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ABSTRACT

In this paper, we introduce Gene Knockout Infer-
ence (GenKi), a virtual knockout (KO) tool for gene
function prediction using single-cell RNA sequenc-
ing (scRNA-seq) data in the absence of KO sam-
ples when only wild-type (WT) samples are available.
Without using any information from real KO samples,
GenKIl is designed to capture shifting patterns in
gene regulation caused by the KO perturbation in an
unsupervised manner and provide a robust and scal-
able framework for gene function studies. To achieve
this goal, GenKl adapts a variational graph autoen-
coder (VGAE) model to learn latent representations
of genes and interactions between genes from the
input WT scRNA-seq data and a derived single-cell
gene regulatory network (scGRN). The virtual KO
data is then generated by computationally removing
all edges of the KO gene—the gene to be knocked
out for functional study—from the scGRN. The differ-
ences between WT and virtual KO data are discerned
by using their corresponding latent parameters de-
rived from the trained VGAE model. Our simulations
show that GenKI accurately approximates the pertur-
bation profiles upon gene KO and outperforms the
state-of-the-art under a series of evaluation condi-
tions. Using publicly available scRNA-seq data sets,
we demonstrate that GenKl recapitulates discoveries
of real-animal KO experiments and accurately pre-

dicts cell type-specific functions of KO genes. Thus,
GenKIl provides an in-silico alternative to KO experi-
ments that may partially replace the need for geneti-
cally modified animals or other genetically perturbed
systems.
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INTRODUCTION

Gene perturbation experiments are a proven powerful ap-
proach to elucidate the role of a gene in a biological pro-
cess. Commonly used designs include gene knockout (KO)
experiments with genetically altered animals and CRISPR
gene perturbations. In a KO experiment, the function of
a target gene is inferred by contrasting phenotypes be-
tween KO and wild-type (WT) animals and then identifying
their differences. Often, gene expression profiles serve as a
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quantitative phenotype at the molecular level (1). The re-
cent advent of single-cell RNA sequencing (scRNA-seq) (2)
allows the transcriptomic information from tens of thou-
sands of cells to be gathered in parallel, and thus it greatly
improves cellular phenotyping resolution. It has become a
powerful method for molecular phenotyping and compari-
son in KO experiments.

Conventional KO experiments, often requiring signifi-
cant amounts of experimental and animal resources, are
labor-intensive and time-consuming (3). Recently devel-
oped techniques such as Perturb-seq (4) combine CRISPR
perturbations and scRNA-seq to perform genetic screens,
allowing gene function to be studied in many cells in a mas-
sively parallel manner. Nevertheless, the creation of large-
scale CRISPR libraries presents a major technical chal-
lenge. For these reasons, computational tools serve as a
possible alternative solution to facilitate or guide the ex-
perimental design through in-silico screening of perturba-
tion responses. Such a computational tool would reduce the
need for experimental measurements.

Indeed, several such computational tools (5—
8) have been developed (Table 1). With only one
exception—scTenifoldKnk (8), all these tools require
extensive input data sets including outcomes of per-
turbation experiments or data from other modalities.
scTenifoldKnk is the only protocol that does not require
such expensive input data sets. Instead, it merely requires
scRNA-seq data from the WT samples as its input and
considers information from the gene regulatory network
(GRN). The working principle of scTenifoldKnk is to
simultaneously project WT and virtual KO single-cell gene
regulatory networks (scGRNs) to a joint low-dimensional
space and then calculate the projection differences of genes.
However, the inference of scTenifoldKnk entirely relies
on the WT scGRN, which is constructed using principal
component (PC) regression from the WT scRNA-seq
data. It is known that constructing high-quality scGRNs
is technically challenging with respect to the presence of
heterogeneous sources of noise (9). Also, a fully connected
scGRN computed by the regression-based method may
not correspond to real biological processes (10). A method
that takes full advantage of scRNA-seq expression data
and tolerates imperfect sScGRN in a robust and unbiased
manner is still lacking.

Here, we present GenKI (Gene KO Inference), a virtual
gene KO tool based on a variational graph autoencoder
(VGAE) (11). GenKI simultaneously learns latent represen-
tations of scRNA-seq gene expression data of WT samples
and the underlying scGRN responsible for observed pheno-
types. The highly compressed representations of genes are
then used for the subsequent inference. The scGRN can be
constructed using the input gene expression data. GenKI
propagates the transcriptomics information in the network
during training and compares the WT data (including the
expression data matrix and the scGRN) with its virtual
KO counterpart to predict KO-responsive genes—i.e. genes
functionally associated with or linked to KO gene. As a de
novo inference tool, GenKI identifies KO-responsive genes
without requiring prior knowledge of gene regulation or bi-
ological mechanisms.
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The remainder of this paper is structured as follows: we
first present an overview of the GenKI workflow and then
compare its inference performance to several benchmarks
using simulated data. Following these steps, we use pub-
licly available scRNA-seq data sets (Supplementary Table
S1) to predict KO-responsive genes and compare enriched
functions of them with those introduced and validated in
the original studies, to highlight the performance of GenKI
in real-data applications. Next, we compare GenKI to the
differential expression (DE) analysis. Finally, we study the
robustness and scalability of GenKI.

MATERIALS AND METHODS
Simulated data sets and evaluation

The predefined GRNs were obtained from the GitHub
repository of SERGIO (12) https://github.com/PayamDiba/
SERGIO. The simulated data sets contained 100, 400, and
1200 genes (all containing 2700 cells), respectively. Edges
in the predefined GRNs were treated as the ground truth.
A random classifier that ranks genes by probabilities ran-
domly drawn from a uniform distribution between 0 and
1, a classifier that ranks genes by the Pearson correlation
with the KO gene, and scTenifoldKnk, which ranks genes by
FC (used for the chi-squared test), were included for bench-
marking purpose. For each data set, we randomly selected a
target gene with more than ten edges and virtually knocked
it out using GenKI and the other three benchmarks inde-
pendently. Each run outputs a gene list with scores assigned
by each method. Roc_auc_score and average_precision_score
function from the Python package sklearn (v.1.1.1) were
used to compute the Area Under Receiver Operating Char-
acteristic (AUROC) and the average precision (AP) at each
run for each method. We repeated the procedure above ten
times for each data set. The simulated BEELINE (13) data
sets were downloaded from Zenodo. GSD is the largest cu-
rated reference data set of BEELINE containing 19 genes
and 2000 cells. Its underlying GRN was used to replace the
GRN construction step in this evaluation. Since the ground
truth GRN was known, we divided genes into two groups
based on their shortest path to the KO gene, with the close
neighbors group containing all genes within the two-hop
neighborhood of the KO gene and the distant neighbors
group containing all other genes. To compare the inference
power of GenKI and scTenifoldKnk, we virtually knocked
out each gene iteratively and obtained the scores of all the
genes computed by both methods. For each method, we
used the Wilcoxon Rank Sum test to quantify the difference
in scores between the two groups of genes. A lower p-value
indicates a larger difference, thus implying greater inference
power of the method for detecting KO-responsive genes.

