

## **Pulsed Electrolysis with a Nickel Molecular Catalyst Improves Selectivity for Carbon Dioxide Reduction**

Francesca [Greenwell,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Francesca+Greenwell"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Bhavin [Siritanaratkul,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bhavin+Siritanaratkul"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) [Preetam](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Preetam+K.+Sharma"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) K. Sharma, [Eileen](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Eileen+H.+Yu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) H. Yu, and [Alexander](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alexander+J.+Cowan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) J. Cowan[\\*](#page-3-0)



ABSTRACT: Pulsed electrolysis can significantly improve carbon dioxide reduction on metal electrodes, but the effect of short (millisecond to seconds) voltage steps on molecular electrocatalysts is largely unstudied. In this work, we investigate the effect pulse electrolysis has on the selectivity and stability of the homogeneous electrocatalyst  $[Ni(cyclam)]^{2+}$  at a carbon electrode. By tuning the potential and pulse duration, we achieve a significant improvement in CO Faradaic efficiencies (85%) after 3 h, double that of the system under potentiostatic conditions. The improved activity is due to in situ catalyst regeneration from an intermediate that occurs as part of the catalyst's degradation pathway. This study demonstrates the wider opportunity to apply pulsed electrolysis to molecular electrocatalysts to control activity and improve selectivity.

 $\sum$  lectrochemical carbon dioxide reduction (CO<sub>2</sub>R) holds<br>feedstocks utilizing renewable energy Efforts are focused on feedstocks utilizing renewable energy. Efforts are focused on developing new electrocatalysts and controlling the electrode− electrolyte interface with existing catalysts to understand and improve their catalytic behavior.<sup>[1](#page-3-0)−[4](#page-3-0)</sup> Experiments are typically carried out under potentiostatic or galvanostatic conditions. However, recent studies on metal electrodes have utilized pulsed electrolysis as a way to influence and improve reaction selectivity and stability in electrochemical  $CO_2R^{5,6}$  $CO_2R^{5,6}$  $CO_2R^{5,6}$  $CO_2R^{5,6}$  $CO_2R^{5,6}$  There are multiple proposed effects of using a pulsed voltage depending on the system and pulse parameters used, including inhibiting catalyst poisoning,<sup>[7](#page-4-0)-[11](#page-4-0)</sup> surface oxidation, or roughen- ${\rm ing};^{7,8,11-\bar{1}4}$  ${\rm ing};^{7,8,11-\bar{1}4}$  ${\rm ing};^{7,8,11-\bar{1}4}$  rearrangement of surface coverage; $^{13,15-17}$  $^{13,15-17}$  $^{13,15-17}$  $^{13,15-17}$  $^{13,15-17}$  and altering the local pH and  $CO_2$  concentration at the electrode.<sup>[18](#page-4-0)–[21](#page-4-0)</sup>

While there are many pulsed studies on different metal electrodes for  $CO<sub>2</sub>R$ , we are not aware of any where the impact of short (ms to s) voltage pulses is examined with homogeneous molecular catalysts despite it offering a potential way to modify catalytic activity and stability. In this work, we report a pulse electrolysis study on a homogeneous molecular catalyst for  $CO<sub>2</sub>R$  with an inert glassy carbon working electrode (GCE). Nickel cyclams (cyclam = 1,4,8,11 tetraazacyclotetradecane) are both well studied photo[-22](#page-4-0)<sup>−</sup>[24](#page-4-0) and electrocatalysts for CO production in aqueous electro-lytes.<sup>[25](#page-4-0)−[32](#page-4-0)</sup> Recently, [Ni(cyclam)]<sup>2+</sup> has also been found to be selective for CO production when used on gas diffusion electrodes in H cells<sup>[33,34](#page-4-0)</sup> and higher current density electrolyzers,  $30,35$  $30,35$  $30,35$  notably even at low pH,  $35$  which has made efforts toward improving its activity and stability of particular interest.

Early experiments with  $[\text{Ni}(\text{cyclam})]^{2+}$  were carried out with the catalyst adsorbed onto Hg electrodes, but more recently, it has been shown that  $[Ni(cyclam)]^{2+}$  can also be used with a GCE.[29,36](#page-4-0) Here, Faradaic efficiencies (FEs) are typically lower, but the catalyst does not adsorb ([Figure](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c04811/suppl_file/ja3c04811_si_001.pdf) S2), thereby creating a simpler molecular system to study the effects of pulsed electrolysis. [Figure](#page-1-0) 1A shows a cyclic voltammogram (CV) of 1 mM  $[Ni(cyclam)]^{2+}$  in 0.5 M NaCl using a GCE. Under Ar, the CV remains fairly featureless as hydrogen evolution obscures the  $Ni(II)/(I)$  couple in aqueous electrolyte.<sup>[29](#page-4-0)</sup> Under  $CO_2$ , we see a significant increase in current at −1.5 V versus Ag/AgCl, thereby indicating  $CO<sub>2</sub>R$  and the appearance of two small anodic features at −1.3 V (i) and −0.5 V (ii), which are assigned to the oxidation of deactivated catalyst species  $[Ni(cyclam)(CO)]^+$  and further irreversibly reduced  $Ni(0)$  carbonyl, respectively.<sup>[37](#page-4-0)</sup> The formation of  $[Ni(cyclam)(CO)]^{+}$  as a result of the high CO binding constant to  $[Ni(cyclam)]^+$  ( $K_{CO} = 7.5 \times 10^5$ ,  $K_{CO2} = 16$ ) has been proposed to be the cause of the low stability and selectivity of the catalyst when used at both GCE and gas diffusion electrodes.  $33,35,37$  More widely, CO poisoning and overreduction of intermediates has been proposed to limit stable electrochemical  $CO_2R$  in a range of molecular catalysts, with metal centers including  $Ni<sub>2</sub><sup>38,39</sup> Fe<sub>1</sub><sup>40,41</sup> Co, etc.<sup>42-44</sup>$  $Ni<sub>2</sub><sup>38,39</sup> Fe<sub>1</sub><sup>40,41</sup> Co, etc.<sup>42-44</sup>$ Remediation methods have included the removal of CO with scavengers or increased gas flow,  $35,37$  modifications to the catalyst structure, $40-44$  $40-44$  $40-44$  or instating long periods (minutes to hours) for recovery/regeneration, which only leads to a temporary recovery in activity.<sup>[33](#page-4-0),[35](#page-4-0)</sup>

