , where q( z i | X , A ) ∼

 ( μi , � i ) , � i = diag( σ 2 
i1 , σ

2 
i2 ) is a diagonal covariance ma- 

rix and 

μ = 

(
μT 

1 , · · · , μT 
p 

)T = GCN μ ( X , A ) , 

l og ( � ) = l og 

((
σ 2 

1 , · · · , σ 2 
p 

)) = GCN σ 2 ( X , A ) , 

here σ 2 
i = [ σ 2 

i1 , σ
2 
i2 ] 

T 
. For the decoder part, we used the in- 

er product to reconstruct the scGRN A by 

P 

(
A i j = A j i = 1 

) = s igmoi d 

(
z T i z j 

)
. 

Here, by abuse of notations, z i is the latent r epr esentation 

f the i th gene. 
For any two distribution functions p and q, let 

K L ( p ‖ q ) = 

∫ p( x ) log 

p( x) 
q( x) dx be the KL di v ergence be-

ween p and q. The objecti v e of the VGAE model is to max-
mize the evidence lower bound (ELBO): 

L = E q ( Z | X , A ) log p ( A | Z ) − β · K L ( q ( Z | X , A ) ‖ p ( Z ) ) , 

here β is an adjustable hyperparameter that balances the 
ndependent constraints and reconstruction accuracy. No- 
ice that here we adapted the loss from beta-VAE ( 20 ) and 

 would r epr esent the standard ELBO when β = 1 . 

yperparameters, metrics and implementation 

e randomly split the edges of a Boolean scGRN into three 
ata sets for training (75%), validation (5%), and testing 

20%). We labeled them as positi v e edges. Equal numbers 
f negati v e edges, composed of a set of fake edges not pre-
ented in the scGRN, were sampled for data balancing pur- 
oses. We used AUROC and AP to evaluate the model per- 

ormance. We e xpected positi v e edges to hav e higher inter-
ction probabilities compared to negati v e edges. Thus, the 
igher value of AP or AUROC would indicate better per- 

ormance of training. To tune the hyperparameters, we per- 
ormed random hyperparameters search of 100 trials by us- 
ng the Tune module from the Python package Ray ( 21 ) 
v.1.13.0). Specificall y, the lo garithm base 10 of hyperpa- 
ameter β was sampled from a uniform distribution from { – 

, –4, . . . , –1 } , the learning rate was sampled from a uniform
istribution from { –4, –3, . . . , –1 } , and the weight decay of
ptimizer was sampled from a uniform distribution from 

 –7, –6, . . . , –3 } . To make our sampled hyperparameters
ore accurate, we multiplied each one by a scale factor 

andomly selected from integers 1 to 9. For each set of 
yperparameters, we evaluated the model performance on 

he validation set and selected the hyperparameter set with 

he best performance based on the metrics AUROC and 

P. Based on our experimental results, we set β of 1E- 
 and weight decay of 9E-4 for all the data sets, and set 
earning rate of 7E-4 for the microglia, lung, intestine data 

et, 5E-3 for the COVID-19 data set. The maximum itera- 
ion number was set to 100, and early stopping was added 

hen AP reached the maximum and began to decrease. 
he Adam optimizer ( 22 ) was used for all the trainings, 
nd Xavier initialization ( 23 ) was used to initialize all the 
eights. 

etermination of the rank of KO-responsive genes 

fter training the VGAE model using the WT data, for each 

xed gene g, we obtained its latent distribution N ( ̂  μg , ˆ σ 2 
g ), 

here ˆ μg and ˆ σ 2 
g were latent mean and covariance fitted by 

he VGAE model. We next fed the trained VGAE model 
ith the virtual KO data and obtained the latent distribu- 

ion of the g-th gene for the KO samples. Then, we calcu- 
ated the KL di v ergence between these two normal distribu- 
ions. The procedure was repeated for all genes. The top 5% 

f genes ranked by the KL di v ergence were preserved. In- 
tead of using the raw ranks, we proposed a bagging-based 

ethod to improve the stability and accuracy of our infer- 
nce. Specifically, each time we permutated the cell order 
f the WT gene expression matrix and obtained its corre- 
ponding virtual KO data. Without training a new model, 
e fed this pair of permutated WT and virtual KO data 

nto our fitted VGAE model, calculated the KL di v ergence 
alue for each gene, and bagged the top 5% of genes. We 
 epeated this procedur e 1000 times and compiled the genes 
hich were bagged more than 95% times as KO-responsi v e 
enes. 

enchmarking GenKI’s tolerance to random noise in gene ex- 
ression profiles 

o show the robustness of our method, we generated ran- 
om noise in the log space, added it to gene expression 

rofiles, and evaluated the training performance of GenKI. 
pecifically, for gene i in cell j , the regenerated expression 

 

′ 
i, j was defined as: 

x ′ i, j 

x i, j 
= 2 

γ

here γ ∼ N (0 , σ 2 ) and x i, j represents the original expres- 
ion. The fold change γ was used to approximate the noise 
e v el, which followed the normal distribution N (0 , σ 2 ) , 
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of random noise. We conducted 30 independent runs with
random splits of the data set at different noise le v els. 

Gene function annotation and function enrichment tests 

Enrichr ( 24 ) with default setting was used for gene func-
tional enrichment analyses. The pr otein-pr otein interaction
enrichment tests were performed using the web tool of the
STRING database ( 25 ). In the STRING network plots, iso-
lated nodes were removed, and only edges labeled with con-
fidence greater than the medium le v el were retrie v ed and
shown. Enrichment p- values, which indicate whether in-
put proteins have more interactions among themselves than
what would be expected for a random set of protein-coding
genes of the same size and degree distribution drawn from
the genome, were computed with the default setting. 