Processing of real data sets

The specifics and source of real sScRNA-seq data sets used in
this paper can be found in Supplementary Table S1. We per-
formed regular preprocessing for all scRINA-seq data sets
using Seurat (v.4.0.2) package (14). We first performed log
normalization using the NormalizeData function. Highly
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Table 1. Summary of existing virtual KO methods and feature comparison with GenKI

Input data Supervised /
Name required Method unsupervised Description Reference
scGen scRNA-seq Transfer learning Supervised Train a variational autoencoder that learns (5)
(WT and KO to generalize the response of the cells in the
samples) training set of perturbations
CPA scRNA-seq Generative Supervised Train an autoencoder with adversarial that (6)
(KO samples) modeling decomposes the data into a collection of
embeddings associated with the cell type,
perturbation, and other external covariates
to study combinatorial genetic perturbation
CellOracle scRNA-seq and Graph-based Unsupervised Simulate gene expressions in response to (7)
scATAC-seq modeling transcription factor (TF) perturbation by
(WT sample) signal propagation through an inferred gene
regulatory network
scTenifoldKnk scRNA-seq Manifold Unsupervised Simultaneously project inferred WT and (8)
(WT sample) alignment virtual KO gene regulatory networks to a
joint low dimensional space
GenKI scRNA-seq VGAE Unsupervised Train a VGAE model that learns the latent This study
(WT sample) gene representations of WT sample and

virtually construct a virtual KO counterpart
to discern similarity

variable genes were selected using the FindVariableFea-
tures function (selection.method = ‘vst’) and by default,
the top 3000 highly variable genes were included in subse-
quent analyses. We then standardized the data by the Scale-
Data function, and the resulting transformed data served
as the gene expression profile for the GenKI input. Cell an-
notations from original studies were retained and used if
provided.

Gene regulatory network construction

We constructed scGRNs using the PC regression method
which was first proposed in scTenifoldNet (15). Let X €
RP*" represent the scRNA-seq gene expression matrix of
the WT samples, which contained gene expression levels
for p genes in n cells. We used the PC regression method
to build the scGRN denoted with its adjacent matrix A.
Specifically, each time one gene was selected as the response
variable, while the remaining genes served as explanatory
variables. Principal component analysis (16) was performed
on the explanatory variables, and then we regressed the re-
sponse variable on the first d leading PCs, where d < n.
Next, we transformed the obtained regression coefficients
of the d-leading PCs into the coefficients of the original
explanatory variables, which should reflect the interaction
strengths between the response gene and all other genes. In
the final step, we assembled the coefficients of p regression
models into a p x p adjacency matrix A, where the (i, j)
entry represents the regression coefficient of the i-th gene
on the j-th gene. Therefore, 4 accumulates the interaction
strength between each pair of genes.

Note that the output of this PC regression method is a
fully connected scGRN, in which some links between genes
might not correspond to real biological interactions, as in
general, there are very few connections between TFs and
genes (10). Therefore, for such an scGRN, we assumed that
the edge is activated if the absolute value of its weight is
greater than a certain threshold, i.e. edges with a greater
weight are more likely to be the true regulatory relationships
between genes than those with a lower weight. The average

absolute weight between TF-target gene pairs constructed
scGRNs was indeed significantly greater than that between
random gene pairs, as described in (15). Based on these find-
ings, for a particular scGRN, we filtered edges and, by de-
fault, conservatively only kept the top 15% of edges. A more
thorough evaluation of the cutoff selection can be found in
Supplementary Figure S1, which shows a heatmap of Spear-
man correlation coefficients between scores of Kullback—
Leibler (KL) divergence given by GenKI across four differ-
ent cutoffs. Within an optimal range of the cutoff, the rank-
ing results given by GenKI were found to be highly con-
sistent. However, we contend that extremely conservative
choices of the cutoff would overlook potential links. No-
tably, we allow users to modify this default setting to accom-
modate their own biological scenarios. For example, those
who believe their gene regulatory networks are scale-free
are encouraged to use the poweRlaw package (17) to deter-
mine the best-fit threshold. Next, we converted the sScGRN
into an adjacent Boolean matrix as the input requested for
the VGAE model of GenKI. As a result, although obtained
without any information on TFs and their targets or knowl-
edge of regulatory elements, these remaining edges could
be deemed biologically responsive. By abuse of notations,
we still denoted this new scGRN as A4 and we referred to it
as the thresholded scGRN for later use. Although the filter
step removed potential false positive edges, it inevitably in-
troduced false negative findings, i.e. missing some truly con-
nected edges. Therefore, we treated this thresholded scGRN
as an incomplete network, and our goal was to reconstruct
an scGRN from this incomplete network to learn the latent
embeddings of nodes, namely, genes in our setting. This can
be interpreted as a transductive link prediction task (18).
Alternatively, users can supply their own GRN at this step
to replace the PC regression-derived network.

VGAE model

The VGAE model used in GenKI is similar to the frame-
work described in (11). It is made up of a two-layer graph
convolutional network (GCN) encoder and an inner prod-



uct decoder. We utilized a two-layer GCN architecture be-
cause deeper graph convolutional networks are prone to
over-smoothing (19). Recall that X is the gene expres-
sion matrix and A is the adjacent matrix, and we denoted

the normalized adjacent matrix as A= D> AD’%, where
D = diag(dyy, da, ..., dpp)is a diagonal matrix with en-

P
tries d;; = ) A;;, where A;; is the (i, j)-th entry of the ma-
i=1
trix A. Then, the two-layer GCN is defined as:
GCN(X, A)= AReLU (AXW,) W,

where Re LU(x) = max(0, x) is the activation function in-
troduced in the first GCN layer, and W, and W, are pa-
rameters of the neural networks. We assumed that the
data were generated by certain random processes involv-
ing an unobserved latent continuous random variable
Z. Let p(Z) be the prior distribution of Z, for which
we chose a bivariate Gaussian distribution for conve-
nience. For the encoder part, we introduced a recognition

P

model C](Z|X, A) = 1_[ ([(Zi|X, A)s where (](Zi|X7 A) ~
i=1

N(wi, ), X = diag(o?, o) is a diagonal covariance ma-

trix and

p=(ul, - .uD) = GCN, (X, 4),

log (%) =log ((of, -+ . 0;)) = GCN2 (X, A),
where 62 = [62, 6] . For the decoder part, we used the in-
ner product to reconstruct the sScsGRN 4 by

P(A,J = Aj[ = 1) = SlgWIOld (zisz) .