In this work, we incorporate a short 40 ms to 1 s asymmetric anodic pulse  $(E_A)$  throughout electrolysis to enable stable operation (see [Tables](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c04811/suppl_file/ja3c04811_si_001.pdf) S1−3 and [Figures](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c04811/suppl_file/ja3c04811_si_001.pdf) S3−7 for chronoamperometry data). [Figure](#page-1-0) 2 shows potentiostatic (denoted as Standard) and pulsed electrolysis experiments of 0.1 mM  $Ni(cyclam)$  in  $CO<sub>2</sub>$ -saturated 0.5 M NaCl over 3 h at a

Received: May 10, 2023 Published: July 5, 2023





<span id="page-1-0"></span>

Figure 1. (A) CV of 1 mM [Ni(cyclam)]<sup>2+</sup> in 0.5 M NaCl at a GCE at 1 V/s (0 to -1.6 to 0 V) under Ar and CO<sub>2</sub> versus Ag/AgCl, Pt counter separated by vycor frit, recorded without *iR* compensation. Plotted using IUPAC convention. (B) Reported catalytic cycle and deactivation pathway of  $[Ni(cyclam)]^{2+.29}$  $[Ni(cyclam)]^{2+.29}$  $[Ni(cyclam)]^{2+.29}$ 



Figure 2. Comparison of standard ( $E_C = -1.6$  V<sub>Ag/AgCl</sub>) and pulsed ( $E_C$  [ $t_C$ ] = −1.6 V<sub>Ag/AgCl</sub> [5 s];  $E_A$  [ $t_A$ ] = −1.0 V<sub>Ag/AgCl</sub> [0.2 s] electrolysis of 0.1 mM [Ni(cyclam)]<sup>2+</sup> in 0.5 M NaCl (aq) over 3 h. (A) Chronoamperometry trace of standard run, (B) FEs and CO partial current densities of standard run, (C) chronoamperometry trace of pulse run, and (D) FEs and CO partial current densities of pulse run. A kinetic analysis of the fast response of the system upon pulsing can be found alongside [Figure](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c04811/suppl_file/ja3c04811_si_001.pdf) S8.

GCE. The standard electrolysis was held at a cathodic potential (*E*<sub>C</sub>) of −1.6 V versus Ag/AgCl throughout. For initial pulsed electrolysis studies,  $E_C$  was held for 5 s  $(t_C)$  before an anodic potential  $(E_A)$  of  $-1.0$  V versus Ag/AgCl was applied for 0.2 s  $(t_A)$ . The pulsed voltage profile led to a 4-fold increase in selectivity for CO (CO/H<sub>2</sub> = 2.42  $\pm$  0.10), which was stable over 3 h, compared with the standard run (CO/H<sub>2</sub> = 0.63  $\pm$ 0.21). The pH of the electrolyte was measured before and after electrolysis, where a slight increase was observed post-

electrolysis [from 6.3 to 7.8 (standard), 7.7 (pulsed)] in both the standard and pulsed run. [Table](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c04811/suppl_file/ja3c04811_si_001.pdf) S4 shows that the total cell energy efficiency for  $CO<sub>2</sub>$  to CO of the pulse system is almost double that of the standard experiment, thereby demonstrating that any energy losses associated with the voltage pulse are offset by the increased FE for CO and higher CO production rate.

Figure 2A and [Figure](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c04811/suppl_file/ja3c04811_si_001.pdf) S9 show that the overall current density increases during a standard electrolysis experiment and



Figure 3. (A) Comparison of CO/H<sub>2</sub> and CO partial current densities after 3 h electrolysis of 0.1 mM [Ni(cyclam)]<sup>2+</sup> in 0.5 M NaCl (aq) where  $E_C$  [ $t_C$ ] = −1.6 V<sub>Ag/AgCl</sub> [5 s];  $t_A$ = 0.2 s with changing  $E_A$ . (B) Schematic illustrating the proposed mechanism of how pulsed electrolysis can reduce catalyst degradation.