Prediction of KO gene’s expression from WT cells with linear
r egr ession 

For the microglia data set, a simple multivariate linear re-
gression model was applied to evaluate the relationship be-
tween the KO gene Trem2 and other KO-responsi v e genes.
Specificall y, micro glia cells’ Trem2 expression profile was
used as the response variable and the expression profiles of
other genes as explanatory variables. The adjusted R 

2 (co-
ef ficient of determina tion) was used to quantify how much
variance of the KO gene can be explained by the other KO-
responsi v e genes. In comparison, an equal number of the
KO-responsi v e genes were randomly sampled as explana-
tory variables, and their R 

2 was also calculated. This evalu-
a tion was repea ted 30 times with different splits of the data
set and random gene selections. 

Differential gene expression analysis 

DE analysis was performed using Scanpy ( 26 )(v.1.9.1) func-
tion r ank g enes gr oups with the Wilco x on rank-sum test.
All parameters were set to default. Adjusted p- values were
obtained after the Benjamini–Hochberg adjustment ( 27 ).
DE genes were determined based on the condition of ad-
justed p- value < 0.05 and absolute log2(fold change) > 0.25.
DE ranks of the DE genes were determined based on their
adjusted p- value. To examine the expression level changes,
for each data set, the KO-responsi v e genes and an equal
number of randomly chosen unperturbed genes were used
and their fold change (FC) of WT / KO was calculated. The
absolute log2-transformed FC values of the KO-responsi v e
genes and the unperturbed genes were used to perform the
one-sided t-test. 

RESULTS 

The GenKI fr amew ork 

The frame wor k of GenKI is depicted in Figure 1 . The
pipeline starts with a single input, that is, the scRNA-seq
gene expression matrix from WT samples of interest. For
each virtual KO application, GenKI first constructs an sc-
GRN from the WT gene expression data. The WT gene ex-
pression da ta ma trix and the constructed WT scGRN are
then used as input of WT data to train a VGAE model,
which is a two-layer GCN encoder with an inner product
decoder. The latent embedding of each node is defined to
follow a bivariate Gaussian distribution. After training, the
latent r epr esentations of genes under the WT setting are col-
lected and the model with its weights is transferred. Next, to
generate virtual KO data, the WT data is ‘copied’. From the
WT scGRN copy, the KO gene –– i.e. the gene being knocked
out for functional study –– is virtually deleted. The deletion
is achie v ed by setting the weight of all edges from and to the
KO gene to zero. After the virtual deletion, the virtual KO
da ta is genera ted, while the original WT scGRN remains
untouched. The transferred model is fed with the virtual KO
data to obtain the latent r epr esentations of genes under the
KO setting. Two parameters, mean and covariance of each
gene’s latent distribution from the WT and KO settings are
then collected to calculate the KL di v ergence between these
two distributions. The higher the KL di v ergence value of
a gene, the greater the impact of the KO on the gene. Fi-
nally, a bagging-based method is used to determine genes
that tend to be significantly perturbed by the deletion of the
KO gene. The enriched functions of these significantly per-
turbed genes (i.e. KO-responsi v e genes) are used to gi v e pre-
diction of the KO gene functions. 

Performance of GenKI with simulated data 

We used simula ted da ta to evaluate the performance of our
method (Figure 2 A). To do so, we generated scRNA-seq
data sets of different sizes (2700 cells with 200, 400, and
1200 genes, respecti v ely) using single-cell e xpression simu-
lator SER GIO ( 12 ). SER GIO’ s simulations were guided by
pr edefined GRNs; ther efor e, the sim ulated scRN A-seq data
sets had their underlying GRNs. Knowing these ground
truths GRNs facilitated the performance evaluation of vir-
tual KO methods, as genes linked with the KO gene were
supposed to be perturbed by the KO and more likely to be
KO-responsi v e genes. A good virtual KO tool should prefer-
ably identify those genes linked with the KO gene in the
gi v en GRN. For each of the simulated data sets, we applied
GenKI and three other benchmarking methods, including
scTenifoldKnk, with the same KO genes being knocked
out (Materials and Methods). All the methods produced a
ranked list of KO-responsi v e genes. Figure 2 B shows the lev-
els of AUROC for GenKI and other benchmarking meth-
ods. Figure 2 C shows the le v els of AP resulted from the
same KO genes. Three additional ROC curves as examples
of virtual KO experiments performed by GenKI and scTeni-
f oldKnk f or each data set ar e pr esented in Supplementary
Figure S2. We found that GenKI outperformed all the other
benchmark methods, including scTenifoldKnk, across all
the data sets evaluated. We belie v e this is because GenKI in-
corpora tes informa tion from both the gene expression ma-
trix and GRN. 

To demonstrate that GenKI learns higher-order neigh-
borhood information from the underlying GRN through
the VGAE model, which contributes to its greater perfor-
mance than scTenifoldKnk, we systematically knocked out
each of the 19 genes in the GSD network of BEELINE
( 13 ). In each virtual KO experiment, we obtained the per-
turbation scores of all genes. For a gi v en KO gene, we used
the Wilco x on rank sum test to compare the difference in
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Figure 1. The pipeline contains se v en steps: ( 1 ) construction of WT scGRN, ( 2 ) training VGAE model, ( 3 ) transfer the trained VGAE model, ( 4 ) construc- 
tion of virtual KO data, ( 5 ) latent embeddings of WT and virtual KO data, ( 6 ) calculation of KL di v ergence, and ( 7 ) identification of KO-responsi v e genes 
for function annotation and analysis. 
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erturbation scores between the KO gene’s two-hop neigh- 
or genes and all the other distant genes (Materials and 

ethods). A smaller p- value indicates a greater inference 
ower of the method for dif ferentia tion between these two 

roups. It is rational to expect that close neighbor genes 
ave high perturbation scor es. Compar ed to scTenifold- 
nk, as expected, p- values obtained in GenKI are signif- 

cantly lower (Supplementary Figure S3, Wilcoxon Rank 

um test, p- value < 0.05). This is attributed to manifold 

lignment in scTenifoldKnk only keeps track of the similar- 
ties between genes in the first-order neighborhood of GRN, 
hile GenKI’s two-layer GCN looks at similarities between 

enes up to the second-order neighborhood. This simula- 
ion study using the BEELINE network data also demon- 
tra ted tha t GenKI can take user input GRN as an optional 
ather than reconstructing GRN by its own. 