Here, by abuse of notations, z; is the latent representation
of the ith gene.
For any two distribution functions p and ¢, let

KL(p|q) = fp(x)log(’;g;dx be the KL divergence be-

tween p and ¢. The objective of the VGAE model is to max-
imize the evidence lower bound (ELBO):

L=Eyzx. alogp(AlZ)—p-KL(q(ZX, A) | p(2),

where B is an adjustable hyperparameter that balances the
independent constraints and reconstruction accuracy. No-
tice that here we adapted the loss from beta-VAE (20) and
L would represent the standard ELBO when = 1.

Hyperparameters, metrics and implementation

We randomly split the edges of a Boolean scGRN into three
data sets for training (75%), validation (5%), and testing
(20%). We labeled them as positive edges. Equal numbers
of negative edges, composed of a set of fake edges not pre-
sented in the scGRN, were sampled for data balancing pur-
poses. We used AUROC and AP to evaluate the model per-
formance. We expected positive edges to have higher inter-
action probabilities compared to negative edges. Thus, the
higher value of AP or AUROC would indicate better per-
formance of training. To tune the hyperparameters, we per-
formed random hyperparameters search of 100 trials by us-
ing the Tune module from the Python package Ray (21)
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(v.1.13.0). Specifically, the logarithm base 10 of hyperpa-
rameter 8 was sampled from a uniform distribution from {—
5,-4,...,—1}, the learning rate was sampled from a uniform
distribution from {4, -3, ..., -1}, and the weight decay of
optimizer was sampled from a uniform distribution from
{-7, -6, ..., -3}. To make our sampled hyperparameters
more accurate, we multiplied each one by a scale factor
randomly selected from integers 1 to 9. For each set of
hyperparameters, we evaluated the model performance on
the validation set and selected the hyperparameter set with
the best performance based on the metrics AUROC and
AP. Based on our experimental results, we set g of 1E-
4 and weight decay of 9E-4 for all the data sets, and set
learning rate of 7E-4 for the microglia, lung, intestine data
set, SE-3 for the COVID-19 data set. The maximum itera-
tion number was set to 100, and early stopping was added
when AP reached the maximum and began to decrease.
The Adam optimizer (22) was used for all the trainings,
and Xavier initialization (23) was used to initialize all the
weights.

Determination of the rank of KO-responsive genes

After training the VGAE model using the WT data, for each
fixed gene g, we obtained its latent distribution N(/ig, 6g2),

where (1, and 6g2 were latent mean and covariance fitted by
the VGAE model. We next fed the trained VGAE model
with the virtual KO data and obtained the latent distribu-
tion of the g-th gene for the KO samples. Then, we calcu-
lated the KL divergence between these two normal distribu-
tions. The procedure was repeated for all genes. The top 5%
of genes ranked by the KL divergence were preserved. In-
stead of using the raw ranks, we proposed a bagging-based
method to improve the stability and accuracy of our infer-
ence. Specifically, each time we permutated the cell order
of the WT gene expression matrix and obtained its corre-
sponding virtual KO data. Without training a new model,
we fed this pair of permutated WT and virtual KO data
into our fitted VGAE model, calculated the KL divergence
value for each gene, and bagged the top 5% of genes. We
repeated this procedure 1000 times and compiled the genes
which were bagged more than 95% times as KO-responsive
genes.

Benchmarking GenKI’s tolerance to random noise in gene ex-
pression profiles

To show the robustness of our method, we generated ran-
dom noise in the log space, added it to gene expression
profiles, and evaluated the training performance of GenKI.
Specifically, for gene i in cell j, the regenerated expression
x; ; was defined as:

%y
Xi, j

where y ~ N(0, ¢2) and x; ;j represents the original expres-
sion. The fold change y was used to approximate the noise
level, which followed the normal distribution A(0, o2),
whereas different o values would result in different levels
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of random noise. We conducted 30 independent runs with
random splits of the data set at different noise levels.

Gene function annotation and function enrichment tests

Enrichr (24) with default setting was used for gene func-
tional enrichment analyses. The protein-protein interaction
enrichment tests were performed using the web tool of the
STRING database (25). In the STRING network plots, iso-
lated nodes were removed, and only edges labeled with con-
fidence greater than the medium level were retrieved and
shown. Enrichment p-values, which indicate whether in-
put proteins have more interactions among themselves than
what would be expected for a random set of protein-coding
genes of the same size and degree distribution drawn from
the genome, were computed with the default setting.

Prediction of KO gene’s expression from WT cells with linear
regression

For the microglia data set, a simple multivariate linear re-
gression model was applied to evaluate the relationship be-
tween the KO gene Trem2 and other KO-responsive genes.
Specifically, microglia cells’” Trem2 expression profile was
used as the response variable and the expression profiles of
other genes as explanatory variables. The adjusted R* (co-
efficient of determination) was used to quantify how much
variance of the KO gene can be explained by the other KO-
responsive genes. In comparison, an equal number of the
KO-responsive genes were randomly sampled as explana-
tory variables, and their R> was also calculated. This evalu-
ation was repeated 30 times with different splits of the data
set and random gene selections.

Differential gene expression analysis

DE analysis was performed using Scanpy (26)(v.1.9.1) func-
tion rank_genes_groups with the Wilcoxon rank-sum test.
All parameters were set to default. Adjusted p-values were
obtained after the Benjamini—-Hochberg adjustment (27).
DE genes were determined based on the condition of ad-
justed p-value < 0.05 and absolute log2(fold change) > 0.25.
DE ranks of the DE genes were determined based on their
adjusted p-value. To examine the expression level changes,
for each data set, the KO-responsive genes and an equal
number of randomly chosen unperturbed genes were used
and their fold change (FC) of WT/KO was calculated. The
absolute log2-transformed FC values of the KO-responsive
genes and the unperturbed genes were used to perform the
one-sided t-test.