that this is due to increased hydrogen evolution. X-ray Photoelectron Spectroscopy (XPS) of rinsed GCEs after 3 h of either standard or pulse electrolysis shows Ni on the GCE poststandard electrolysis but not on the pulse electrolysis sample ([Figures](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c04811/suppl_file/ja3c04811_si_001.pdf) S10−12). The Ni XPS of the GCE poststandard electrolysis does not match that of a powder sample of  $[Ni(cyclam)]^{2+}$ , and an analysis of the Ni/N peak ratio from the survey scan (0.24 poststandard electrolysis GCE and 2.36  $[Ni(cyclam)]^{2+}$ ) shows that most of the deposited Ni is no longer coordinated to the cyclam ligand. Instead, we assigned it to mainly  $Ni(OH)_{2}$  (see the [Supporting](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c04811/suppl_file/ja3c04811_si_001.pdf) [Information](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c04811/suppl_file/ja3c04811_si_001.pdf) for details).<sup>[45](#page-5-0),[46](#page-5-0)</sup> Cyclam loss is proposed to occur following the reduction of  $[Ni(cyclam)(CO)]^{+}$  to form Ni(0) carbonyl compounds, which may oxidize upon exposure to atmosphere.<sup>[38](#page-4-0)</sup> An increase in hydrogen evolution following Ni(0) deposition is in line with other studies on Ni-based electrocatalysts, <sup>[37,38](#page-4-0)[,47](#page-5-0)</sup> and here, we find that the GCE poststandard electrolysis has a decreased onset potential for hydrogen evolution when used in a fresh NaCl electrolyte ([Figure](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c04811/suppl_file/ja3c04811_si_001.pdf) S14).

The postelectrolysis XPS analysis indicates that the prevention of  $[Ni(cyclam)]^{2+}$  decomposition and subsequent Ni deposition is the reason for the increased  $CO<sub>2</sub>R$  selectivity upon pulsing. Pulsed electrolysis may prevent Ni deposition and prevent hydrogen evolution via both Faradaic and non-Faradaic mechanisms. We first look to non-Faradaic processes and consider if the voltage step could be leading to a rearrangement of the electrolyte, which would refresh the catalyst/ $CO<sub>2</sub>$  at the GCE surface and remove species, such as [Ni(cyclam)(CO)]+ , prior to their irreversible reduction. The largest rearrangement of the electrolyte would be expected to occur if the potential was stepped across the potential of zero charge (pzc) of the GCE. Differential capacitance measurements establish the pzc to be  $+0.4$  V versus Ag/AgCl, which is in line with other reports ([Figure](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c04811/suppl_file/ja3c04811_si_001.pdf) S15). The pzc is significantly positive of the values of  $E_A$  (−0.3 to −1.0 V) where we see a beneficial effect of pulsing (Figure 3 and [Tables](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c04811/suppl_file/ja3c04811_si_001.pdf) S1–3).<sup>[48,49](#page-5-0)</sup> Some changes in the differential capacitance do occur between −0.3 and −1.0 V, but it is notable that the selectivity for CO production is approximately constant when  $E_A$  is varied between these voltages (CO/H<sub>2</sub> =  $\sim$ 2.0 to 2.5, Figure 3); therefore, the lack of Ni deposition and increase in selectivity

for the  $CO<sub>2</sub>RR$  is unlikely to be caused by double layer rearrangement.

We next consider whether a Faradaic process is occurring during pulsed electrolysis. Figure 3 shows that when  $E_A$  is positive of the oxidation of the Ni(0) species (−0.55 V, [Figure](#page-1-0) [1](#page-1-0)), no increase in selectivity for  $CO<sub>2</sub>RR$  is observed when compared with experiments with *E*<sub>A</sub> at −1.0 V, which suggests that  $Ni(0)$  reoxidation is not a significant pathway. When  $E_A =$  $-1.3$  V, the CO/H<sub>2</sub> drops to 0.7  $\pm$  0.1, which is equal to that measured under standard electrolysis conditions. The selectivity for CO is greater for pulsed runs with  $E_A > -1.3$ V, but  $J_{\rm CO}$  remains the same within error. This is because of an overall increase in current associated with increased hydrogen evolution when  $E_A = -1.3$  V (or when nonpulsed conditions are used). The oxidation at −1.35 V in [Figure](#page-1-0) 1 is assigned to  $[Ni(cyclam)(CO)]^{+}$  or  $[Ni(cyclam)]^{2+.37}$  $[Ni(cyclam)]^{2+.37}$  $[Ni(cyclam)]^{2+.37}$  Therefore, we conclude that pulsing decreases the concentration of [Ni-  $(cyclam)(CO)$ <sup>+</sup> at the electrode surface, thereby preventing subsequent reduction to  $Ni(0)$  (Figure 3b). One past study employed a prolonged (10 min) oxidation of a cyclam complex at very positive potentials (+0.8 V vs RHE, approximately +0.2 V vs Ag/AgCl). This led to a short-lived recovery in the rate of CO production (∼20 min), but there was no significant decrease in hydrogen evolution, thereby demonstrating the importance of continuous removal of  $[Ni(cyclam)(CO)]^+$ using the pulsed voltage profile.<sup>[33](#page-4-0)</sup> The sensitivity of Ni-(cyclam) to short/pulsed changes in applied potential may offer insight into the wide range of selectivities and stabilities when used in photocatalytic systems.<sup>[22](#page-4-0)−[24](#page-4-0)</sup>

Finally, we studied the time dependence of the anodic  $(t<sub>A</sub>)$ pulse duration while keeping  $t_c$  constant at 5 s [\(Figure](#page-3-0) 4). It is desirable to minimize  $t_A$  to increase the duty cycle (percentage of time that the device is held at the operating potential). The shortest  $t_A$  value we could achieve during a prolonged electrolysis experiment with our apparatus was 40 ms corresponding to a duty cycle of >99% [\(Table](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c04811/suppl_file/ja3c04811_si_001.pdf) S5). Even with this very short pulse duration, we see an increase in selectivity (CO/H<sub>2</sub> = 1.86  $\pm$  0.16) when compared with the potentiostatic experiment. Analysis of the time−current response [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c04811/suppl_file/ja3c04811_si_001.pdf) S8) indicates that ∼10 ms after the start of the anodic pulse the capacitive charging current has largely decayed and that the Faradaic current dominates. At 200 ms, there is still a significant anodic current supporting our

