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ABSTRACT

Purpose: Severe asthma (SA) is characterized by persistent airway inflammation and 
remodeling, followed by lung function decline. The present study aimed to evaluate the role 
of tissue inhibitor of metalloproteinase-1 (TIMP-1) in the pathogenesis of SA.
Methods: We enrolled 250 adult asthmatics (54 with SA and 196 with non-SA) and 140 healthy 
controls (HCs). Serum TIMP-1 levels were determined by enzyme-linked immunosorbent 
assay. The release of TIMP-1 from airway epithelial cells (AECs) in response to stimuli as well 
as the effects of TIMP-1 on the activations of eosinophils and macrophages were evaluated in 
vitro and in vivo.
Results: Significantly higher levels of serum TIMP-1 were noted in asthmatics than in HCs, 
in the SA group than in non-SA group, and in the type 2 SA group than in non-type 2 SA 
group (P < 0.01 for all). A negative correlation between serum TIMP-1 and FEV1% values 
(r = −0.400, P = 0.003) was noted in the SA group. In vitro study demonstrated that TIMP-1 
was released from AECs in response to poly I:C, IL-13, eosinophil extracellular traps (EETs) 
and in coculture with eosinophils. TIMP-1-stimulated mice showed eosinophilic airway 
inflammation, which was not completely suppressed by steroid treatment. In vitro and in 
vivo functional studies showed that TIMP-1 directly activated eosinophils and macrophages, 
and induced the release of EETs and macrophages to polarize toward M2 subset, which was 
suppressed by anti-TIMP-1 antibody.
Conclusions: These findings suggest that TIMP-1 enhances eosinophilic airway inflammation 
and that serum TIMP-1 may be a potential biomarker and/or therapeutic target for type 2 SA.

Keywords: Asthma; TIMP-1; inflammation; airway remodeling; eosinophils; macrophages; 
epithelial cells

INTRODUCTION

Asthma is a chronic airway inflammatory disease presenting various phenotypes and 
endotypes.1 Asthma endotypes are clinically stratified into type 2 and non-type 2 asthma 
based on type 2 biomarkers (total eosinophil count [TEC], sputum eosinophils, and total 
immunoglobulin E [IgE]).1,2 Type 2 asthma is characterized by allergic mechanisms through 
the activation of T helper 2 (Th2) lymphocytes and/or by non-allergic mechanisms through 
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the activation of group 2 innate lymphoid cells (ILC2), leading to the overproductions 
of type 2 cytokines with eosinophilia.2,3 Severe asthma (SA) is characterized by recurrent 
asthma exacerbations, persistent blood/sputum eosinophilia, and low lung function even 
on maintenance medication (including inhaled corticosteroids [ICS] and long-acting 
beta-agonist [LABA]).4,5 There are unmet needs for identifying prognostic markers and new 
targets for SA in clinical practice.1,4

Airway epithelial cells (AECs) are the first-line defense cells to communicate between 
external and internal respiration,6-8 and AECs-derived cytokines (e.g., interleukin [IL]-33 
and thymic stromal lymphopoietin [TSLP]) induce the activation of immune cells such as 
eosinophils, mast cells, and macrophages.9 Various mediators released from immune cells 
(vascular endothelial growth factor [VEGF], IL-13, and eosinophil extracellular traps [EETs]) 
induce tight junction disruption and epithelial-mesenchymal transition process, contributing 
to airway obstruction and remodeling in SA.10-14 Therefore, AECs-derived cytokines could be 
critical biomarkers and/or therapeutic targets for SA.

Tissue inhibitor of metalloproteinase-1 (TIMP-1) is a member of the TIMP family, inhibiting 
metalloproteinases in airway that lead to the accumulation of extracellular matrix 
components. AECs are the major source of TIMP-1 in response to various stimuli.15-18 
High levels of TIMP-1 have been shown to be involved in lower FEV1% in asthma, chronic 
obstructive pulmonary disease, and allergic rhinitis.19-21 Regarding its relationship with 
matrix metallopeptidase 9 (MMP-9) in asthma, increased MMP-9/TIMP-1 ratio was associated 
with airway neutrophilia,22 while decreased ratio (due to increased TIMP-1 level) was related 
to lower lung function.23 Therefore, we hypothesized that TIMP-1 released from AECs may 
enhance airway inflammation and remodeling through interacting with type 2 immune 
cells (including eosinophils, mast cells, and macrophages). This study aimed to investigate 
1) the clinical significance of TIMP-1 in association with clinical parameters in SA, 2) TIMP-
1 production from AECs under various stimuli, 3) the effect of TIMP-1 on eosinophils/
macrophages in the context of activation and EET formation in vitro, and 4) the effects of 
TIMP-1 and anti-TIMP-1 antibody on airway inflammation in vivo.