RESULTS
The GenKI framework

The framework of GenKI is depicted in Figure 1. The
pipeline starts with a single input, that is, the sScRNA-seq
gene expression matrix from WT samples of interest. For
each virtual KO application, GenKI first constructs an sc-
GRN from the WT gene expression data. The WT gene ex-
pression data matrix and the constructed WT scGRN are
then used as input of WT data to train a VGAE model,

which is a two-layer GCN encoder with an inner product
decoder. The latent embedding of each node is defined to
follow a bivariate Gaussian distribution. After training, the
latent representations of genes under the WT setting are col-
lected and the model with its weights is transferred. Next, to
generate virtual KO data, the WT data is ‘copied’. From the
WT scGRN copy, the KO gene—i.e. the gene being knocked
out for functional study—is virtually deleted. The deletion
is achieved by setting the weight of all edges from and to the
KO gene to zero. After the virtual deletion, the virtual KO
data is generated, while the original WT scGRN remains
untouched. The transferred model is fed with the virtual KO
data to obtain the latent representations of genes under the
KO setting. Two parameters, mean and covariance of each
gene’s latent distribution from the WT and KO settings are
then collected to calculate the KL divergence between these
two distributions. The higher the KL divergence value of
a gene, the greater the impact of the KO on the gene. Fi-
nally, a bagging-based method is used to determine genes
that tend to be significantly perturbed by the deletion of the
KO gene. The enriched functions of these significantly per-
turbed genes (i.e. KO-responsive genes) are used to give pre-
diction of the KO gene functions.

Performance of GenKI with simulated data

We used simulated data to evaluate the performance of our
method (Figure 2A). To do so, we generated scRNA-seq
data sets of different sizes (2700 cells with 200, 400, and
1200 genes, respectively) using single-cell expression simu-
lator SERGIO (12). SERGIO’s simulations were guided by
predefined GRNs; therefore, the simulated scRNA-seq data
sets had their underlying GRNs. Knowing these ground
truths GRNss facilitated the performance evaluation of vir-
tual KO methods, as genes linked with the KO gene were
supposed to be perturbed by the KO and more likely to be
KO-responsive genes. A good virtual KO tool should prefer-
ably identify those genes linked with the KO gene in the
given GRN. For each of the simulated data sets, we applied
GenKI and three other benchmarking methods, including
scTenifoldKnk, with the same KO genes being knocked
out (Materials and Methods). All the methods produced a
ranked list of KO-responsive genes. Figure 2B shows the lev-
els of AUROC for GenKI and other benchmarking meth-
ods. Figure 2C shows the levels of AP resulted from the
same KO genes. Three additional ROC curves as examples
of virtual KO experiments performed by GenKI and scTeni-
foldKnk for each data set are presented in Supplementary
Figure S2. We found that GenKI outperformed all the other
benchmark methods, including scTenifoldKnk, across all
the data sets evaluated. We believe this is because GenKI in-
corporates information from both the gene expression ma-
trix and GRN.

To demonstrate that GenKI learns higher-order neigh-
borhood information from the underlying GRN through
the VGAE model, which contributes to its greater perfor-
mance than scTenifoldKnk, we systematically knocked out
each of the 19 genes in the GSD network of BEELINE
(13). In each virtual KO experiment, we obtained the per-
turbation scores of all genes. For a given KO gene, we used
the Wilcoxon rank sum test to compare the difference in
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perturbation scores between the KO gene’s two-hop neigh-
bor genes and all the other distant genes (Materials and
Methods). A smaller p-value indicates a greater inference
power of the method for differentiation between these two
groups. It is rational to expect that close neighbor genes
have high perturbation scores. Compared to scTenifold-
Knk, as expected, p-values obtained in GenKI are signif-
icantly lower (Supplementary Figure S3, Wilcoxon Rank
Sum test, p-value < 0.05). This is attributed to manifold
alignment in scTenifoldKnk only keeps track of the similar-
ities between genes in the first-order neighborhood of GRN,
while GenKI’s two-layer GCN looks at similarities between
genes up to the second-order neighborhood. This simula-
tion study using the BEELINE network data also demon-
strated that GenKI can take user input GRN as an optional
rather than reconstructing GRN by its own.

Real-data GenKI analysis recapitulates findings of the trem?2
KO experiment

GenKI, as a virtual KO tool, is expected to recapitulate
the overall discoveries of real KO experiments. To vali-
date its performance, we applied GenKI to several pub-
licly available scRNA-seq data sets. The first data set was
from the KO experiment conducted by Nugent et al. (28),
in which scRNA-seq was performed with microglial cells
isolated from Trem2*/* and Trem2~/~ mice (Figure 3A).
The study reported that Trem2 upregulates apolipoprotein
E (Apoe) and other genes involved in cholesterol trans-
port and metabolism, causing robust intracellular accu-

(6) calculation of KL divergence, and (7) identification of KO-responsive genes

mulation of a storage form of cholesterol upon chronic
phagocytic activities (28). Trem?2 is also known to regu-
late the expression of genes associated with cell damage
response, lysosome and phagosome function, Alzheimer’s
disease, and oxidative phosphorylation (29). With this data
set, we used the WT gene expression profile of 648 mi-
croglial cells as the input for GenKI and fed it along
with the constructed scGRN to the VGAE model of
GenKI.