eal-data GenKI analysis recapitulates findings of the trem2 

O experiment 

enKI, as a virtual KO tool, is expected to recapitulate 
he o verall disco veries of real KO experiments. To vali- 
ate its performance, we applied GenKI to se v eral pub- 

icl y available scRN A-seq data sets. The first data set was 
rom the KO experiment conducted by Nugent et al. ( 28 ), 
n which scRNA-seq was performed with microglial cells 
solated from Trem2 

+ / + and Tr em2 

−/ − mice (Figur e 3 A). 
he study reported that Tr em2 upr egulates apolipoprotein 

 (Apoe) and other genes involved in cholesterol trans- 
ort and metabolism, causing robust intracellular accu- 
ulation of a storage form of cholesterol upon chronic 
hagocytic activities ( 28 ). Trem2 is also known to regu- 

ate the expression of genes associated with cell damage 
esponse, lysosome and phagosome function, Alzheimer’s 
isease, and oxidati v e phosphorylation ( 29 ). With this data 

et, we used the WT gene expression profile of 648 mi- 
roglial cells as the input for GenKI and fed it along 

ith the constructed scGRN to the VGAE model of 
enKI. 
We first evaluated the robustness of our model before per- 

orming prediction. The model robustness evaluation was 
erformed to test the tolerance of the model by artificially 

dding different le v els of random noise to the WT gene ex- 
ression profile (Materials and Methods). A robust model 
ould correctl y ca pture the latent embeddings of genes, and 

hus more confidence for the inference regarding differences 
etween WT and virtual K O samples. A UROC and AP 

ere used to evaluate the reconstruction performance of the 
odel. As shown in Supplementary Figure S4, our model 
as not compromised by high le v els of noise ( σ = 1.5), 

ndicating the robustness of GenKI to the technical noise 
ha t na turall y existed in the scRN A-seq data. We observed 

oorer performance under the conditions of very high levels 
f noise ( σ ≥ 3), which was expected as highly noisy gene 
xpression profiles would mislead the training, and thus, 
he model could not be generalized to the testing data set. 
hese results also indicated the lower bound of noiseless 
ene expression information needed to correctly reconstruct 
he scGRN and e v entually infer the latent embeddings of 
enes. 
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Figure 2. Three methods were included in the comparison including scTenifoldKnk and two baseline predictors, which are based on random rankings and 
Pearson’s corr elation, r especti v ely (Materials and Methods). ( A ) The procedure of assessment of virtual KO tools using simula ted da ta sets. ( B ) The le v els 
of AUROC of virtual KO experiments using three simulated SERGIO data sets. ( C ) The le v els of AP of virtual KO experiments using three simulated 
SERGIO data sets. Size r epr esents the number of genes in each data set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After the model robustness evaluation, we then trained
the model and performed the virtual KO experiment.
Specificall y, we virtuall y knocked out Tr em2 by r emoving
all its edges in the scGRN of microglial cells and compared
profiles of genes in the latent space between WT and vir-
tual KO samples using KL di v ergence (Materials and Meth-
ods). The results of the analysis showed that 20 genes, in-
cluding Trem2 itself, were detected as Trem2-KO respon-
si v e genes (Supplementary Table S2). Trem2 was ranked at
the top of the KO-responsi v e genes, followed by Ctsd, the
gene associated with lysosomal dysfunction ( 30 ), and Apoe,
the key lipid transporter gene expressed in both the cen-
tral nervous system and the periphery ( 31 ). Pathway enrich-
ment analysis based on Enrichr ( 24 ) showed that Trem2-KO
responsi v e genes were enriched with genes associated with
inter leukin-2 signaling pathw ay , lysosome , and Alzheimer’s
disease (Supplementary Table S3). Gene ontology (GO) en-
richment analysis further ranked se v eral enriched terms, in-
cluding macr ophag e activation involved in immune r esponse
and lipoprotein metabolic process , on the top (Figure 3 B and
Supplementary Table S4). By modulating the macrophage
transcriptome in adipose tissue, Trem2 was found to regu-
late blood cholesterol metabolism in obese mice, thereby in-
dicating a connection between Trem2 and lipid metabolism
( 32 ). The overall results of our enrichment analyses re-
vealed these functions of Trem2 with consistency. In addi-
tion, the Tr em2-KO r esponsi v e genes were found to be bio-
lo gicall y connected, as shown by the STRING interaction
network ( 25 ) (Figure 3 C, p -value < 0.01, STRING inter-
action enrichment test). Note that links in STRING inter-
action networks r epr esent functional associations between
genes. These associations include direct regulations as well
as indirect interactions between genes or their products.
Thus, our results suggest abundant functional connectivity
between KO-responsi v e genes. 