MATERIALS AND METHODS

Study subjects
This study enrolled 250 asthmatics (age ≥ 18 years) and 140 healthy controls (HCs, age ≥ 
18 years) from Ajou University Hospital (Suwon, Korea). Asthma was defined according to 
the Global Initiative for Asthma (GINA) 2020 guideline; the diagnosis of SA was confirmed 
according to the American Thoracic Society/European Respiratory Society guideline.24 We 
excluded patients having 1) autoimmune diseases, 2) systemic inflammatory diseases, or 3) 
who were using or had used type 2 biologics within 180 days.

Atopy was determined by a positive skin prick test for at least one of the following common 
inhalant allergens: Dermatophagoides pteronyssinus, Dermatophagoides farinae, cat, dog, cockroach, 
tree pollen mixture, grass pollen mixture, mugwort, ragweed, and Alternaria spp. Lung 
function parameters were assessed using spirometry.25 TEC, sputum eosinophils and 
neutrophils (%) were calculated as previously described.26 The ImmunoCAP system was used 
to determine total IgE levels in sera (Thermo Fisher Scientific, Waltham, MA, USA). Patients 
with type 2 asthma were defined according to TEC (greater than or equal to 150 cells/µL) and/
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or sputum eosinophils (greater than or equal to 2%) and/or serum total IgE (greater than 
or equal to 150 kU/L).2,27 All the study subjects submitted informed consent, and this study 
was approved by the Institutional Review Board of Ajou University Hospital (AJIRB-GEN-
SMP-13-108, AJIRB-BMR-SUR-15-498).

The production of TIMP-1 from AECs
Two human AECs (type II alveolar epithelial cell line [A549] and primary small airway 
epithelial cells [SAECs]) were purchased from the American Type Culture Collection (ATCC, 
Manassas, VA, USA). A549 cells were cultured in RPMI-1640 medium (Gibco, Grand Island, 
NY, USA) supplemented with 10% fetal bovine serum (FBS, Gibco), and 1% penicillin-
streptomycin (Gibco). SAECs were cultured in AEC basal medium (ATCC) plus bronchial 
epithelial cell growth kit (ATCC), 1% penicillin-streptomycin, and 25 ng/mL amphotericin B 
(Sigma-Aldrich, St. Louis, MO, USA).

SAECs (1 × 105) or A549 cells (2 × 105) were stimulated with poly I:C (1 or 10 µg/mL; Sigma-
Aldrich), IL-13 (10 or 100 ng/mL; R&D Systems, Minneapolis, MN, USA), or phorbol myristate 
acetate (PMA)-induced EETs (100 ng/mL) for 24 hours or cocultured with 5 × 105 peripheral 
blood eosinophils (PBEs) from asthmatics for 18 hours. AECs were pretreated with 1 or 10 µg/
mL dexamethasone (Dex; Sigma-Aldrich) for 30 minutes to evaluate its suppressive effect. 
Supernatants were collected for ELISA.

Human immune cell isolation
Human immune cells, such as PBEs and classical monocytes, were isolated from peripheral 
bloods of asthmatics (SA and non-SA) using Eosinophil Isolation Kit and Pan Monocyte 
Isolation Kit (Miltenyi Biotec Inc., Auburn, CA, USA) as previously described.28 The cells 
were rested in RPMI-1640 supplemented with 10% heat-inactivated FBS and 1% penicillin-
streptomycin for 30 minutes before the following experiments.

The effects of TIMP-1 on human PBEs
PBEs (1 × 106) were stimulated with 100 ng/mL human TIMP-1 protein (R&D Systems) in 
RPMI-1640 medium supplemented with 2% FBS and 1% penicillin-streptomycin in a time-
dependent manner. In some conditions, cells were pretreated with 1 µg/mL Dex or 1 µg/mL  
anti-CD63 antibody (Santa Cruz Biotechnology, Inc., Dallas, TX, USA) for 30 minutes, 
followed by 100 ng/mL TIMP-1 for 1 hour (for reactive oxygen species [ROS] quantification), 3 
hours (for ELISA and migration assay), and 6 hours (for confocal laser scanning microscopy).

To measure the extracellular levels of ROS, PBEs were stained with 2'7′ dichlorofluorescein 
diacetate (H2DCFDA) (Life Technologies, Eugene, OR, USA) for 30 minutes before the 
stimulated process. For migration assay, isolated PBEs were stained with 2 µmol calcium 
aceto-methyl ester (Life Technologies) and then pretreated with Dex or anti-CD63 antibody 
for 30 minutes. Cells were seeded on the upper chamber with a 3.0-µm-pore trans-well plate 
(Neuro Probe, Gaithersburg, MD, USA), while phenol red-free RPMI medium containing 100 
ng/mL TIMP-1 was added to the lower chamber, and then the trans-well plate was incubated 
for 3 hours at 37°C. ROS in supernatants was read at 480 nm for excitation wavelengths and 
at 520 nm for emission wavelengths under a fluorescence microplate reader (Synergy HT; 
BioTek Instrument, Inc., Winooski, VT, USA).