We first evaluated the robustness of our model before per-
forming prediction. The model robustness evaluation was
performed to test the tolerance of the model by artificially
adding different levels of random noise to the WT gene ex-
pression profile (Materials and Methods). A robust model
would correctly capture the latent embeddings of genes, and
thus more confidence for the inference regarding differences
between WT and virtual KO samples. AUROC and AP
were used to evaluate the reconstruction performance of the
model. As shown in Supplementary Figure S4, our model
was not compromised by high levels of noise (o = 1.5),
indicating the robustness of GenKI to the technical noise
that naturally existed in the scRNA-seq data. We observed
poorer performance under the conditions of very high levels
of noise (o > 3), which was expected as highly noisy gene
expression profiles would mislead the training, and thus,
the model could not be generalized to the testing data set.
These results also indicated the lower bound of noiseless
gene expression information needed to correctly reconstruct
the scGRN and eventually infer the latent embeddings of
genes.
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After the model robustness evaluation, we then trained
the model and performed the virtual KO experiment.
Specifically, we virtually knocked out Trem2 by removing
all its edges in the scGRN of microglial cells and compared
profiles of genes in the latent space between WT and vir-
tual KO samples using KL divergence (Materials and Meth-
ods). The results of the analysis showed that 20 genes, in-
cluding Trem?2 itself, were detected as Trem2-KO respon-
sive genes (Supplementary Table S2). Trem2 was ranked at
the top of the KO-responsive genes, followed by Ctsd, the
gene associated with lysosomal dysfunction (30), and Apoe,
the key lipid transporter gene expressed in both the cen-
tral nervous system and the periphery (31). Pathway enrich-
ment analysis based on Enrichr (24) showed that Trem2-KO
responsive genes were enriched with genes associated with
interleukin-2 signaling pathway, lysosome, and Alzheimer’s
disease (Supplementary Table S3). Gene ontology (GO) en-
richment analysis further ranked several enriched terms, in-
cluding macrophage activation involved in immune response
and lipoprotein metabolic process, on the top (Figure 3B and
Supplementary Table S4). By modulating the macrophage
transcriptome in adipose tissue, Trem2 was found to regu-
late blood cholesterol metabolism in obese mice, thereby in-
dicating a connection between Trem?2 and lipid metabolism
(32). The overall results of our enrichment analyses re-
vealed these functions of Trem2 with consistency. In addi-
tion, the Trem2-KO responsive genes were found to be bio-
logically connected, as shown by the STRING interaction

network (25) (Figure 3C, p-value < 0.01, STRING inter-
action enrichment test). Note that links in STRING inter-
action networks represent functional associations between
genes. These associations include direct regulations as well
as indirect interactions between genes or their products.
Thus, our results suggest abundant functional connectivity
between KO-responsive genes.

Next, we investigated whether Trem?2’s measurable gene
expression was intrinsically interpreted by other KO-
responsive genes. Indeed, the variance of Trem?2 expression
across cells could be substantially explained by the remain-
der of the KO-responsive genes (Figure 3D). We fitted a
multivariable linear regression model by setting Trem2 as
the response variable (Materials and Methods) and found
that when using KO-responsive genes as explanatory vari-
ables, the adjusted R? of the model was significantly higher
than when using an equal number of randomly selected
genes as explanatory variables (p-value < 0.01, one-sided
t-test). This finding suggests the KO gene and its KO-
responsive genes predicated by GenKI tend to be transcrip-
tionally associated.

Finally, we showed that one could not simply obtain
the ranked gene list inferred by GenKI to identify KO-
responsive genes using naive network analysis metrics. We
presented that, as an example, the KO-responsive genes
could not be simply inferred either from ranking their gene
expression or edge weight associated with the KO gene
Trem?2 in the inferred scGRN (Supplementary Figure S5).
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The GenKI model nonlinearly learns both gene expression
and edge weight information and infers from compressed
embeddings of genes that it has learned. Thus, it ranks and
infers the perturbed genes in a more comprehensive way
than ranking methods based on any single observable prop-
erty.

Collectively, our results shed light on Trem2-related func-
tions by annotating the perturbed genes following its dele-
tion. We showed that the inferred genes were functionally
connected and, more importantly, predicted functions were
consistent with those reported in the Trem?2 studies.

Real-data GenKI analysis recapitulates findings of the nkx2-
1 KO experiment

NK homeobox 2-1 (Nkx2-1) is highly expressed in lung ep-
ithelial cells and plays a crucial role in alveolar type 1 (AT1)
cell development and maintenance (33). We collected the
second scRNA-seq data from an in vivo KO experiment per-
formed with lung epithelial cells of AT1 isolated from WT
and Nkx2-1~/~ mice. The study reported that the Nkx2-1
knocked-out AT1 cells lost their characteristics and abnor-
mally turned into gastrointestinal fate (34). The study con-
cluded that without Nkx2-1, developing AT1 cells lose three
defining features—molecular markers, expansive morphol-

ogy, and cellular quiescence—Ileading to alveolar simplifi-
cation and lethality.

With this data set, we used the WT gene expression pro-
file of 624 ATI cells as the input for GenKI and virtu-
ally knocked out Nkx2-1 following the methods described
above. The GenKI analysis discovered 82 KO-responsive
genes (Supplementary Table S5). The KO gene, Nkx2-1,
topped the gene list, followed by 13 marker genes of AT1
and AT?2 cells offered by PanglaoDB (35), consistent with
their downregulation in the Nkx2-1 mutant cells from the
bulk RNA-seq experiment introduced in the original study.
Previous research (36-39) discovered that Nkx2-1 binds to a
group of AT1 cell-specific genes that regulate the cytoskele-
ton, membrane composition, and extracellular matrix. We
found that Pdlim1, Clic5, Tubala, Krt8, Actn4, and Clu,
which encode cytoplasmic proteins associated with the cy-
toskeleton, were highly ranked in our list. Ctsh, a gene in-
volved in epithelial tube branching and lung morphogenesis
(40), and a great number of genes related to membrane com-
position, such as Anxal, were also observed among the KO-
responsive genes. Two other significant genes, Napsa and
Sftpe, collaborate with Ctsh to perform functions related
to the collagen-containing extracellular matrix and alveo-
lar lamellar body. Cldn33, Cldn7, and Epcam, which were
shown to be involved in the apical junction complex (41),
are in agreement with the observation that mutant AT1 cells
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form dense microvilli-like structures apically concluded in
the original study.

GO enrichment analysis indicates these genes were en-
riched for functional categories led by surfactant homeosta-
sis and positive regulation of cell population proliferation
(Figure 4A, Supplementary Table S6), suggesting the role of
Nkx2-1 in regulating surfactant production and suppress-
ing AT1 cell proliferation validated in the study. HDAC3-
dependent TGF-beta signaling is required for proper ep-
ithelium expansion and AT1 cell spacing (42,43), disrup-
tion of which significantly perturbed 13 genes from the list
related to TGF-beta regulation of extracellular matrix. Ad-
ditionally, due to mutant cells undergoing apoptosis, which
was validated by staining in the original study, a few terms
indicating the apoptotic process were observed. Many other
GO terms, which are significant but not shown in Figure 4A,
such as epithelial tube branching involved in lung morphogen-
esis and epithelial cell morphogenesis demonstrate the con-
clusion that Nkx2-1 defines the cell morphology of develop-
ing AT cells. The STRING interaction network of these 82
KO-responsive genes is shown in Figure 4B, suggesting that
they tend to be biologically connected with a closely related
functional relationship (p-value < 0.01, STRING interac-
tion enrichment test).