Ne xt, we inv estigated whether Trem2’s measurab le gene
expression was intrinsically interpreted by other KO-
responsi v e genes. Indeed, the variance of Trem2 expression
across cells could be substantially explained by the remain-
der of the KO-responsi v e genes (Figure 3 D). We fitted a
multi variab le linear r egr ession model by setting Trem2 as
the response variable (Materials and Methods) and found
that when using KO-responsi v e genes as explanatory vari-
ables, the adjusted R 

2 of the model was significantly higher
than when using an equal number of randomly selected
genes as e xplanatory variab les ( p- value < 0.01, one-sided
t-test). This finding suggests the KO gene and its KO-
responsi v e genes predicated by GenKI tend to be transcrip-
tionally associated. 

Finally, w e show ed that one could not simply obtain
the ranked gene list inferred by GenKI to identify KO-
responsi v e genes using na ̈ıve network analysis metrics. We
presented that, as an example, the KO-responsi v e genes
could not be simply inferred either from ranking their gene
expression or edge weight associated with the KO gene
Trem2 in the inferred scGRN (Supplementary Figure S5).
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Figure 3. Tr em2-KO r esponsi v e genes inferred by GenKI. ( A ) Illustration of Trem2-KO experiment genera ting the microglia da ta set. ( B ) GO terms 
significantly enriched in functions of Tr em2-KO r esponsi v e genes. The –log 10 -transformed adjusted p- value indicates the strength of enrichment for each 
term. ( C ) STRING network of Tr em2-KO r esponsi v e genes. Edge thickness indicates the strength of data support. ( D ) Adjusted R 

2 score of the regression 
of e xpression le v els by setting the Tr em2 as a r esponse variable and other KO-r esponsi v e genes as e xplanatory variab les, compared to that of randomly 
selected genes as the explanatory variables. 
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he GenKI model nonlinearly learns both gene expression 

nd edge weight information and infers from compressed 

mbeddings of genes that it has learned. Thus, it ranks and 

nfers the perturbed genes in a more comprehensi v e way 

han ranking methods based on any single observable prop- 
rty. 

Collecti v ely, our results shed light on Tr em2-r elated func- 
ions by annotating the perturbed genes following its dele- 
ion. We showed that the inferred genes were functionally 

onnected and, more importantly, predicted functions were 
onsistent with those reported in the Trem2 studies. 

eal-data GenKI analysis recapitulates findings of the nkx2- 
 KO experiment 

K homeobox 2–1 (Nkx2-1) is highly expressed in lung ep- 
thelial cells and plays a crucial role in alveolar type 1 (AT1) 
ell de v elopment and maintenance ( 33 ). We collected the 
econd scRNA-seq data from an in vivo KO experiment per- 
ormed with lung epithelial cells of AT1 isolated from WT 

nd Nkx2-1 

−/ − mice. The study reported that the Nkx2-1 

nocked-out AT1 cells lost their characteristics and abnor- 
ally turned into gastrointestinal fate ( 34 ). The study con- 

luded that without Nkx2-1, de v eloping AT1 cells lose three 
efining features –– molecular mar kers, e xpansi v e morphol- 
gy, and cellular quiescence –– leading to alveolar simplifi- 
ation and lethality. 

With this data set, we used the WT gene expression pro- 
le of 624 AT1 cells as the input for GenKI and virtu- 
lly knocked out Nkx2-1 following the methods described 

bove. The GenKI analysis discovered 82 KO-responsi v e 
enes (Supplementary Table S5). The KO gene, Nkx2-1, 
opped the gene list, followed by 13 marker genes of AT1 

nd AT2 cells offered by PanglaoDB ( 35 ), consistent with 

heir downregulation in the Nkx2-1 mutant cells from the 
ulk RNA-seq experiment introduced in the original study. 
r evious r esear ch ( 36–39 ) discover ed that Nkx2-1 binds to a
roup of AT1 cell-specific genes that regulate the cytoskele- 
on, membrane composition, and extracellular matrix. We 
ound that Pdlim1, Clic5, Tuba1a, Krt8, Actn4, and Clu, 
hich encode cytoplasmic proteins associated with the cy- 

oskeleton, were highly ranked in our list. Ctsh, a gene in- 
olved in epithelial tube branching and lung morphogenesis 
 40 ), and a great number of genes related to membrane com- 
osition, such as Anxa1, were also observed among the KO- 
esponsi v e genes. Two other significant genes, Napsa and 

ftpc, collaborate with Ctsh to perform functions related 

o the collagen-containing extracellular matrix and alveo- 
ar lamellar body. Cldn33, Cldn7, and Epcam, which were 
hown to be involved in the apical junction complex ( 41 ), 
r e in agr eement with the observa tion tha t mutant AT1 cells
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Figure 4. Nkx2-1-KO responsi v e genes inferred by GenKI. ( A ) GO terms significantly enriched in functions of Nkx2-1-KO responsi v e genes. The -log10- 
transformed adjusted p- value indicates the strength of enrichment for each term. ( B ) STRING network consists of Nkx2-1-KO responsi v e genes. The 
zoomed inset demonstrates a subnetwork module containing the KO gene. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

form dense micro villi-lik e structures a picall y concluded in
the original study. 

GO enrichment analysis indicates these genes were en-
riched for functional categories led by surfactant homeosta-
sis and positive regulation of cell population proliferation
(Figure 4 A, Supplementary Table S6), suggesting the role of
Nkx2-1 in regulating surfactant production and suppress-
ing AT1 cell proliferation validated in the study. HDAC3-
dependent TGF-beta signaling is r equir ed for proper ep-
ithelium expansion and AT1 cell spacing ( 42 , 43 ), disrup-
tion of which significantly perturbed 13 genes from the list
related to TGF-beta regulation of extracellular matrix . Ad-
ditionally, due to mutant cells undergoing apoptosis, which
was validated by staining in the original study, a few terms
indicating the apoptotic process were observed. Many other
GO terms, which are significant but not shown in Figure 4 A,
such as epithelial tube branching involved in lung morphogen-
esis and epithelial cell morphogenesis demonstrate the con-
clusion that Nkx2-1 defines the cell morphology of de v elop-
ing AT1 cells. The STRING interaction network of these 82
KO-responsi v e genes is shown in Figure 4 B, suggesting that
they tend to be biolo gicall y connected with a closely related
functional relationship ( p- value < 0.01, STRING interac-
tion enrichment test). 