To detect the levels of EETs released from TIMP-1-stimulated PBEs, 5 × 106 cells were 
suspended in phenol red-free RPMI with 2% FBS and antibiotics, and then seeded on 
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24-well plate and stimulated with 100 ng/mL TIMP-1 for 6 hours. Next, cells were gently 
washed 3 times with phosphate buffered saline (PBS). The wells were added 500 µL phenol 
red-free RPMI plus 1 U/mL micrococcal nuclease (Thermo Fisher Scientific) and incubated 
for 20 minutes at 37°C, followed by centrifugation at 300 g at 4°C for 10 minutes to remove 
cell debris. The supernatants were used to detect the levels of dsDNA using Quanti-iTTM 
PioGreen® dsDNA kits (Invitrogen, Paisley, UK).

The effects of TIMP-1 on human mast cell line (LAD-2)
LAD-2 cells were provided by the National Institute of Allergy and Infectious Diseases 
(Bethesda, MD, USA) and cultured in StemPro-34 medium (Life Technologies) supplemented 
with 2 mM L-glutamine (Gibco), 1% penicillin-streptomycin, and 100 ng/mL recombinant 
human stem cell factor (R&D Systems). LAD-2 cells (5 × 104 cells) were stimulated with 10 
ng/mL human simultaneous biotinylated-IgE (BioPorto Diagnostics, Hellerup, Denmark) 
with or without 100 ng/mL TIMP-1 in serum-free StemPro-34 medium plus 1% penicillin-
streptomycin for 24 hours. To create cross-linking of 2 IgE molecules on LAD-2 cells, 100 ng/
mL streptavidin-horseradish peroxidase conjugate having the ability to bind to biotinylated 
proteins was added to supernatants for 6 hours before harvesting. In some conditions, cells 
were pretreated with 1 µg/mL Dex for 30 minutes. Supernatants were collected for ELISA.

The effects of TIMP-1 on human macrophages
Human macrophages were derived from classical monocytes as previously reported.29 Briefly, 
isolated monocytes (1 × 106) were maintained in 1mL RPMI-1640 supplemented with 10% 
heat-inactivated FBS and 1% penicillin-streptomycin for 7 days to polarize toward human 
macrophages. Subsequently, cells were stimulated with TIMP-1 for 3 days in a dose-dependent 
manner (1, 10, and 100 ng/mL). In some conditions, cells were pretreated with 1 µg/mL Dex 
or 1 µg/mL anti-CD63 for 30 minutes, followed by 100 ng/mL TIMP-1 for 3 days. Supernatants 
and cells were then collected for ELISA and western blotting/flow cytometry, respectively.

The effects of TIMP-1 on airway inflammation and remodeling in vivo 
Female 6-week-old BALB/c mice were purchased from Jackson Laboratory (Bar Harbor, 
ME, USA) and maintained under specific pathogen-free conditions. All experiments were 
approved by the Institutional Animal Care and Use Committee of Ajou University (IACUC 
2021-0007). To assess the effect of TIMP-1 on airway inflammation, mice were stimulated 
with TIMP-1 (Supplementary Fig. S1). Mice were intranasally administered with 5 µg/kg 
mouse TIMP-1 protein (R&D Systems) for 7 days (TIMP-1 group). As controls, mice were 
intranasally stimulated with PBS (PBS group). To evaluate the effect of Dex treatment on the 
effects of TIMP-1, mice were treated with 1 mg/kg Dex (TIMP-1/Dex group) for 30 minutes 
before TIMP-1 stimulation. Mice were sacrificed 24 hours after the last stimulation.

To validate the role of TIMP-1 in airway inflammation and remodeling, the mouse model with 
secondary ovalbumin (OVA) challenge was established in this study (Supplementary Fig. S2),  
which is a chronic allergic asthma mouse model (representing severe allergic asthma), where 
2% OVA exposure was repeated and the airway presents eosinophilia accumulation and 
chronic pulmonary remodeling.30 Mice were randomly divided into 4 groups (n = 5 for each 
group): 1) the OVA-sensitized and PBS-challenged mice (OVA/PBS/PBS); 2) the OVA-sensitized, 
challenged, and isotype-treated group (OVA/OVA/Iso); 3) the OVA-sensitized, challenged, and 
Dex-treated group (OVA/OVA/Dex); and 4) the OVA-sensitized, challenged, and anti-TIMP-1-
treated group (OVA/OVA/Anti-TIMP-1). On days 1 and 14, mice were intraperitoneally sensitized 
with 10 μg/mL OVA (Sigma-Aldrich) with Imject™ Alum Adjuvant (Thermo Fisher Scientific). 
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On days 28–30 and 43–45, the mice were challenged with 2% OVA for 30 minutes using an 
ultrasonic nebulizer (KTMED Inc., Seoul, Korea). For the treated-mice groups, mice were 
intranasally treated with 50 µg/kg anti-TIMP-1 (R&D Systems) or intraperitoneally injected 
with 1 mg/kg Dex before the challenge. Mice were assayed 24 hours after the final challenge.