Real-data GenKI analysis recapitulates findings of the hnf4a-
smad4 double KO experiment

Using two real scRNA-seq datasets in which a single KO
gene was knocked out, we have demonstrated the gen-
eral performance of GenKI. Next, we investigated whether
GenKI is able to virtually predict the effects of double
KO (DKO). To accomplish this, we obtained a scRNA-seq
data set performed with enterocytes isolated from WT and
Hnf4a®¥0-Smad4X© mice. The study reported that Smad4
and Hnf4 work together in a feed-forward loop to acti-
vate one another’s expression and co-bind to differentiation
gene regulatory regions. This feed-forward regulatory mod-
ule supports and maintains enterocyte cell identity. Loss of
this regulatory loop could impair enterocyte differentiation
and destabilize enterocyte identity. This intersection of sig-
naling and transcriptional regulation provides a framework
for understanding the cellular plasticity of the regeneratable
tissue (44).

In this experiment, we used the WT gene expression pro-
file of 502 enterocytes as the input for GenKI and virtu-
ally knocked out Hnf4a and Smad4 simultanecously. 14 KO-
responsive genes were reported by GenKI (Supplementary
Table S7). The two KO genes, Hnf4a and Smad4, topped
the gene list, followed by regenerating islet-derived 1 (Regl),
a regulator of cell growth that is required to generate and
maintain the villous structure of the small intestine (45).
Hnf4a regulates intestinal epithelium homeostasis and in-
testinal absorption of dietary lipids (46). Loss of this gene
is likely to disrupt glucose metabolism, which is regulated
by intestinal Reg3b (47), another significant gene. Also in-
cluded was Gceg, a gene that may modulate gastric acid se-
cretion and gastro-pyloro-duodenal activity (48).

Figure 5B depicts the STRING interaction network of
these KO-responsive genes. Despite the network being split
into two parts under the default setting, we found two
disconnected genes, Dmbtl and Gstal, were indeed func-
tionally connected—GO enrichment analysis indicates that
these two genes were enriched for epithelium cell differenti-
ation (Figure 5A, Supplementary Table S8), indicating the
loss of enterocytes differentiation after the DKO measure
discovered in the original study. Thus, these genes are sta-
tistically (p-value < 0.01, STRING interaction enrichment
test) and biologically linked. Other significant GO terms,
such as negative regulation of cell growth and carbohydrate
homeostasis correlated with results of the enterocytes study,
have also been illustrated in our analysis. Together, this vir-
tual DKO experiment demonstrates that perturbation ef-
fects from multiple KO genes are nonlinearly accumulable
and can be recapitulated by GenKI.

Are KO-responsive genes more likely to be differentially ex-
pressed?

We next set out to answer the following question: do KO-
responsive genes exhibit differential expression? We first
analyzed the expression level changes of predicted KO-
responsive genes by comparing them to unperturbed genes
across data sets (Materials and Methods). We discovered
that the KO-responsive genes predicted by GenKI tend to
have greater absolute FC values than unperturbed genes
(Supplementary Figure S6, p-value < 0.05, one-sided #-test).
Thus, we came to the conclusion that KO-responsive genes
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predicted by GenKI are more likely to be differentially ex-
pressed.

Next we showed that GenKI analysis is different from the
DE analysis: KO-responsive genes are not necessarily DE
genes. We examined this by comparing the real KO data of
each data set to their WT, where 126, 1129 and 1215 DE
genes were identified, respectively (Materials and Methods).
The overlap between the predicted KO-responsive genes
and the top-ranked 50 DE genes in each data set is shown
with a Venn diagram in Figure 6 left panel.

The eight overlapping genes of the microglia data set
includes Trem2 and other lipoproteins-forming genes like
Apoe (Figure 6A, left). The 17 intersection genes of the
lung data set contain Nkx2-1, the pulmonary surfactant
Sttpc and several AT1 and AT2 cell markers (Figure 6B,
left). Thus, GenKI could be used to predict some of the DE
genes. In addition, GenKI identified KO-responsive genes
that are not ranked highly by the DE method. By using a
barcode enrichment plot (Figure 6, right panel), we were
able to visualize the exact locations of the KO-responsive
genes across the DE ranks, with each black stick denot-
ing a ‘hit’ of the KO-responsive genes. H2-Aa, a recognized
DE gene but not ranked highly (82nd shown in Figure 6A,
right), is known to function with other genes such as Cd74,
Ctsb, and Ctsd in histocompatibility complex (MHC) class
IT presentation (49). Napsa, which functions together with
Nkx2-1 and Ctsh in the processing of pneumocyte surfac-
tant precursors, was likely to be underestimated (763rd, out
of scope in Figure 6B, right). The double KO genes Hnf4a
and Smad4, which were not included in the intersection of
Figure 6C left, weakly ranked 108th and 235th, respectively
(Figure 6C, right). These perturbed genes were prioritized
by GenKI, whereas the DE analysis did not. GenKI fur-
ther identified KO-responsive genes that are not DE genes.
These genes are likely to be at least as important as the DE
genes, if not more. For example, concerning the microglia
data set, Ctsd is one leading gene involved in cholesterol
metabolism (50), and Cx3crl and Tyrobp play an important
role in macrophage activation (51-53). All of them were not
the DE genes.

Do DE genes appear more adjacent to KO-responsive
genes in a scGRN? To answer this question, we performed
the STRING network analysis by combining the top-

ranked DE genes with the KO-responsive genes using the
microglia data set as an example. The outcome is depicted
in Supplementary Figure S7, showing that 23 out of 42 DE
genes are directly or indirectly linked to the KO genes. That
is to say, in this given case, more than half of DE genes might
be functionally involved in the perturbed KO gene network
identified by GenKI.