Real-data GenKI analysis recapitulates findings of the hnf4a-
smad4 double KO experiment 

Using two real scRNA-seq datasets in which a single KO
gene was knocked out, we have demonstrated the gen-
eral performance of GenKI. Next, we investigated whether
GenKI is able to virtually predict the effects of double
K O (DK O). To accomplish this, we obtained a scRNA-seq
data set performed with enterocytes isolated from WT and
Hnf4a 

KO -Smad4 

KO mice. The study reported that Smad4
and Hnf4 work together in a feed-forward loop to acti-
vate one another’s expression and co-bind to dif ferentia tion
gene r egulatory r egions. This feed-forward r egulatory mod-
ule supports and maintains enterocyte cell identity. Loss of
this regulatory loop could impair enterocyte dif ferentia tion
and destabilize enterocyte identity. This intersection of sig-
naling and transcriptional regulation provides a frame wor k
for understanding the cellular plasticity of the regeneratable
tissue ( 44 ). 
In this experiment, we used the WT gene expression pro-
file of 502 enterocytes as the input for GenKI and virtu-
ally knocked out Hnf4a and Smad4 simultaneously. 14 KO-
responsi v e genes were reported by GenKI (Supplementary
Table S7). The two KO genes, Hnf4a and Smad4, topped
the gene list, followed by regenerating islet-deri v ed 1 (Reg1),
a regulator of cell growth that is r equir ed to generate and
maintain the villous structure of the small intestine ( 45 ).
Hnf4a regulates intestinal epithelium homeostasis and in-
testinal absorption of dietary lipids ( 46 ). Loss of this gene
is likely to disrupt glucose metabolism, which is regulated
by intestinal Reg3b ( 47 ), another significant gene. Also in-
cluded was Gcg, a gene that may modulate gastric acid se-
cretion and gastr o-pylor o-duodenal activity ( 48 ). 

Figure 5 B depicts the STRING interaction network of
these KO-responsi v e genes. Despite the networ k being split
into two parts under the default setting, we found two
disconnected genes, Dmbt1 and Gsta1, were indeed func-
tionall y connected –– GO enrichment anal ysis indica tes tha t
these two genes were enriched for epithelium cell differenti-
ation (Figure 5 A, Supplementary Table S8), indicating the
loss of enterocytes dif ferentia tion after the DKO measure
discovered in the original study. Thus, these genes are sta-
tistically ( p- value < 0.01, STRING interaction enrichment
test) and biolo gicall y linked. Other significant GO terms,
such as negative regulation of cell growth and carbohydrate
homeostasis correlated with results of the enterocytes study,
have also been illustrated in our anal ysis. To gether, this vir-
tual DKO experiment demonstrates that perturbation ef-
fects from multiple KO genes are nonlinearly accumulable
and can be recapitulated by GenKI. 

Ar e KO-r esponsive genes mor e likely to be differ entially ex-
pressed? 

We next set out to answer the following question: do KO-
responsi v e genes e xhibit differential e xpression? We first
analyzed the expression level changes of predicted KO-
responsi v e genes by comparing them to unperturbed genes
across data sets (Materials and Methods). We discovered
that the KO-responsi v e genes predicted by GenKI tend to
have greater absolute FC values than unperturbed genes
(Supplementary Figure S6, p- value < 0.05, one-sided t -test).
Thus, we came to the conclusion that KO-responsi v e genes
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Figure 5. Hnf4a & Smad4-KO responsi v e genes inferred by GenKI. ( A ) GO terms significantly enriched in functions of inferred Hnf4a-Smad4-KO respon- 
si v e genes. The –log 10 -transformed p- value indicates the strength of enrichment for each term. ( B ) STRING subnetwork consists of Hnf4a-Smad4-KO 

responsi v e genes. 

p  

p

D
g
e
g
T
a
w

i
A
l
S  

l
g
t
b
a
g
i
D
r
C
I  

N
t
o
a
F
(
b
t
T
g
d
m
r  

t

g
t

r
m
i
g  

i  

b
i

m
a
t
d
(
a
t
a
s
g
D
o
n
d
t
e
t
n
o
o
o
r
G
w
t  

r
g

R
t

A
i
d
t

r edicted by GenKI ar e mor e likely to be differentially ex-
ressed. 
Next we showed that GenKI analysis is different from the 
E analysis: KO-responsi v e genes are not necessarily DE 

enes. We examined this by comparing the real KO data of 
ach data set to their WT, where 126, 1129 and 1215 DE 

enes wer e identified, r especti v ely (Materials and Methods). 
he overlap between the predicted KO-responsi v e genes 
nd the top-ranked 50 DE genes in each data set is shown 

ith a Venn diagram in Figure 6 left panel. 
The eight overlapping genes of the microglia data set 

ncludes Trem2 and other lipoproteins-forming genes like 
poe (Figure 6 A, left). The 17 intersection genes of the 

ung data set contain Nkx2-1, the pulmonary surfactant 
ttpc and se v eral A T1 and A T2 cell markers (Figure 6 B,

eft). Thus, GenKI could be used to predict some of the DE 

enes. In addition, GenKI identified KO-responsi v e genes 
hat are not ranked highly by the DE method. By using a 

arcode enrichment plot (Figure 6 , right panel), we were 
ble to visualize the exact locations of the KO-responsi v e 
enes across the DE ranks, with each black stick denot- 
ng a ‘hit’ of the KO-responsi v e genes. H2-Aa, a recognized 