<span id="page-3-0"></span>

Figure 4. (A) Schematic of different pulse profiles with increasing  $t_a$ (not to scale). (B) Comparison of  $CO/H<sub>2</sub>$  and CO partial current densities after 3 h of electrolysis of 0.1 mM  $[Ni(cyclam)]^{2+}$  in 0.5 M NaCl (aq) where  $E_C$  [ $t_C$ ] = −1.6 V<sub>Ag/AgCl</sub> [5 s];  $E_A$ = −0.3 V<sub>Ag/AgCl</sub> with changing  $t_A$ .

conclusion that the increased selectivity is the result of a Faradaic process. In line with this, extension of  $t_A$  to 1 s leads to a small but measurable increase in selectivity compared with when shorter pulses are used  $(CO/H_2 = 3.62 \pm 0.87$ , FE<sub>CO</sub> = ∼80%; [Tables](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c04811/suppl_file/ja3c04811_si_001.pdf) S2−4, Figure 4). However, it is important to note that the cathodic charge fraction (Q<sub>C</sub>), previously proposed to be a useful parameter for assessing pulse profiles during CO<sub>2</sub>R at metals,<sup>[14](#page-4-0)</sup> shows a large decrease when  $t_A = 1.0$ s ( $Q_C$  = 91.2%, 96.3%, and 97.5% for  $t_A$  = 1.0, 0.2, and 0.04 s; [Table](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c04811/suppl_file/ja3c04811_si_001.pdf) S5).

In conclusion, we here show that short (ms to s) asymmetric voltage pulse profiles can be used to improve the selectivity and achieve stable operation of the molecular catalyst,  $[Ni(cyclam)]^{2+}$ , for CO<sub>2</sub>R to CO. We find that by rapidly removing  $[\mathrm{Ni}(\mathrm{cyclam})(\mathrm{CO})]^{+}$ , an intermediate on the pathway to an irreversible degradation product, we can achieve a  $CO/H<sub>2</sub>$  selectivity of >1 for up to 12 h without the use of a CO scavenger ([Figure](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c04811/suppl_file/ja3c04811_si_001.pdf) S9). We achieve large improvements of activity with anodic pulse durations of just 40 and 200 ms corresponding to duty cycles of >99% and 96%, respectively. More widely, we anticipate the use of short asymmetric pulse profiles may offer a way to modify the activity and stability of a wider range of molecular catalysts through both the in situ regeneration of activated catalytic species and possible non-Faradaic processes.

# ■ **ASSOCIATED CONTENT Data Availability Statement**

All raw data is available at [https://doi.org/10.17638/datacat.](https://doi.org/10.17638/datacat.liverpool.ac.uk/2272) [liverpool.ac.uk/2272.](https://doi.org/10.17638/datacat.liverpool.ac.uk/2272)

#### $\bullet$  Supporting Information

The Supporting Information is available free of charge at [https://pubs.acs.org/doi/10.1021/jacs.3c04811.](https://pubs.acs.org/doi/10.1021/jacs.3c04811?goto=supporting-info)

Experimental methods, XPS and representative electrolysis data, and extended electrochemical characterization [\(PDF](https://pubs.acs.org/doi/suppl/10.1021/jacs.3c04811/suppl_file/ja3c04811_si_001.pdf))

## ■ **AUTHOR INFORMATION**

#### **Corresponding Author**

Alexander J. Cowan − *Department of Chemistry and Stephenson Institute for Renewable Energy, University of Liverpool, Liverpool L69 7ZF, United Kingdom;* [orcid.org/0000-0001-9032-3548;](https://orcid.org/0000-0001-9032-3548) Email: [a.j.cowan@](mailto:a.j.cowan@liverpool.ac.uk) [liverpool.ac.uk](mailto:a.j.cowan@liverpool.ac.uk)

## **Authors**

- Francesca Greenwell − *Department of Chemistry and Stephenson Institute for Renewable Energy, University of Liverpool, Liverpool L69 7ZF, United Kingdom;* [orcid.org/0000-0002-5747-4210](https://orcid.org/0000-0002-5747-4210)
- Bhavin Siritanaratkul − *Department of Chemistry and Stephenson Institute for Renewable Energy, University of Liverpool, Liverpool L69 7ZF, United Kingdom;* [orcid.org/0000-0003-0604-7670](https://orcid.org/0000-0003-0604-7670)
- Preetam K. Sharma − *Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United* Kingdom; Orcid.org/0000-0002-5694-8445
- Eileen H. Yu − *Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United* Kingdom; Orcid.org/0000-0002-6872-975X

Complete contact information is available at: [https://pubs.acs.org/10.1021/jacs.3c04811](https://pubs.acs.org/doi/10.1021/jacs.3c04811?ref=pdf)

#### **Notes**

The authors declare no competing financial interest.

## ■ **ACKNOWLEDGMENTS**

We acknowledge funding from the University of Liverpool [studentship (F.G.) and Partnership Recovery and Resilience Fund] and UKRI-EPSRC (EP/V011863). XPS was recorded at HarwellXPS.

■ **REFERENCES**<br>
(1) Bhugun, I.; Lexa, D.; Savéant, J. M. [Catalysis](https://doi.org/10.1021/ja9534462?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of the [Electrochemical](https://doi.org/10.1021/ja9534462?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Reduction of Carbon Dioxide by Iron(0) Porphyrins: [Synergystic](https://doi.org/10.1021/ja9534462?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Effect of Weak Brönsted Acids. *J. Am. Chem. Soc.* 1996, *118* (7), 1769−1776.