The degree of airway hyperresponsiveness (AHR) to inhaled methacholine (Sigma-Aldrich) 
was examined for the chronic allergic asthma mouse model using the FlexiVent System 
(SCIREQ, Montreal, Canada). To evaluate the degree of airway inflammation and remodeling, 
bronchoalveolar lavage fluid (BALF) and lung tissues were collected for ELISA and western 
blotting, respectively. BALF was collected by washing with PBS plus 1% bovine serum 
albumin (BSA, Sigma-Aldrich) through a cannula and centrifuged at 1,200 rpm, for 5 minutes 
and at 4°C. The fixed tissues were sectioned at 5-µm thickness. Hematoxylin, eosin and 
Masson’s trichrome staining were conducted for the lung tissues to investigate the levels of 
immune cell infiltration and collagen, respectively.

To analyze CD marker expression, single cells were isolated after pulmonary tissue 
homogenization for flow cytometry assay. The homogenization of the whole lung tissue was 
processed in RPMI-1640 medium with collagenase/hyaluronidase (StemCell Technologies 
Inc., Biotech & Pharma, Vancouver, BC, Canada) and DNase I (StemCell).31

ELISA
ELISA kits were used as follows: human IL-5, IL-13, IL-33, TIMP-1, MMP-9, and VEGF (R&D 
Systems); mouse MMP-9, TIMP-1, VEGF, IL-5, IL-13, and IL-33 were measured according 
to the manufacturer’s instructions (R&D Systems). Human eosinophil-derived neurotoxin 
(EDN) from SKIMS-BIO (Seoul, Korea) and mouse EDN from MyBioSource (Biotech & 
Pharma) were measured according to the manufacturer’s instructions.

Western blotting
To detect protein expression, antibodies were used as follows: major basic protein (MBP), 
CD68, and CD163 from Abcam (Cambridge, MA, USA); E-cadherin and phosphorylated form 
of phosphatidylinositol 3-kinases (PI3K) from Cell Signaling (Danvers, MA, USA); CD63 and 
β-actin from Santa Cruz Biotechnology; glyceraldehyde 3-phosphate dehydrogenase from 
Proteintech (Rosemont, IL, USA).

Flow cytometry
Human macrophages or murine single cells from the lung tissues were blocked with the Fc 
Receptor Binding Inhibitor Polyclonal Antibody (Thermo Fisher Scientific) for 20 minutes 
before the staining procedure. The eBioscience™ Intracellular Fixation & Permeabilization 
Buffer Set (Carlsbad, CA, USA) was used in the process of intracellular staining.

Human macrophages: 1 × 106 single cells were extracellularly stained with antibodies in 
fluorescent activated cell sorting (FACS) buffer (2% FBS in PBS) as follows: fluorochrome-
conjugated anti-CD206 and anti-CD11c antibodies. Then, cells were intracellularly stained 
with anti-CD68 antibody. Human M2 macrophages were defined as CD68+CD11c−CD206+ cells.

Mouse macrophages: 1 × 106 single cells were extracellularly stained with antibodies in FACS 
buffer as follows: fluorochrome-conjugated anti-CD45, anti-F4/80, anti-CD206, and anti-
CD11c antibodies. Mouse M2 macrophages were defined as F4/80+CD45+CD11c−CD206+ cells.
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Mouse ILC2: 1 × 106 single cells from the lung tissues were extracellularly stained with 
antibodies as follows: fluorochrome-conjugated anti-CD45, anti-Lineage, anti-CD278, and anti-
CD90.2 antibodies. Mouse ILC2 cells were defined as CD45+Lineage−CD90.2+CD278+ cells.

All monoclonal antibodies were purchased from BD Biosciences (San Diego, CA, USA). 
Stained cells were analyzed with BD FACSCantoTM II (BD Biosciences), and graphs were 
produced using FlowJo software. Cell viability was achieved above 99.0% in the procedure 
of dissociation or isolation as determined by using the fixable viability dye eFlourTM 780 
purchased from eBioscience (San Diego, CA, USA). Individual isotype controls were used to 
exclude nonspecific binding. Flow cytometry for the evaluations of human macrophage and 
mouse ILC2 are shown in Supplementary Fig. S3.

Immunofluorescence with confocal microscope
For the detection of EETs, PBEs were stained with EDN, CD63, and 4’,6-diamidino-2-
phenylindole (DAPI, Sigma-Aldrich) as previously described.32 Cells were blocked with 
5% BSA in 10% normal donkey serum (Abcam) and incubated overnight with appropriate 
primary antibodies.

For the detection of inflammatory levels in murine lung tissues, the fixed tissues were 
deparaffinated and rehydrated. The slides were blocked with 5% BSA in 10% normal donkey 
serum (Abcam) at room temperature for 1 hour and stained with MBP, CD63, and DAPI.29

After primary antibody incubation, cells/slides were stained with Alexa Flour 488-conjugated 
donkey anti-rabbit and 594-conjugated donkey anti-mouse (Thermo Fisher Scientific) for 1 
hour. The slides were stained with DAPI (1:1,000) for 5 minutes. Fluorescent images were 
acquired using confocal laser scanning microscopy at the Three-Dimensional Immune 
System Imaging Core Facility (LSM710; Cal Zeiss Microscopy GmbH, Jena, Germany).