E gene but not ranked highly (82nd shown in Figure 6 A, 
ight), is known to function with other genes such as Cd74, 
tsb, and Ctsd in histocompatibility complex (MHC) class 

I presentation ( 49 ). Na psa, w hich functions to gether with
kx2-1 and Ctsh in the processing of pneumocyte surfac- 

ant precursors, was likely to be underestimated (763rd, out 
f scope in Figure 6 B, right). The double KO genes Hnf4a 

nd Smad4, which were not included in the intersection of 
igure 6 C left, weakly ranked 108th and 235th, respecti v ely 

Figure 6 C, right). These perturbed genes were prioritized 

y GenKI, whereas the DE analysis did not. GenKI fur- 
her identified KO-responsi v e genes that are not DE genes. 
hese genes are likely to be at least as important as the DE 

enes, if not more. For example, concerning the microglia 

ata set, Ctsd is one leading gene involved in cholesterol 
etabolism ( 50 ), and Cx3cr1 and Tyrobp play an important 

 ole in macr ophage activation ( 51–53 ). All of them were not
he DE genes. 

Do DE genes appear more adjacent to KO-responsi v e 
enes in a scGRN? To answer this question, we performed 

he STRING network analysis by combining the top- 
anked DE genes with the KO-responsi v e genes using the 
icroglia data set as an example. The outcome is depicted 

n Supplementary Figure S7, showing that 23 out of 42 DE 

enes ar e dir ectly or indir ectly linked to the KO genes. That
s to say, in this gi v en case, more than half of DE genes might
e functionally involved in the perturbed KO gene network 

dentified by GenKI. 
Utilizing DE and GenKI analyses in a complementary 

anner might be a good idea. To illustrate our point, we 
pplied se v en different DE analysis methods and settings 
o the lung data and summarized the number of DE genes 
etected and their intersection with GenKI-identified genes 
Supplementary Table S9). We found that the results of DE 

nalysis were largely depend on what method was selected 

o use and what fold-change and p- value cutoffs were set, 
nd the functional interpretation of the DE analysis re- 
ults was also depended whether up- and down-regulated 

enes are pooled together. In general, we found different 
E methods with varying model assumptions and thresh- 

lds could not converge to a consensus set of DE genes. The 
umber of DE genes and their rankings changed greatly 

epending on many technical factors as mentioned. Fur- 
hermore, most DE methods with default settings produce 
 xcessi v e numbers of DE genes, making downstream func- 
ional enrichment analysis difficult and obscuring true sig- 
als caused by the perturbation itself to be detected. GenKI, 
n the other hand, as a method independent of DE meth- 
ds, provides additional evidence for gene functions. Most 
f GenKI’s KO-responsi v e genes ov erlapped with DE genes 
egardless of the DE method. With the default setting, 
enKI produced fewer significant genes than DE methods, 
hich may improve the interpretability of gene function. In 

his sense, we are not de v eloping an alternati v e to DE, but
ather a complementary technique that produces more tar- 
eted results. 

eal-data GenKI analysis predicts function of key transcrip- 
ional factor ST A T1 

bove we have validated GenKI performance by compar- 
ng the inference results to DE genes using three scRNA-seq 

ata sets that all included WT and KO groups. We ques- 
ioned whether GenKI is able to reveal gene functions of 
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Figure 6. Venn diagrams and barcode enrichment plots showing the intersection and differences between the KO responsi v e genes gi v en by GenKI and 
DE genes. Venn diagram and barcode enrichment plot of ( A ) microglia data set, ( B ) lung data set and ( C ) intestine data set. All the numbers of overlapped 
genes were significantly greater than random expectations ( p- value < 10E-05, hypergeometric test). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

any target gene from a standalone WT scRNA-seq data set
without pairing it with a KO counterpart, which should be a
mor e common occurr ence when using virtual KO tools. We
obtained a data set from a study of 19 patients with se v ere
coronavirus disease 2019 (COVID-19) ( 54 ). It contains 8920
cells collected from nasopharyngeal and bronchial samples.
The study found that epithelial cells of COVID-19 patients
showed an average three-fold increase in expression of the
SARS-CoV-2 entry receptor ACE2, and signal transducer
and activator of transcription 1 (STAT1), a central tran-
scription factor of the interferon response, was among the
top predictors for ACE2 e xpression. Pre vious research also
shows that STAT1 is critical for virus clearance and disease
resolution, and STAT1-KO mice have impaired interferon
gamma (IFNG) signaling ( 55 ). In this virtual KO exper-
iment, we focused on a subpopulation of pulmonary ep-
ithelial cells dif ferentia ting from imma ture secretory cells
to ciliated cells. The original study demonstrated an alter-
nati v e differentiation pathway leading from immature se-
cr etory cells dir ectly into ciliated cells mediated by these
IFNG-responsi v e epithelial cells, suggesting that this direct
dif ferentia tion pa thway is dependent on the interferon re-
sponse ( 54 ). 
We virtually knocked out STAT1 in these epithelial cells.
Firstly, we validated the robustness of our model by arti-
ficially adding different le v els of random noise to the gene
expression profile (Supplementary Figure S8). The GenKI
analysis identified 28 STAT1-KO responsi v e genes (Supple-
mentary Table S10). STAT1 was ranked at the top, followed
by three human leukocyte antigen (HLA) genes (HLA-
DRA, HLA-DRB1, HLA-DPA1), which are known to en-
code Class II major histocompatibility complex (class II
MHC). Class II MHC, which ar e r eported to be highly ex-
pressed only in antigen-presenting cells (APC), is induced
in other cell types as well by inflammation or IFNG ( 56 ).
Mor eover, lysosomes ar e r equir ed for lysis of the protein
into peptides for class II MHC presentation to the immune
cells ( 57 ). In our inferred gene list, the lysosome-related
genes CTSB, CTSD, and CSTB were included, and were re-
lated to the antigen-presenting process. Previous research
indica tes tha t the nuclear factor- �B (NF- �B) can be acti-
v ated b y IFNG ( 58 ). This is consistent with genes in the list
belie v ed to participate in NF- �B-related pathways and in-
flammation. For example, ANXA1 is reported to have anti-
inflammation activity in lung endothelial cells and is able
to pre v ent lung fibrosis ( 59 ). GPX1 participates in the NF-
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Figure 7. STAT1-KO responsi v e genes inferred by GenKI. ( A ) GO terms significantly enriched in functions of STAT1-KO responsi v e genes. The –log 10 - 
transformed adjusted p- value indicates the strength of enrichment for each term. ( B ) STRING network consists of STAT1-KO responsive genes. 
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B pathway and is crucial for respiratory virus infection 