(2) Guo, K.; Lei, H.; Li, X.; Zhang, Z.; Wang, Y.; Guo, H.; Zhang, W.; Cao, R. Alkali Metal Cation Effects on [Electrocatalytic](https://doi.org/10.1016/S1872-2067(20)63762-7) CO2 Reduction with Iron [Porphyrins.](https://doi.org/10.1016/S1872-2067(20)63762-7) *Chinese Journal of Catalysis* 2021, *42* (9), 1439−1444.

(3) König, M.; Vaes, J.; Klemm, E.; Pant, D. Solvents and [Supporting](https://doi.org/10.1016/j.isci.2019.07.014) Electrolytes in the [Electrocatalytic](https://doi.org/10.1016/j.isci.2019.07.014) Reduction of CO2. *iScience* 2019, *19*, 135−160.

(4) Wang, Y. Q.; Dan, X. H.; Wang, X.; Yi, Z. Y.; Fu, J.; Feng, Y. C.; Hu, J. S.; Wang, D.; Wan, L. J. Probing the [Synergistic](https://doi.org/10.1021/jacs.2c09862?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Effects of Mg2+ on CO2 [Reduction](https://doi.org/10.1021/jacs.2c09862?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Reaction on CoPc by in Situ Electrochemical Scanning Tunneling [Microscopy.](https://doi.org/10.1021/jacs.2c09862?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 2022, *144* (43), 20126−20133.

(5) Casebolt, R.; Levine, K.; Suntivich, J.; Hanrath, T. Pulse [Check:](https://doi.org/10.1016/j.joule.2021.05.014) Potential Opportunities in Pulsed [Electrochemical](https://doi.org/10.1016/j.joule.2021.05.014) CO2 Reduction. *Joule* 2021, *5* (8), 1987−2026.

(6) Liu, T.; Wang, J.; Yang, X.; Gong, M. A [Review](https://doi.org/10.1016/j.jechem.2020.10.027) of Pulse Electrolysis for Efficient Energy [Conversion](https://doi.org/10.1016/j.jechem.2020.10.027) and Chemical Produc[tion.](https://doi.org/10.1016/j.jechem.2020.10.027) *Journal of Energy Chemistry* 2021, *59*, 69−82.

<span id="page-4-0"></span>(7) Shiratsuchi, R.; Aikoh, Y.; Nogami, G. Pulsed [Electroreduction](https://doi.org/10.1149/1.2221113) of CO 2 on Copper [Electrodes.](https://doi.org/10.1149/1.2221113) *J. Electrochem. Soc.* 1993, *140* (12), 3479−3482.

(8) Lee, J.; Tak, Y. [Electrocatalytic](https://doi.org/10.1016/S0013-4686(01)00527-8) Activity of Cu Electrode in [Electroreduction](https://doi.org/10.1016/S0013-4686(01)00527-8) of CO2. *Electrochim. Acta* 2001, *46* (19), 3015− 3022

(9) Friebe, P.; Bogdanoff, P.; Alonso-Vante, N.; Tributsch, H. [A](https://doi.org/10.1006/jcat.1997.1606) Real-Time Mass Spectroscopy Study of the [\(Electro\)Chemical](https://doi.org/10.1006/jcat.1997.1606) Factors Affecting CO2 [Reduction](https://doi.org/10.1006/jcat.1997.1606) at Copper. *J. Catal.* 1997, *168* (2), 374−385.

(10) Lee, C. W.; Cho, N. H.; Nam, K. T.; Hwang, Y. J.; Min, B. K. Cyclic Two-Step Electrolysis for Stable [Electrochemical](https://doi.org/10.1038/s41467-019-11903-5) Conversion of Carbon Dioxide to [Formate.](https://doi.org/10.1038/s41467-019-11903-5) *Nat. Commun.* 2019, *10* (1), 1−8.

(11) Yano, J.; Yamasaki, S. Pulse-Mode [Electrochemical](https://doi.org/10.1007/s10800-008-9622-3) Reduction of Carbon Dioxide Using Copper and Copper Oxide [Electrodes](https://doi.org/10.1007/s10800-008-9622-3) for Selective Ethylene [Formation.](https://doi.org/10.1007/s10800-008-9622-3) *J. Appl. Electrochem.* 2008, *38* (12), 1721−1726.

(12) Jermann, B.; Augustynski, J. [Long-Term](https://doi.org/10.1016/0013-4686(94)85181-6) Activation of the Copper Cathode in the Course of CO2 [Reduction.](https://doi.org/10.1016/0013-4686(94)85181-6) *Electrochim. Acta* 1994, *39* (11−12), 1891−1896.

(13) Lin, S. C.; Chang, C. C.; Chiu, S. Y.; Pai, H. T.; Liao, T. Y.; Hsu, C. S.; Chiang, W. H.; Tsai, M. K.; Chen, H. M. [Operando](https://doi.org/10.1038/s41467-020-17231-3) Time-Resolved X-Ray Absorption [Spectroscopy](https://doi.org/10.1038/s41467-020-17231-3) Reveals the Chemical Nature Enabling Highly Selective CO2 [Reduction.](https://doi.org/10.1038/s41467-020-17231-3) *Nat. Commun.* 2020, *11* (1), 1−12.

(14) Zhang, X.-D.; Liu, T.; Liu, C.; Zheng, D.-S.; Huang, J.-M.; Liu, Q.-W.; Yuan, W.-W.; Yin, Y.; Huang, L.-R.; Xu, M.; Li, Y.; Gu, Z.-Y. Asymmetric [Low-Frequency](https://doi.org/10.1021/jacs.2c09501?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Pulsed Strategy Enables Ultralong CO 2 Reduction Stability and [Controllable](https://doi.org/10.1021/jacs.2c09501?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Product Selectivity. *J. Am. Chem. Soc.* 2023, *145* (4), 2195−2206.

