
Received: 2 February 2022 Revised: 12 June 2022 Accepted: 24 June 2022

DOI: 10.1002/mp.15850

R E S E A R C H A RT I C L E

An empirical model of proton RBE based on the linear
correlation between x-ray and proton radiosensitivity

David B. Flint1 Chase E. Ruff1 Scott J. Bright1 Pablo Yepes1,2

Qianxia Wang1,2 Mandira Manandhar1 Mariam Ben Kacem1

Broderick X. Turner1,3 David K. J. Martinus1,3 Simona F. Shaitelman4

Gabriel O. Sawakuchi1,3

1Department of Radiation Physics, The
University of Texas MD Anderson Cancer
Center, Houston, Texas, USA

2Department of Physics and Astronomy, Rice
University, Houston, Texas, USA

3The University of Texas MD Anderson
Cancer Center UTHealth Graduate School of
Biomedical Sciences, Houston, Texas, USA

4Department of Radiation Oncology, The
University of Texas MD Anderson Cancer
Center, Houston, Texas, USA

Correspondence
Gabriel O. Sawakuchi and David B. Flint,
Department of Radiation Physics, Unit 1420,
The University of Texas MD Anderson Cancer
Center, 6565 MD Anderson Blvd, Houston, TX
77030-4008, USA.
Email: gsawakuchi@mdanderson.org and
dbflint@mdanderson.org

Funding information
Cancer Prevention and Research Institute of
Texas, Grant/Award Number: RP170040;
University Cancer Foundation via the Sister
Institution Network Fund; The University of
Texas MD Anderson Cancer Center (GOS);
The University of Texas MD Anderson Cancer
Center Institutional Research Grant (IRG)
program (GOS and SFS); Department of
Radiation Physics; The University of Texas
MD Anderson Cancer Center; the Cancer
Center Support (Core), Grant/Award Number:
CA016672; The University of Texas MD
Anderson, Grant/Award Numbers:
R21CA252411, P01CA261669; Emerson
Collective (SFS)

Abstract
Background: Proton relative biological effectiveness (RBE) is known to depend
on physical factors of the proton beam, such as its linear energy transfer (LET),
as well as on cell-line specific biological factors, such as their ability to repair
DNA damage. However, in a clinical setting, proton RBE is still considered to
have a fixed value of 1.1 despite the existence of several empirical models that
can predict proton RBE based on how a cell’s survival curve (linear-quadratic
model [LQM]) parameters α and β vary with the LET of the proton beam.Part of
the hesitation to incorporate variable RBE models in the clinic is due to the great
noise in the biological datasets on which these models are trained,often making
it unclear which model, if any, provides sufficiently accurate RBE predictions to
warrant a departure from RBE = 1.1.
Purpose: Here, we introduce a novel model of proton RBE based on how a
cell’s intrinsic radiosensitivity varies with LET, rather than its LQM parameters.
Methods and materials: We performed clonogenic cell survival assays for
eight cell lines exposed to 6 MV x-rays and 1.2, 2.6, or 9.9 keV/µm protons,
and combined our measurements with published survival data (n = 397 total
cell line/LET combinations). We characterized how radiosensitivity metrics of
the form DSF%, (the dose required to achieve survival fraction [SF], e.g., D10%)
varied with proton LET, and calculated the Bayesian information criteria associ-
ated with different LET-dependent functions to determine which functions best
described the underlying trends. This allowed us to construct a six-parameter
model that predicts cells’ proton survival curves based on the LET dependence
of their radiosensitivity, rather than the LET dependence of the LQM parameters
themselves. We compared the accuracy of our model to previously established
empirical proton RBE models, and implemented our model within a clinical
treatment plan evaluation workflow to demonstrate its feasibility in a clinical
setting.
Results: Our analyses of the trends in the data show that DSF% is linearly cor-
related between x-rays and protons, regardless of the choice of the survival
level (e.g., D10%, D37%, or D50% are similarly correlated), and that the slope and
intercept of these correlations vary with proton LET. The model we constructed
based on these trends predicts proton RBE within 15%–30% at the 68.3% con-
fidence level and offers a more accurate general description of the experimental
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data than previously published empirical models.In the context of a clinical treat-
ment plan, our model generally predicted higher RBE-weighted doses than the
other empirical models,with RBE-weighted doses in the distal portion of the field
being up to 50.7% higher than the planned RBE-weighted doses (RBE = 1.1)
to the tumor.
Conclusions: We established a new empirical proton RBE model that is more
accurate than previous empirical models, and that predicts much higher RBE
values in the distal edge of clinical proton beams.
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1 INTRODUCTION

The relative biological effectiveness (RBE) of protons
varies with physical parameters of the beam, such as
its linear energy transfer (LET) and the dose delivered,
and biological considerations such as the choice of
endpoint, or aspects of cell’s intrinsic radiosensitivity,
including its photon survival curve parameters.1 How-
ever, in most clinical scenarios, despite the existence
of several models that can predict proton RBE2–7 and
studies demonstrating the feasibility of RBE-weighted
dose-optimization,8 a global RBE value of 1.1 is still typ-
ically used for optimizing clinical treatment plans in line
with the AAPM’s TG256’s recommendations.9