Statistical analysis
IBM SPSS for Windows, version 22 was used to analyze clinical data (SPSS Inc., Chicago, 
IL, USA). GraphPad Prism version 8.4.3 was also used to analyze the findings of the 
experiment (GraphPad Software Inc., San Diego, CA, USA). Regarding continuous variables, 
multiple groups were compared by using the Kruskal-Wallis test with Dunn’s post hoc test 
or one-way analysis of variance with the Bonferroni post hoc test. To compare 2 groups, the 
Mann-Whitney U test was used. Regarding categorical variables, the Pearson’s χ2 test was 
used. The correlations between TIMP-1 levels and other clinical parameters were evaluated 
using Spearman correlation. Receiver operating characteristic (ROC) curve analysis was 
performed to discriminate type 2 SA from non-type 2 SA. Data are presented as median 
with interquartile range or mean ± standard deviation. Significant differences were set at 
P < 0.05. Illustrative images were created with Servier Medical Art (https://smart.servier.
com/), licensed under a Creative Commons Attribution 3.0 Unported License (https://
creativecommons.org/licenses/by/3.0/).

RESULTS

Clinical characteristics and serum cytokine levels of the SA and non-SA groups
The demographics of the study subjects are presented in Supplementary Table S1. When 
compared to HCs, asthmatics were older, and had higher prevalence of atopy and levels of 
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serum total IgE (P = 0.001 for all). The SA group had lower FEV1% and FVC% (P = 0.002 for 
FEV1% and P = 0.001 for FVC%), and higher TEC (P = 0.042) than the non-SA group, while no 
differences were noted in sputum eosinophils and neutrophils between the 2 groups.

MMP-9 activates cytokines, such as tumor necrosis factor-alpha, VEGF, transforming growth 
factor-β1 and IL-1β, and upregulates tissue remodeling in collaboration with TIMP-1 in 
SA.20,23,33 Severe asthmatics had higher levels of serum EDN.34,35 Serum VEGF was suggested 
as a marker for acute asthma exacerbation.36 The present study demonstrated higher levels 
of serum TIMP-1 in asthmatics (median [interquartile range], 147.7 [104.2–221.0] ng/mL) 
than in HCs (91.8 [71.5–144.7], P < 0.001; Supplementary Table S1, Fig. 1A), in the SA group 
(186.3 [124.2–268.4] ng/mL) than in the non-SA group (144.6 [94.3–209.5] ng/mL, P = 0.001; 
Supplementary Table S1, Fig. 1B), and in the type 2 SA group (220.4 [164.7–312.4] ng/mL) 
than in the non-type 2 SA group (133.9 [103.7–194.6] ng/mL, P < 0.01; Fig. 1B). In addition, the 
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Fig. 1. Increased levels of serum TIMP-1 in patients with SA. Comparisons of serum TIMP-1 levels between (A) HCs (n = 140) and asthmatic patients (n = 250), 
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ROC curve analysis showed a cutoff level of serum TIMP-1 (165.2 ng/mL) for differentiating 
type 2 SA from non-type 2 SA (area under the curve: 0.790, sensitivity: 75.8%, specificity: 
71.4%, P < 0.001; Fig. 1C). Serum MMP-9 levels were significantly higher in asthmatics (208.7 
[78.9–388.7] ng/mL) than in HCs (135.5 [69.8–298.2] ng/mL, P = 0.016), no difference was 
observed between the SA and non-SA groups (Supplementary Table S1, Fig. 1D and E). Serum 
TIMP-1 levels had a negative correlation with FEV1% values in the SA group (r = −0.400, P = 
0.003), but not in the non-SA group (P = 0.990; Fig. 1F). The serum VEGF levels were not 
different between asthmatics (71.0 [33.8–133.5] pg/mL) and HCs (109.0 [80.4–185.6] pg/mL, P 
> 0.05), significantly higher VEGF level was noted in the SA group (114.6 [62.9–170.6] pg/mL) 
than in the non-SA group (66.2 [29.9–122.2] pg/mL, P = 0.005; Supplementary Table S1).

Asthmatics were classified into the TIMP-1-high and TIMP-1-low groups at the cutoff value 
(the mean plus 2 standard deviations of HCs, 250.5 ng/mL), and the laboratory parameters 
were compared between the 2 groups as shown in Supplementary Table S2. The TIMP-1-
high group was older and had significantly lower FEV1%, higher prevalence of type 2 SA, and 
higher levels of serum MMP-9, VEGF, and EDN than in the TIMP-1-low group (P < 0.05 for 
all). No differences were found in TEC or sputum eosinophils and neutrophils (%) between 
the 2 groups (P > 0.05 for all). Moreover, the predictability of each parameter for SA was 
analyzed by using univariate and multivariate logistic regression analyses (Supplementary 
Table S3). TEC and serum levels of MMP-9 and TIMP-1 were identified to be significant 
parameters associated with the phenotype of SA in univariate analysis (P = 0.04 for TEC, P 
= 0.02 for MMP-9, and P = 0.001 for TIMP-1); however, multivariate analysis demonstrated 
that serum TIMP-1 levels remained a significant parameter for predicting SA (odds ratio [95% 
confidence interval], 1.012 [1.004–1.021], P = 0.002).