(15) Lim, C. F. C.; Harrington, D. A.; Marshall, A. T. [Altering](https://doi.org/10.1016/j.electacta.2016.10.185) the Selectivity of [Galvanostatic](https://doi.org/10.1016/j.electacta.2016.10.185) CO2 Reduction on Cu Cathodes by Periodic Cyclic Voltammetry and [Potentiostatic](https://doi.org/10.1016/j.electacta.2016.10.185) Steps. *Electrochim. Acta* 2016, *222*, 133−140.

(16) Lee, S. H.; Sullivan, I.; Larson, D. M.; Liu, G.; Toma, F. M.; Xiang, C.; Drisdell, W. S. [Correlating](https://doi.org/10.1021/acscatal.0c01670?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Oxidation State and Surface Area to Activity from [Operando](https://doi.org/10.1021/acscatal.0c01670?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Studies of Copper CO Electro[reduction](https://doi.org/10.1021/acscatal.0c01670?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Catalysts in a Gas-Fed Device. *ACS Catal.* 2020, *10* (14), 8000−8011.

(17) Casebolt, R.; Kimura, K. W.; Levine, K.; Cimada DaSilva, J. A.; Kim, J.; Dunbar, T. A.; Suntivich, J.; Hanrath, T. Effect of [Electrolyte](https://doi.org/10.1002/celc.202001445) Composition and Concentration on Pulsed Potential [Electrochemical](https://doi.org/10.1002/celc.202001445) CO2 [Reduction.](https://doi.org/10.1002/celc.202001445) *ChemElectroChem.* 2021, *8* (4), 681−688.

(18) Oguma, T.; Azumi, K. Improvement of [Electrochemical](https://doi.org/10.5796/electrochemistry.20-00037) Reduction of CO2 Using the [Potential-Pulse](https://doi.org/10.5796/electrochemistry.20-00037) Polarization Method. *Electrochemistry* 2020, *88* (5), 451−456.

(19) Bui, J. C.; Kim, C.; Weber, A. Z.; Bell, A. T. Dynamic [Boundary](https://doi.org/10.1021/acsenergylett.1c00364?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Layer Simulation of Pulsed [CO2Electrolysis](https://doi.org/10.1021/acsenergylett.1c00364?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) on a Copper Catalyst. *ACS Energy Lett.* 2021, *6* (4), 1181−1188.

(20) Jeon, H. S.; Timoshenko, J.; Rettenmaier, C.; Herzog, A.; Yoon, A.; Chee, S. W.; Oener, S.; Hejral, U.; Haase, F. T.; Cuenya, B. R. Selectivity Control of Cu [Nanocrystals](https://doi.org/10.1021/jacs.1c03443?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) in a Gas-Fed Flow Cell through CO 2 Pulsed [Electroreduction.](https://doi.org/10.1021/jacs.1c03443?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 2021, *143*, 7578−7587.

(21) Gupta, N.; Gattrell, M.; MacDougall, B. [Calculation](https://doi.org/10.1007/s10800-005-9058-y) for the Cathode Surface Concentrations in the [Electrochemical](https://doi.org/10.1007/s10800-005-9058-y) Reduction of CO2 in KHCO3 [Solutions.](https://doi.org/10.1007/s10800-005-9058-y) *J. Appl. Electrochem.* 2006, *36* (2), 161− 172.

(22) Grant, J. L.; Goswami, K.; Spreer, L. O.; Otvos, J. W.; Calvin, M. [Photochemical](https://doi.org/10.1039/dt9870002105) Reduction of Carbon Dioxide to Carbon Monoxide in Water Using a Nickel(I1) [Tetra-Azamacrocycle](https://doi.org/10.1039/dt9870002105) [Complex](https://doi.org/10.1039/dt9870002105) as Catalyst. *J. Chem. Soc., Dalton Trans.* 1987, 2105−2109. (23) Yamazaki, Y.; Takeda, H.; Ishitani, O. [Photocatalytic](https://doi.org/10.1016/j.jphotochemrev.2015.09.001) Reduction of CO 2 Using Metal [Complexes.](https://doi.org/10.1016/j.jphotochemrev.2015.09.001) *Journal of Photochemistry and*

*Photobiology C: Photochemistry Reviews* 2015, *25* (4), 106−137.

(24) Kuehnel, M. F.; Sahm, C. D.; Neri, G.; Lee, J. R.; Orchard, K. L.; Cowan, A. J.; Reisner, E. ZnSe [Quantum](https://doi.org/10.1039/C7SC04429A) Dots Modified with a Ni(Cyclam) Catalyst for Efficient [Visible-Light](https://doi.org/10.1039/C7SC04429A) Driven CO 2 [Reduction](https://doi.org/10.1039/C7SC04429A) in Water. *Chem. Sci.* 2018, *9* (9), 2501−2509.

(25) Fisher, B. J.; Eisenberg, R. [Electrocatalytic](https://doi.org/10.1021/ja00544a035?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Reduction of Carbon Dioxide by Using [Macrocycles](https://doi.org/10.1021/ja00544a035?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of Nickel and Cobalt. *J. Am. Chem. Soc.* 1980, *102* (24), 7361−7363.