 60 ). S100 family proteins are well-characterized for their 
unction in inflammation and innate immunity ( 61 ). Ad- 
itionally, S100 proteins are damage-associated molecular 
a tterns (DAMP) tha t promote inflamma tion by binding 

o the pattern-recognition protein (PRR) ( 62 ). HSPB1 and 

SPB5 belonging to DAMP are also listed. 
The result of GO enrichment analysis is presented in 

igure 7 A and Supplementary Table S11. The neutrophil- 
ela ted pa thways were ranked at the very top in the en-
ichment analysis, suggesting the communication between 

RC and neutrophils, which is in agreement with the find- 
ng of the original study ( 54 ). The interferon-gamma, class 
I MHC antigen-presenting, NF- �B , and inna te immunity- 
ela ted pa thways were also detected by the enrichment anal- 
sis. Thus, these results strongly suggest that the GenKI is 
ble to accurately predict the potential perturbed genes and 

heir shared functions. We further analyzed 28 genes using 

TRING to understand their interaction (Figure 7 B). The 
esulting subnetwork, which contains significantly more in- 
eractions than expected ( p- value < 0.01, STRING inter- 
ction enrichment test), again suggests that these genes 
re closely connected due to their shared biological func- 
ions. This virtual KO study demonstrates that GenKI 
an r eliably pr edict gene functions and infer the molecu- 
ar phenotypic consequences of genes of interest validated 

y previous studies without the need for an actual KO 

xperiment. 

enKI is robust and scalable 

o assess the robustness of GenKI inference, we collected 

cRNA-seq data ( 63 ) from mouse neurons with Rett syn- 
rome (RTT), a se v ere neurode v elopmental disor der. Mu- 
ations in Mecp2, a transcriptional r epr essor r equir ed to 

aintain normal neuronal functions, are known to cause 
TT ( 64 , 65 ). This data set contains two replicates with
054 and 2156 neurons, respecti v el y. We independentl y ana- 
yzed these two replicates with GenKI, in which we virtually 

nocked out the same KO gene Mecp2. Gi v en the high sim- 
larity of these two biological replicates, GenKI would be 
obust if it generated roughly equivalent gene ranks across 
hem. Indeed, we found high consistency between the rank- 
ngs of the two reported rank lists (Spearman’s correlation 

oefficient � = 0.82). 
Finally, we evaluated the computation efficiency of 
enKI. Supplementary Figure S9 shows the results of the 

nalysis, comparing the total running time with respect to 

ifferent sizes of input scRNA-seq data sets. The running 

ime for GenKI consists of scGRN construction, training, 
nd inference. We simulated four random data sets at dif- 
erent scales for this comparison. Without using GPUs, 
enKI exhibited a 2.8- to 4.9-fold faster running speed than 

cTenifoldKnk tested on equi valent har dware. GenKI is e x- 
ected to run e v en faster by enab ling the fast GPU imple-
entation optimized by PyTorch Geometric ( 66 ). 

ISCUSSION 

n this study, we showcased the functionality and perfor- 
ance of GenKI in virtual KO experiments. We first eval- 

ated the inference performance of GenKI using simulated 

ata sets (SERGIO and BEELINE). Next, we used scRNA- 
eq data sets generated in real KO experiments to show that 
enKI could predict gene functions by identifying and an- 

otating KO-responsi v e genes. The functional predictions 
ere found to be consistent with original studies in which 

T and KO scRNA-seq data sets were generated. 
Our main contribution in this work is to provide a neural 

etwork-based virtual KO analytical tool, which encodes 
he gene expression matrix to a latent space gi v en its under- 
ying scGRN. To the best of our knowledge, GenKI is the 
rst virtual KO tool using a gr aph-based gener ati v e model 
o infer KO-responsi v e genes and their shared functions. 
e v eral computational tools have been developed for similar 
urposes to predict the effects of genetic perturbation us- 

ng single-cell data. scGen ( 5 ) and CPA ( 6 ), both running in
 supervised manner, r equir e massi v e training data labeled 

ith various perturbations to train their autoencoder-based 

odels. CellOracle ( 7 ) can simulate gene expression in re- 
ponse to TFs perturbation by signal propagation through 

ts inferred scGRN. Howe v er, this simulation is linear and 

oes not quantify the le v el of perturbation at individual 
ene le v el. Mor e importantly, it r equir es scATAC-seq data 