TIMP-1 release from AECs
While poly I:C and IL-13 were related type 2 asthma, lipopolysaccharide (LPS) and IL-17A were 
the key factors for the induction of non-type 2 asthma.7 The present study demonstrated that 
TIMP-1, but not MMP-9, was mainly released from AECs in response to poly I:C and IL-13 (P < 
0.001; Fig. 2A and B, Supplementary Fig. S4A and B), but not released from LPS- or IL-17A-
stimulated AECs (data not shown). Eosinophilia and high EET-forming eosinophils have been 
reported to be key findings in SA.4 When AECs were cocultured with PBEs from asthmatics 
or stimulated with PMA-induced EETs, significantly higher levels of TIMP-1, but not MMP-9, 
were released from AECs (P < 0.001 for all; Fig. 2C and D, Supplementary Fig. S4C and D). 
The TIMP-1 levels released from AECs in response to poly I:C, IL-13, EETs, and in coculture 
with eosinophils were not suppressed by Dex treatment (Fig. 2).

The effects of TIMP-1 on PBEs
As CD63 receptor (the key receptor of TIMP-1) expressed on resting and activated 
eosinophils,37 its expression in eosinophils was compared between the SA and non-SA groups 
(Fig. 3A). As a result, more significant expressions of CD63 and MBP were observed in the SA 
group than in the non-SA group. Moreover, potential mechanisms by which TIMP-1 activates 
PBEs were evaluated. The expression of phosphorylation form of PI3K and MBP in PBEs (from 
asthmatics) were increased in a time-dependent manner after TIMP-1 stimulation (Fig. 3B). 
When PBEs were incubated with TIMP-1, significantly higher levels of EDN and ROS releases 
were noted (P < 0.001 for both; Fig. 3C and D). TIMP-1 induced the recruitment of eosinophils 
as evaluated by trans-well migration assays (P < 0.001; Fig. 3E). Furthermore, TIMP-1 
significantly induced the formation of EETs in severe asthmatics as observed by confocal 
assays (Fig. 3F and G). When quantification of EETs levels was observed by the PicoGreen 
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assay, TIMP-1 induced greater production of EETs (P < 0.001; Fig. 3H). Anti-CD63 or Dex 
treatment markedly suppressed TIMP-1-induced eosinophil recruitment and ROS release (P < 
0.05 for both; Fig. 3D and E). However, the levels of EDN and EETs were reduced by anti-CD63 
antibody, but not by Dex treatment (Fig. 3C and F-H), suggesting that TIMP-1 may contribute 
to steroid insensitivity in the EET-mediated airway inflammation in SA.

The effect of TIMP-1 on LAD-2 cells
Because IgE-dependent mechanism induces surface expression of CD63 on mast cell 
surface,38 we evaluated the effects of TIMP-1 on mast cell activation. The combination of 
TIMP-1 and IgE induced significantly greater release of IL-5, IL-13, and IL-33 from LAD-2 
cells compared to IgE alone (P < 0.05 for all; Supplementary Fig. S5A-C). In addition, TIMP-1 
alone significantly induced IL-13 release from LAD-2 cells (Supplementary Fig. S5B).

The effects of TIMP-1 on human macrophages
Macrophage activation and polarization toward M2 subset contribute to chronic airway 
inflammation and remodeling in the pathogenesis of type 2 asthma.39 The present study 
evaluated the effects of TIMP-1 on macrophage polarization by applying western blotting and 
flow cytometry using M2 markers (CD68+CD11c−CD206+ cells). The increased expression 
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of CD68 and CD163 and percentage of M2 macrophage markers were found, when human 
macrophages were stimulated with TIMP-1 (Fig. 4A-C). When macrophages were treated 
with anti-CD63 or Dex, TIMP-1-induced M2 marker expressions (by flow cytometry) were 
significantly decreased (24.1% vs. 15.4% for Dex and 24.1% vs. 13.5% for anti-CD63; Fig. 4C). 
Moreover, VEGF levels released from M2 macrophages were increased in response to TIMP-1 
in a dose-dependent manner, which was suppressed by Dex and anti-CD63 (Fig. 4D and E).
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The effects of TIMP-1 on airway inflammation in mice
To validate the effects of TIMP-1 on airway inflammation in vivo, mouse TIMP-1 protein 
was used to stimulate the murine airways. The optimal dose of TIMP-1 was determined in 
the preliminary study, in which 5 µg/kg TIMP-1 treatment was able to induce eosinophil 
recruitment, EDN production, and MBP expression (Supplementary Fig. S6). After 7-day 
stimulation, eosinophils (but not neutrophils) were significantly trafficked and recruited 
to the murine lung tissues in the TIMP-1 group compared to the PBS group (Fig. 5A). In 
addition, TIMP-1-stimulated mice showed significantly higher levels of EDN and dsDNA in 
the BALF with increased expression of MBP and CD63 in the lung tissues compared to the 
PBS group, which were not suppressed by Dex (Fig. 5B-E). Increased immune cell infiltration, 
collagen overproduction, and higher percentage of M2 macrophages in the lung tissues as 
well as higher levels of VEGF in the BALF were noted in the TIMP-1 group compared to the 
PBS group (Fig. 5D and F-G).