(26) Beley, M.; Collin, J. P.; Ruppert, R.; Sauvage, J. P. [Electrocatalytic](https://doi.org/10.1021/ja00284a003?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Reduction of CO2 by Ni Cyclam2+ in Water: Study of the Factors Affecting the Efficiency and the [Selectivity](https://doi.org/10.1021/ja00284a003?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of the [Process.](https://doi.org/10.1021/ja00284a003?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 1986, *108* (24), 7461−7467.

(27) Beley, M.; Collin, J.; Ruppert, R.; Sauvage, J. [Nickel\(I1\)-](https://doi.org/10.1039/c39840001315) Cyclam: An Extremely Selective [Electrocatalyst](https://doi.org/10.1039/c39840001315) for Reduction of C 0 2 in [Water.](https://doi.org/10.1039/c39840001315) *J. Chem. Soc., Chem. Commun.* 1984, *2*, 1315−1316.

(28) Collin, J. P.; Jouaiti, A.; Sauvage, J. P. [Electrocatalytic](https://doi.org/10.1021/ic00284a030?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Properties of Ni(Cyclam)2+ and [Ni2\(Biscyclam\)4+](https://doi.org/10.1021/ic00284a030?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) with Respect to CO2and H2O [Reduction.](https://doi.org/10.1021/ic00284a030?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *Inorg. Chem.* 1988, *27* (11), 1986−1990.

(29) Froehlich, J. D.; Kubiak, C. P. [Homogeneous](https://doi.org/10.1021/ic3001619?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as)  $CO<sub>2</sub>$  Reduction by [Ni\(Cyclam\)](https://doi.org/10.1021/ic3001619?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) at a Glassy Carbon Electrode. *Inorg. Chem.* 2012, *51*, 3932−3934.

(30) Greenwell, F.; Neri, G.; Piercy, V.; Cowan, A. J. [Noncovalent](https://doi.org/10.1016/j.electacta.2021.139015) [Immobilization](https://doi.org/10.1016/j.electacta.2021.139015) of a Nickel Cyclam Catalyst on Carbon Electrodes for CO2 Reduction Using Aqueous [Electrolyte.](https://doi.org/10.1016/j.electacta.2021.139015) *Electrochim. Acta* 2021, *392*, 139015.

(31) Neri, G.; Aldous, I. M.; Walsh, J. J.; Hardwick, L. J.; Cowan, A. J. A Highly Active Nickel [Electrocatalyst](https://doi.org/10.1039/C5SC03225C) Shows Excellent Selectivity for CO 2 [Reduction](https://doi.org/10.1039/C5SC03225C) in Acidic Media †. *Chem. Sci.* 2016, *7*, 1521− 1526.

(32) Neri, G.; Walsh, J. J.; Wilson, C.; Reynal, A.; Lim, J. Y. C.; Li, X.; White, A. J. P.; Long, N. J.; Durrant, J. R.; Cowan, A. J. [A](https://doi.org/10.1039/C4CP04871G) Functionalised Ni Cyclam for CO2 Reduction: [Electrocatalysis,](https://doi.org/10.1039/C4CP04871G) Semiconductor Surface [Immobilisation](https://doi.org/10.1039/C4CP04871G) and Light-Driven Electron [Transfer](https://doi.org/10.1039/C4CP04871G) †. *Phys. Chem. Chem. Phys.* 2015, *17*, 1562−1566.

(33) Pugliese, S.; Huan, N. T.; Solé-Daura, A.; Li, Y.; Rivera de la Cruz, J.-G.; Forte, J.; Zanna, S.; Krief, A.; Su, B.-L.; Fontecave, M. [CO](https://doi.org/10.1021/acs.inorgchem.2c01645?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) 2 [Electroreduction](https://doi.org/10.1021/acs.inorgchem.2c01645?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) in Water with a Heterogenized C-Substituted Nickel Cyclam [Catalyst.](https://doi.org/10.1021/acs.inorgchem.2c01645?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *Inorg. Chem.* 2022, *61* (40), 15841−15852.

(34) Pugliese, S.; Huan, N. T.; Forte, J.; Grammatico, D.; Zanna, S.; Su, B.-L.; Li, Y.; Fontecave, M. [Functionalization](https://doi.org/10.1002/cssc.202002092) of Carbon Nanotubes with Nickel Cyclam for the [Electrochemical](https://doi.org/10.1002/cssc.202002092) Reduction of [CO2.](https://doi.org/10.1002/cssc.202002092) *ChemSusChem* 2020, *13*, 6449−6456.

(35) Siritanaratkul, B.; Forster, M.; Greenwell, F.; Sharma, P. K.; Yu, E. H.; Cowan, A. J. Zero-Gap Bipolar Membrane [Electrolyzer](https://doi.org/10.1021/jacs.1c13024?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) for Carbon Dioxide Reduction Using [Acid-Tolerant](https://doi.org/10.1021/jacs.1c13024?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Molecular Electro[catalysts.](https://doi.org/10.1021/jacs.1c13024?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 2022, *144* (17), 7551−7556.

(36) Zhanaidarova, A.; Moore, C. E.; Gembicky, M.; Kubiak, C. P. Covalent Attachment of [\[Ni\(Alkynyl-Cyclam\)\]](https://doi.org/10.1039/C8CC00718G) 2+ Catalysts to Glassy Carbon [Electrodes.](https://doi.org/10.1039/C8CC00718G) *Chem. Commun.* 2018, *54* (33), 4116−4119.

(37) Froehlich, J. D.; Kubiak, C. P. The [Homogeneous](https://doi.org/10.1021/ja512575v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Reduction of CO 2 by  $[Ni(Cyclam)] + :$  $[Ni(Cyclam)] + :$  Increased Catalytic Rates with the Addition of a CO [Scavenger.](https://doi.org/10.1021/ja512575v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 2015, *137* (10), 3565−3573.