long with the corresponding scRNA-seq data to build 

he scGRN prior to making such an inference, which may 

imit its application. scTenifoldKnk ( 8 ) is the only virtual 
O tool with the identical input r equir ements as GenKI. 
ike GenKI, scTenifoldKnk only r equir es WT scRNA-seq 

ata for its prediction analysis. It employs manifold align- 
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ment ( 67 ) to project WT and virtual KO scGRNs to a
joint low-dimensional space and calculate the differences
between them. Gi v en the minimalistic design, GenKI shares
with scTenifoldKnk se v eral key advantages such as being
species agnostic –– that is, they both work with scRNA-seq
data from humans and animal models alike. By a ppl ying
these tools directly to human data instead of surrogate an-
imals, r esear chers may avoid pitfalls caused by ov ere xtend-
ing their conclusions from animal models to humans. Addi-
tionally, both GenKI and scTenifoldKnk allow any gene to
be knocked out, regardless as to whether the KO genes are
functionally vital or not. Knocking out a vital gene tends
to cause fatal consequences and is, ther efor e, impractical to
generate animal models for its KO. 

GenKI outperf orms scTenif oldKnk in the following as-
pects. First, scTenifoldKnk only utilizes the WT scGRN,
while GenKI takes into account both the WT gene expres-
sion profile and scGRN. Second, the VGAE model, which
consists of two message passing la yers, collects inf orma-
tion up to the second-order neighborhood of the network.
In contrast, manifold alignment adopted in scTenifoldKnk
only maintains the similarity of directly connected neigh-
bors of the network, which results in different le v els of in-
ference power. In addition, GenKI shows better scalabil-
ity, being able to process tens of thousands of cells within
a reasonable time. Once the GenKI model is trained, the
model can be reused for virtual KO of any genes in the
da ta. W hile in order to do the same, scTenifoldKnk must
re-solve the manifold alignment problem for each KO gene
by eigen decomposition, which is considered computation-
ally intensi v e and time-consuming. Last, GenKI avoids a
pitfall in numerical computation in scT enifoldKnk. scT eni-
f oldKnk perf orms a virtual KO experiment by removing the
edges of a KO gene in the scGRN, which results in an asym-
metric Laplacian matrix containing negati v e values. This
potentially leads to eigenvectors of the Laplacian matrix
with imaginary parts when solved by eigen decomposition.
scTenifoldKnk practically adds 1 to all entries in obtained
scGRNs to guarantee that all the entries are positi v e and
only uses the real parts of obtained eigenvectors. GenKI’s
ar chitectur e allows it to bypass this problem because it em-
ploys neural networks to solve the optimization problem,
which has been shown to be numerically more stable than
eigen decomposition ( 68 ). 

We addressed the question that end users may often have,
i.e. ‘Ar e KO-r esponsi v e genes more likely to be differen-
tiall y expressed?’ DE anal ysis, followed by gene function
enrichment analysis, are often used to identify the per-
turbed gene expression programs in order to understand
the function of the KO gene. The problem is that the per-
turba tion ef fect of the KO gene may propaga te on the un-
derlying network but may not direct reflected as observ-
able and measurable changes in gene expression. GenKI,
on the other hand, works on scGRNs directly to leverage
unobservab le networ k-le v el information –– GenKI identifies
perturbed genes through modelling underlying networks.
Ther efor e, in contrast to DE analysis that can only detect
perturbed genes with significant expression level changes,
GenKI is likely to detect perturbed genes e v en ther e ar e less
or no significant expression level changes. Perturbed genes
without e xpression le v el changes are not uncommon. For
instance, gi v en a gene that is under control of multiple reg-
ulators, e v en if one of its regulators is knocked out, the re-
maining regulators may still be functioning to compensate
and stabilize the gi v en gene’s e xpression. Additionally, with
the default setting, GenKI produced fewer significant genes
than a typical DE anal ysis, w hich may improve the inter-
pretability of gene function. In conclusion, GenKI is not
an alternati v e to DE analysis, but rather a complementary
technique that produces more targeted results. 

The limitations of GenKI are mostly inherited from it
being virtual. GenKI cannot be used to predict the regula-
tory direction of KO-responsi v e genes, which is important
in learning cell responses to external stimuli ( 69 ). If future
refinements enable directional predictions, GenKI may im-
prove with its potential ability to simulate the effect of over-
expr ession. Also, GenKI, like scTenifoldKnk, curr ently per-
forms a virtual KO experiment by removing all the edges
of a KO gene in the WT scGRN. This action might be
na ̈ıv e gi v en the comple xity of a biological system. A virtual
KO scGRN could be better modeled by simulating the vir-
tual KO effect in a more probabilistic manner. Alternati v ely,
ther e ar e many available priors involved in many different
types of KO; hence a Bayesian treatment may facilitate the
KO inference. GenKI is also inapplicable to bulk RNA-seq
data, as genes in such data lose their variability in terms
of gene expressions, which results difficulty in scGRN con-
struction using PC r egr ession and assigning expression val-
ues to node attributes in a graph. Recent advances in cell
pseudo-temporal or dering enab le us to map the underlying
scGRNs throughout time ( 70 , 71 ) and e v entually learn tem-
poral KO effects including cell-cell communication ( 72 ) in
a dynamic manner. GenKI can be improved by incorporat-
ing a dynamic inference module to investigate such effects
on cell or organ de v elopment. 

DA T A A V AILABILITY 

The sources of data sets underlying this article can be found
in Supplementary Table S1. No new data were generated in
support of this r esear ch. A Python implementation of the
GenKI frame wor k is available at https://github.com/yjgeno/
GenKI (permanent DOI: 10.5281 / zenodo.7915654). 
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