When type 2 cytokines and ILC2 count were evaluated, the number of ILC2 was significantly 
higher in the lung tissues of the TIMP-1 group than in the PBS group (Supplementary Fig. S1B). 
Significantly higher levels of IL-5 and IL-13 were noted in the BALF of the TIMP-1 group than in 
the PBS group (P < 0.001 for all; Supplementary Fig. S1C and D). To evaluate the direct effects of 
TIMP-1 on ILCs, ILCs isolated from HCs were treated with/without TIMP-1 for 3 days. However, 
TIMP-1 failed to stimulate ILC activation and polarization (data not shown), suggesting the 
effects of TIMP-1 on ILC2 may be mediated by EET formation rather than direct activation.

The effects of anti-TIMP-1 treatment in vivo
TIMP-1 was released from AECs in response to poly I:C and IL-13 in vitro. Increased levels of 
TIMP-1 in the BALF of 2 mouse models, the poly I:C-infected acute allergic asthma mouse 
model and the chronic allergic asthma mouse model, were evaluated.29,30 The present study 
used a mouse model of chronic allergic asthma, because 1) the levels of TIMP-1 were higher 
in the chronic allergic asthma mouse model than in the poly I:C-infected acute allergic 
asthma (data not shown); and 2) high TIMP-1 levels were related to chronic inflammatory 
diseases.20,21,40 The AHR, eosinophil count, EDN, and released dsDNA levels in the BALF 
were significantly higher in the OVA/OVA/Iso group, which were suppressed by anti-TIMP-1 
treatment (Fig. 6A-D). Higher levels of TIMP-1 were noted in the OVA/OVA/Iso group and 
positively correlated with the levels of IL-33 (Fig. 6E, Supplementary Fig. S2F). Dex treatment 
markedly reduced MMP-9 secretion in the BALF but did not affect TIMP-1 levels (Fig. 6E, 
Supplementary Fig. S2E). An increased number of double-positive cells (CD63 plus MBP) 
was noted in the peri-bronchial area of the OVA/OVA/Iso group (Fig. 6F and G). Moreover, the 
expression of E-cadherin was downregulated in the OVA/OVA/Iso group, which was restored 
by Dex and anti-TIMP-1 treatment (Fig. 6G).

The percentages of M2 macrophage were significantly higher in the OVA/OVA/Iso group 
than in the OVA/PBS/PBS group (Fig. 7A). Anti-TIMP-1 or Dex significantly suppressed OVA-
induced M2 macrophage in the lung tissues and VEGF levels in the BALF (Fig. 7B and C). The 
percentage of pulmonary ILC2 and levels of IL-5 and IL-13 in the BALF and were significantly 
higher in the OVA/OVA/Iso group, which were markedly suppressed by anti-TIMP-1 treatment 
(Supplementary Fig. S2B-D).
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DISCUSSION

Although there have been a few studies reporting the effect of TIMP-1 on airway remodeling 
in asthma,41-43 the role of TIMP-1 has not been fully understood in SA. The present study 
demonstrated the mechanism by which TIMP-1 enhances type 2 airway inflammation in SA. 
The SA group had higher serum TIMP-1 levels than non-SA group with a negative correlation 
between serum TIMP-1 and FEV1% values. Asthmatics with type 2 SA had higher serum 
TIMP-1 levels than those with non-type 2 SA. Asthmatics with higher serum TIMP-1 levels 
had higher levels of serum EDN and VEGF. The in vitro and in vivo studies demonstrated that 
TIMP-1 could induce eosinophil activation, EET formation, and M2 polarization, enhancing 
persistent eosinophilic airway inflammation, which was not suppressed by Dex. These 
findings suggest that serum TIMP-1 may be a potential biomarker and/or a therapeutic target 
for type 2 SA.