Utilizing DE and GenKI analyses in a complementary
manner might be a good idea. To illustrate our point, we
applied seven different DE analysis methods and settings
to the lung data and summarized the number of DE genes
detected and their intersection with GenKI-identified genes
(Supplementary Table S9). We found that the results of DE
analysis were largely depend on what method was selected
to use and what fold-change and p-value cutoffs were set,
and the functional interpretation of the DE analysis re-
sults was also depended whether up- and down-regulated
genes are pooled together. In general, we found different
DE methods with varying model assumptions and thresh-
olds could not converge to a consensus set of DE genes. The
number of DE genes and their rankings changed greatly
depending on many technical factors as mentioned. Fur-
thermore, most DE methods with default settings produce
excessive numbers of DE genes, making downstream func-
tional enrichment analysis difficult and obscuring true sig-
nals caused by the perturbation itself to be detected. GenKI,
on the other hand, as a method independent of DE meth-
ods, provides additional evidence for gene functions. Most
of GenKI’s KO-responsive genes overlapped with DE genes
regardless of the DE method. With the default setting,
GenKI produced fewer significant genes than DE methods,
which may improve the interpretability of gene function. In
this sense, we are not developing an alternative to DE, but
rather a complementary technique that produces more tar-
geted results.

Real-data GenKI analysis predicts function of key transcrip-
tional factor STAT1

Above we have validated GenKI performance by compar-
ing the inference results to DE genes using three sScRNA-seq
data sets that all included WT and KO groups. We ques-
tioned whether GenKI is able to reveal gene functions of
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Figure 6. Venn diagrams and barcode enrichment plots showing the intersection and differences between the KO responsive genes given by GenKI and
DE genes. Venn diagram and barcode enrichment plot of (A) microglia data set, (B) lung data set and (C) intestine data set. All the numbers of overlapped
genes were significantly greater than random expectations (p-value < 10E-05, hypergeometric test).

any target gene from a standalone WT scRNA-seq data set
without pairing it with a KO counterpart, which should be a
more common occurrence when using virtual KO tools. We
obtained a data set from a study of 19 patients with severe
coronavirus disease 2019 (COVID-19) (54). It contains 8920
cells collected from nasopharyngeal and bronchial samples.
The study found that epithelial cells of COVID-19 patients
showed an average three-fold increase in expression of the
SARS-CoV-2 entry receptor ACE2, and signal transducer
and activator of transcription 1 (STAT1), a central tran-
scription factor of the interferon response, was among the
top predictors for ACE2 expression. Previous research also
shows that STATT is critical for virus clearance and disease
resolution, and STAT1-KO mice have impaired interferon
gamma (IFNG) signaling (55). In this virtual KO exper-
iment, we focused on a subpopulation of pulmonary ep-
ithelial cells differentiating from immature secretory cells
to ciliated cells. The original study demonstrated an alter-
native differentiation pathway leading from immature se-
cretory cells directly into ciliated cells mediated by these
IFNG-responsive epithelial cells, suggesting that this direct
differentiation pathway is dependent on the interferon re-
sponse (54).

We virtually knocked out STAT in these epithelial cells.
Firstly, we validated the robustness of our model by arti-
ficially adding different levels of random noise to the gene
expression profile (Supplementary Figure S8). The GenKI
analysis identified 28 STAT1-KO responsive genes (Supple-
mentary Table S10). STAT1 was ranked at the top, followed
by three human leukocyte antigen (HLA) genes (HLA-
DRA, HLA-DRBI, HLA-DPAL1), which are known to en-
code Class II major histocompatibility complex (class 11
MHC). Class I MHC, which are reported to be highly ex-
pressed only in antigen-presenting cells (APC), is induced
in other cell types as well by inflammation or IFNG (56).
Moreover, lysosomes are required for lysis of the protein
into peptides for class I MHC presentation to the immune
cells (57). In our inferred gene list, the lysosome-related
genes CTSB, CTSD, and CSTB were included, and were re-
lated to the antigen-presenting process. Previous research
indicates that the nuclear factor-k B (NF-kB) can be acti-
vated by IFNG (58). This is consistent with genes in the list
believed to participate in NF-kB-related pathways and in-
flammation. For example, ANXA1 is reported to have anti-
inflammation activity in lung endothelial cells and is able
to prevent lung fibrosis (59). GPX1 participates in the NF-
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Figure 7. STAT1-KO responsive genes inferred by GenKI. (A) GO terms significantly enriched in functions of STAT1-KO responsive genes. The —logjo-
transformed adjusted p-value indicates the strength of enrichment for each term. (B) STRING network consists of STAT1-KO responsive genes.

kB pathway and is crucial for respiratory virus infection
(60). S100 family proteins are well-characterized for their
function in inflammation and innate immunity (61). Ad-
ditionally, S100 proteins are damage-associated molecular
patterns (DAMP) that promote inflammation by binding
to the pattern-recognition protein (PRR) (62). HSPB1 and
HSPBS5 belonging to DAMP are also listed.

The result of GO enrichment analysis is presented in
Figure 7A and Supplementary Table S11. The neutrophil-
related pathways were ranked at the very top in the en-
richment analysis, suggesting the communication between
IRC and neutrophils, which is in agreement with the find-
ing of the original study (54). The interferon-gamma, class
IT MHC antigen-presenting, NF-kB, and innate immunity-
related pathways were also detected by the enrichment anal-
ysis. Thus, these results strongly suggest that the GenKI is
able to accurately predict the potential perturbed genes and
their shared functions. We further analyzed 28 genes using
STRING to understand their interaction (Figure 7B). The
resulting subnetwork, which contains significantly more in-
teractions than expected (p-value < 0.01, STRING inter-
action enrichment test), again suggests that these genes
are closely connected due to their shared biological func-
tions. This virtual KO study demonstrates that GenKI
can reliably predict gene functions and infer the molecu-
lar phenotypic consequences of genes of interest validated
by previous studies without the need for an actual KO
experiment.

GenKI is robust and scalable

To assess the robustness of GenKI inference, we collected
scRNA-seq data (63) from mouse neurons with Rett syn-
drome (RTT), a severe neurodevelopmental disorder. Mu-
tations in Mecp2, a transcriptional repressor required to
maintain normal neuronal functions, are known to cause
RTT (64,65). This data set contains two replicates with
2054 and 2156 neurons, respectively. We independently ana-
lyzed these two replicates with GenKI, in which we virtually
knocked out the same KO gene Mecp2. Given the high sim-
ilarity of these two biological replicates, GenKI would be
robust if it generated roughly equivalent gene ranks across
them. Indeed, we found high consistency between the rank-
ings of the two reported rank lists (Spearman’s correlation
coefficient p = 0.82).

Finally, we evaluated the computation efficiency of
GenKI. Supplementary Figure S9 shows the results of the
analysis, comparing the total running time with respect to
different sizes of input scRNA-seq data sets. The running
time for GenKI consists of sScGRN construction, training,
and inference. We simulated four random data sets at dif-
ferent scales for this comparison. Without using GPUs,
GenKI exhibited a 2.8- to 4.9-fold faster running speed than
scTenifoldKnk tested on equivalent hardware. GenKI is ex-
pected to run even faster by enabling the fast GPU imple-
mentation optimized by PyTorch Geometric (66).