(38) Balazs, G. B.; Anson, F. C. Effects of CO on the [Electrocatalytic](https://doi.org/10.1016/0022-0728(93)87049-2) Actiivty of [Ni\(Cyclam\)2+](https://doi.org/10.1016/0022-0728(93)87049-2) toward the Reduction of CO2. *J. Electroanal. Chem.* 1993, *361*, 149−157.

(39) Kelly, C. A.; Mulazzani, Q. G.; Blinn, E. L.; Rodgers, M. A. J. Kinetics of CO Addition to [Ni\(Cyclam\)](https://doi.org/10.1021/ic951527t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) + in Aqueous Solution. *Inorg. Chem.* 1996, *35*, 5122−5126.

(40) Nichols, A. W.; Chatterjee, S.; Sabat, M.; Machan, C. W. [Electrocatalytic](https://doi.org/10.1021/acs.inorgchem.7b02955?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Reduction of CO2 to Formate by an Iron Schiff Base [Complex.](https://doi.org/10.1021/acs.inorgchem.7b02955?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *Inorg. Chem.* 2018, *57* (4), 2111−2121.

(41) Cometto, C.; Chen, L.; Lo, P. K.; Guo, Z.; Lau, K. C.; Anxolabéhère-Mallart, E.; Fave, C.; Lau, T. C.; Robert, M. [Highly](https://doi.org/10.1021/acscatal.7b04412?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Selective Molecular Catalysts for the CO2-to-CO [Electrochemical](https://doi.org/10.1021/acscatal.7b04412?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Conversion at Very Low [Overpotential.](https://doi.org/10.1021/acscatal.7b04412?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Contrasting Fe vs Co [Quaterpyridine](https://doi.org/10.1021/acscatal.7b04412?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Complexes upon Mechanistic Studies. *ACS Catal.* 2018, *8* (4), 3411−3417.

(42) Marianov, A. N.; Kochubei, A. S.; Roman, T.; Conquest, O. J.; Stampfl, C.; Jiang, Y. Resolving [Deactivation](https://doi.org/10.1021/acscatal.0c05092?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Pathways of Co [Porphyrin-Based](https://doi.org/10.1021/acscatal.0c05092?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Electrocatalysts for CO 2 Reduction in Aqueous [Medium.](https://doi.org/10.1021/acscatal.0c05092?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *ACS Catal.* 2021, *11* (6), 3715−3729.

(43) Jiang, J.; Matula, A. J.; Swierk, J. R.; Romano, N.; Wu, Y.; Batista, V. S.; Crabtree, R. H.; Lindsey, J. S.; Wang, H.; Brudvig, G. W. <span id="page-5-0"></span>Unusual Stability of a [Bacteriochlorin](https://doi.org/10.1021/acscatal.8b02991?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Electrocatalyst under Reductive [Conditions.](https://doi.org/10.1021/acscatal.8b02991?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) A Case Study on CO 2 Conversion to CO. *ACS Catal.* 2018, *8* (11), 10131−10136.

(44) Wu, Y.; Jiang, Z.; Lu, X.; Liang, Y.; Wang, H. [Domino](https://doi.org/10.1038/s41586-019-1760-8) [Electroreduction](https://doi.org/10.1038/s41586-019-1760-8) of CO2 to Methanol on a Molecular Catalyst. *Nature* 2019, *575* (7784), 639−642.

(45) Biesinger, M. C.; Payne, B. P.; Lau, L. W. M.; Gerson, A.; Smart, R. S. C. X-Ray [Photoelectron](https://doi.org/10.1002/sia.3026) Spectroscopic Chemical State [Quantification](https://doi.org/10.1002/sia.3026) of Mixed Nickel Metal, Oxide and Hydroxide Systems. *Surf. Interface Anal.* 2009, *41* (4), 324−332.

(46) Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. St. C. [Resolving](https://doi.org/10.1016/j.apsusc.2010.10.051) Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and [Hydroxides:](https://doi.org/10.1016/j.apsusc.2010.10.051) Cr, [Mn,](https://doi.org/10.1016/j.apsusc.2010.10.051) Fe, Co and Ni. *Appl. Surf. Sci.* 2011, *257* (7), 2717−2730.

(47) McCarthy, B. D.; Donley, C. L.; Dempsey, J. L. [Electrode](https://doi.org/10.1039/C5SC00476D) Initiated [Proton-Coupled](https://doi.org/10.1039/C5SC00476D) Electron Transfer to Promote Degradation of a Nickel(II) [Coordination](https://doi.org/10.1039/C5SC00476D) Complex. *Chem. Sci.* 2015, *6* (5), 2827− 2834.

(48) Randin, J.-P.; Yeager, E. Differential [Capacitance](https://doi.org/10.1016/S0022-0728(75)80089-1) Study on the Edge [Orientation](https://doi.org/10.1016/S0022-0728(75)80089-1) of Pyrolytic Graphite and Glassy Carbon Electro[des.](https://doi.org/10.1016/S0022-0728(75)80089-1) *J. Electroanal Chem. Interfacial Electrochem* 1975, *58* (2), 313− 322.

(49) Zebardast, H. R.; Rogak, S.; Asselin, E. [Potential](https://doi.org/10.1016/j.jelechem.2014.03.030) of Zero Charge of Glassy Carbon at Elevated [Temperatures.](https://doi.org/10.1016/j.jelechem.2014.03.030) *J. Electroanal. Chem.* 2014, *724*, 36−42.