Airway and blood eosinophilia have been shown to closely correlate with frequent asthma 
exacerbations and lung function decline in SA; identification of serum markers for predicting 
the phenotype of SA is required.1,4 Previous studies reported that sputum TIMP-1 levels were 
significantly higher in patients with SA than in those with non-SA.42 Sputum TIMP-1 has been 
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suggested as a useful biomarker for classifying GINA 4/5 phenotypes in asthmatics.43 The 
present study replicated significantly higher serum TIMP-1 levels in SA (especially in type 
2 SA) than in non-SA. The in vitro studies supported TIMP-1-induced eosinophil activation 
and EET release through the CD63/PI3K signaling axis, contributing to AHR and steroid 
resistance.44,45 EETs in SA directly activated eosinophils (autocrine function) and stimulated 
AECs to release alarmins (IL-33 and TSLP), contributing to type 2 airway inflammation in 
SA.13,46 Taken together, TIMP-1 could enhance eosinophilic airway inflammation via the TIMP-
1-CD63-eosinophils-EETs axis, contributing to the phenotype of type 2 SA.

Patients with severe eosinophilic airway inflammation showed progressive airway 
remodeling,6,44,45 and released mediators, such as IL-13 and VEGF, involved in vascular 
proliferation and airway remodeling.6,8 In addition, activated mast cells and macrophages 
(expressing CD63 receptors) are closely associated with eosinophil activation and airway 
remodeling in SA.38,47 Mast cell activation through IgE-dependent mechanisms induces 
high levels of type 2 inflammatory cytokines (IL-4, IL-5, and IL-13). The present study 
demonstrated that: 1) TIMP-1 stimulated mast cells to release IL-13; 2) TIMP-1 enhanced 
IgE-induced mast cell degranulation with the release of IL-5 and IL-33. IL-5 stimulates 
eosinophils to induce recruitment and activation as well as longer survival.48 IL-13 is 
essential in chronic airway remodeling processes (via increasing mucus overproduction, 
goblet cell metaplasia, and smooth muscle hypertrophy); additionally, IL4- and IL13-
induced macrophage polarization toward M2 subset releases proinflammatory cytokines 
(transglutaminase 2, CCL17, and CCL22), enhancing eosinophilic inflammation and Th2 
cell recruitment in patients with SA.49,50 The present study demonstrated that TIMP-1 could 
induce M2 macrophage polarization, as evaluated in both human and mouse macrophages, 
and trigger airway remodeling in association with VEGF released from macrophages.50 These 
findings indicate that TIMP-1 may indirectly up-regulate airway remodeling through activated 
mast cells and macrophages.

Patients with SA are not adequately controlled with current anti-inflammatory medications 
(ICS plus LABA) and are at high risk of steroid resistance, requiring additional controllers 
including biologics. Down-regulation of EET formation is a potential therapeutic target for 
SA.14,35 In the present study, severe asthmatics who had maintained medium-to-high doses 
of ICS plus LABA were enrolled for ex vivo studies; therefore, their eosinophils may not have 
been sensitive to current steroid treatment. However, in the current in vivo model asthma, 
Dex could not suppress TIMP-1, and eosinophil activation markers, such as EDN and EETs, 
in the BALF, while anti-TIMP-1 treatment could markedly suppress eosinophilic activation 
markers as well as M2 macrophages. Taken together, anti-TIMP-1 antibody (compared to 
steroid) may provide additional benefits via suppressing eosinophilic inflammation and 
preventing airway remodeling in type 2 SA as summarized in Fig. 8.

The present study has some limitations. First, although a significant association was found 
between serum TIMP-1 and EDN levels in asthmatics, no direct correlations were observed 
between serum TIMP-1 levels and the degree of blood/sputum eosinophilia, which may be 
attributed to the limited number of asthmatic subjects having high levels of serum TIMP-1. 
Secondly, our asthma mouse model represented the phenotype of chronic allergic asthma; 
however, it showed EETs-mediated eosinophilic airway inflammation, validating the effect of 
TIMP-1 and anti-TIMP-1 antibody on severe type 2 inflammation. Thirdly, further studies are 
needed to validate the exact role of TIMP-1 in a large cohort of adult asthmatics according to 
specific endotypes.
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In conclusion, TIMP-1 could enhance eosinophilic airway inflammation, inducing airway 
remodeling and lung function decline in SA, suggesting that serum TIMP-1 may be a potential 
marker for predicting type 2 SA characterized by persistent eosinophilic inflammation and 
poor clinical outcomes.
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Fig. 8. Available mechanisms of TIMP-1 in type 2 SA. The exogenous (poly I:C) and endogenous factors (IL-13, eosinophils, and EETs) stimulate airway epithelial 
cells to release TIMP-1. The left panel showed TIMP-1-induced eosinophilic inflammation through (1) directly activating eosinophils (MBP release) and (2) 
indirectly activating EET formation (through CD63/PI3K signaling) in SA, which were suppressed by anti-TIMP-1 antibody (not by steroid). The right panel showed 
TIMP-1-induced airway remodeling via releasing proinflammatory cytokines (IL-13 and VEGF) from activated ILC2, M2 macrophages, mast cells, and eosinophils. 
EETs, eosinophil extracellular traps; ILC2, group 2 innate lymphoid cells; MBP, major basic protein; TIMP-1, tissue inhibitor of metalloproteinase-1; PI3K; 
phosphatidylinositol 3-kinases; VEGF, vascular endothelial growth factor; IL, interleukin; SA, severe asthma.
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