DISCUSSION

In this study, we showcased the functionality and perfor-
mance of GenKI in virtual KO experiments. We first eval-
uated the inference performance of GenKI using simulated
data sets (SERGIO and BEELINE). Next, we used scRNA-
seq data sets generated in real KO experiments to show that
GenKI could predict gene functions by identifying and an-
notating KO-responsive genes. The functional predictions
were found to be consistent with original studies in which
WT and KO scRNA-seq data sets were generated.

Our main contribution in this work is to provide a neural
network-based virtual KO analytical tool, which encodes
the gene expression matrix to a latent space given its under-
lying scGRN. To the best of our knowledge, GenKI is the
first virtual KO tool using a graph-based generative model
to infer KO-responsive genes and their shared functions.
Several computational tools have been developed for similar
purposes to predict the effects of genetic perturbation us-
ing single-cell data. scGen (5) and CPA (6), both running in
a supervised manner, require massive training data labeled
with various perturbations to train their autoencoder-based
models. CellOracle (7) can simulate gene expression in re-
sponse to TFs perturbation by signal propagation through
its inferred scGRN. However, this simulation is linear and
does not quantify the level of perturbation at individual
gene level. More importantly, it requires scATAC-seq data
along with the corresponding scRNA-seq data to build
the scGRN prior to making such an inference, which may
limit its application. scTenifoldKnk (8) is the only virtual
KO tool with the identical input requirements as GenKI.
Like GenKI, scTenifoldKnk only requires WT scRNA-seq
data for its prediction analysis. It employs manifold align-
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ment (67) to project WT and virtual KO scGRNs to a
joint low-dimensional space and calculate the differences
between them. Given the minimalistic design, GenKI shares
with scTenifoldKnk several key advantages such as being
species agnostic—that is, they both work with scRNA-seq
data from humans and animal models alike. By applying
these tools directly to human data instead of surrogate an-
imals, researchers may avoid pitfalls caused by overextend-
ing their conclusions from animal models to humans. Addi-
tionally, both GenKI and scTenifoldKnk allow any gene to
be knocked out, regardless as to whether the KO genes are
functionally vital or not. Knocking out a vital gene tends
to cause fatal consequences and is, therefore, impractical to
generate animal models for its KO.

GenKI outperforms scTenifoldKnk in the following as-
pects. First, scTenifoldKnk only utilizes the WT scGRN,
while GenKI takes into account both the WT gene expres-
sion profile and scGRN. Second, the VGAE model, which
consists of two message passing layers, collects informa-
tion up to the second-order neighborhood of the network.
In contrast, manifold alignment adopted in scTenifoldKnk
only maintains the similarity of directly connected neigh-
bors of the network, which results in different levels of in-
ference power. In addition, GenKI shows better scalabil-
ity, being able to process tens of thousands of cells within
a reasonable time. Once the GenKI model is trained, the
model can be reused for virtual KO of any genes in the
data. While in order to do the same, scTenifoldKnk must
re-solve the manifold alignment problem for each KO gene
by eigen decomposition, which is considered computation-
ally intensive and time-consuming. Last, GenKI avoids a
pitfall in numerical computation in scTenifoldKnk. scTeni-
foldKnk performs a virtual KO experiment by removing the
edges of a KO gene in the scGRN, which results in an asym-
metric Laplacian matrix containing negative values. This
potentially leads to eigenvectors of the Laplacian matrix
with imaginary parts when solved by eigen decomposition.
scTenifoldKnk practically adds 1 to all entries in obtained
scGRNs to guarantee that all the entries are positive and
only uses the real parts of obtained eigenvectors. GenKI’s
architecture allows it to bypass this problem because it em-
ploys neural networks to solve the optimization problem,
which has been shown to be numerically more stable than
eigen decomposition (68).

We addressed the question that end users may often have,
i.e. ‘Are KO-responsive genes more likely to be differen-
tially expressed?” DE analysis, followed by gene function
enrichment analysis, are often used to identify the per-
turbed gene expression programs in order to understand
the function of the KO gene. The problem is that the per-
turbation effect of the KO gene may propagate on the un-
derlying network but may not direct reflected as observ-
able and measurable changes in gene expression. GenKI,
on the other hand, works on scGRNs directly to leverage
unobservable network-level information—GenKI identifies
perturbed genes through modelling underlying networks.
Therefore, in contrast to DE analysis that can only detect
perturbed genes with significant expression level changes,
GenKl is likely to detect perturbed genes even there are less
or no significant expression level changes. Perturbed genes
without expression level changes are not uncommon. For

instance, given a gene that is under control of multiple reg-
ulators, even if one of its regulators is knocked out, the re-
maining regulators may still be functioning to compensate
and stabilize the given gene’s expression. Additionally, with
the default setting, GenKI produced fewer significant genes
than a typical DE analysis, which may improve the inter-
pretability of gene function. In conclusion, GenKI is not
an alternative to DE analysis, but rather a complementary
technique that produces more targeted results.

The limitations of GenKI are mostly inherited from it
being virtual. GenKI cannot be used to predict the regula-
tory direction of KO-responsive genes, which is important
in learning cell responses to external stimuli (69). If future
refinements enable directional predictions, GenKI may im-
prove with its potential ability to simulate the effect of over-
expression. Also, GenKl, like scTenifoldKnk, currently per-
forms a virtual KO experiment by removing all the edges
of a KO gene in the WT scGRN. This action might be
naive given the complexity of a biological system. A virtual
KO scGRN could be better modeled by simulating the vir-
tual KO effect in a more probabilistic manner. Alternatively,
there are many available priors involved in many different
types of KO; hence a Bayesian treatment may facilitate the
KO inference. GenKI is also inapplicable to bulk RNA-seq
data, as genes in such data lose their variability in terms
of gene expressions, which results difficulty in scGRN con-
struction using PC regression and assigning expression val-
ues to node attributes in a graph. Recent advances in cell
pseudo-temporal ordering enable us to map the underlying
scGRNs throughout time (70,71) and eventually learn tem-
poral KO effects including cell-cell communication (72) in
a dynamic manner. GenKI can be improved by incorporat-
ing a dynamic inference module to investigate such effects
on cell or organ development.
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