Several factors contribute to the hesitation to per-
form RBE-weighted dose-optimization in the context of
proton therapy treatment planning. First, although many
models have been proposed to predict proton RBE, they
are often at odds with each other’s predictions, and it
is unclear which model provides the best description
of how RBE varies as a function of proton LET.10 Sec-
ond, the RBE values in proton therapy do not deviate
greatly from 1.1 across most of the treatment field,11

so accounting for their divergence from 1.1 in treatment
planning may not result in appreciably different treat-
ment plans. Third, biological variations from tumor to
tumor may be larger than the LET’s effect on RBE and
not accounting for these biological variations may result
in large errors.12,13 Fourth, the biological data used to
evaluate the different models are extremely noisy,which
can mean that the uncertainty in the biological response
may be greater than the divergence of RBE from 1.1,
rendering it difficult to meaningfully assess the relative
accuracy of the different models.9 Nevertheless, that
TG256 recommends vendors to include proton RBE
models in their treatment planning systems9 suggests
that the need for reliable and easy-to-implement proton
RBE models is on the horizon.

Current proton RBE models fall broadly into two
categories—mechanistic models/mathematical models,
for example, the local effect model (LEM),3 the
microdosimetric kinetic model (MKM),4 the repair-
misrepair-fixation (RMF) model,5 and other recently
published models14–16; and empirical models such as

the Wedenberg,2 McNamara,6 Mairani7 models, and
other models.17,18 With respect to the mechanistic mod-
els, while these models may offer insights into the
underlying processes governing how cell radiosensitivity
varies between radiation qualities, they face a major lim-
itation in that they rely on cell-line-specific parameters
other than the linear-quadratic model (LQM) survival
curve parameters αx-ray and βx-ray as input parame-
ters. For example, the LEM requires the radius of the
cell nucleus,3 the MKM requires the radius of the cell
nucleus and the nuclear domain,4 and the RMF model
uses the radius and density of the cell nucleus5 as input
parameters. Since these values are rarely reported in
cell survival studies, and are generally only known for a
handful of very commonly used cell lines, despite the
vast amounts of published cell survival data for cells
exposed to protons,1 it is very difficult to broadly vali-
date the accuracy of the predictions made with these
mechanistic models without approximating the unknown
cell-line-specific parameters. Thus, it remains an open
question as to the relative performance of the different
mechanistic models in addition to whether they are more
or less accurate than their empirical counterparts.

The empirical approaches, on the other hand, are
much more suited to validation against the available sur-
vival data, since they generally only require αx-ray and
βx-ray as well as beam quality specifiers, such as LET,
as input parameters. Notably, Wedenberg et al.’s model2

predicts proton RBE based on a linear dependence of
αproton/αx-ray and βproton/βx-ray on proton LET; McNamara
et al.’s model6 uses a non-linear function to account for
how proton LET modulates a cell’s RBE depending on
its αx-ray/βx-ray; and Mairani et al.’s model7 uses nonlin-
ear functions to model how αproton/αx-ray and βproton/βx-ray
vary with proton LET. The empirical models use a prag-
matic approach in which the mathematical formulation
is chosen simply to describe the trends as accurately
as possible without offering insights into the underlying
mechanisms governing the trends.Although experimen-
tal data to train and validate these models is becoming
increasingly more abundant, the amount of variability in
these datasets is so great that there is still not much opti-
mism that such approaches will see great improvements
going forward.9
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However, in contrast to previous empirical
approaches, here we present a model that is based
on trends in how biological endpoints (e.g., the dose
resulting in 10% survival, D10%, or the surviving fraction
after a dose of 2 Gy, SF2Gy) vary with LET, whereas
previous modeling efforts have focused on describing
how the biological parameters themselves (e.g., α or
α/β) vary with LET. This difference, although seemingly
subtle, confers an important benefit to our approach:
estimating endpoints like D10% precisely is much less
difficult than estimating α or β from a cell survival curve
since α and β tend to have negative covariances. This
means that for the same training dataset, the trends we
model are inherently less noisy than the trends in α and
β themselves, mitigating one of the great challenges in
modeling the underlying trends in the data in the first
place.

This new model of proton RBE is based on the lin-
ear correlation between cell radiosensitivity to ions and
x-rays, first reported by Suzuki et al.19 for carbon ions.
As we show in this work, this strong correlation holds
for protons as well, and across a wide range of bio-
logical endpoints. By modeling the LET trends in these
correlations we constructed a model that predicts proton
RBE.

2 MATERIALS AND METHODS

2.1 In-house survival experiments

We performed clonogenic assays to quantify cell
survival after irradiation in eight human cancer cell
lines (H460 and H1299 [non-small cell lung cancer];
M059K and M059J [glioblastoma]; BxPC3 [pancreatic
adenocarcinoma]; and HT1080, HT1080-shDNA-PKcs,
and HT1080-shRAD51IND [fibrosarcoma]). Cells were
exposed to 6 MV x-rays and protons with dose-weighted
LET values of 1.2, 2.6, or 9.9 keV/µm. Further details on
these cell lines, irradiation conditions, and how the data
were analyzed are published elsewhere.12,13 Notably,
these cell lines included cells deficient in the DNA
repair proteins DNA-PKcs (M059J and HT1080-shDNA-
PKcs) and Rad51 (HT1080-shRAD51IND), the inclusion
of which did not perturb the trends we observed.

2.2 Compilation of training dataset

As a training dataset, we combined our in-house sur-
vival experiments with published survival data from
Liu et al.’s study of lung cancer cell lines,20 the PIDE
Database version 3.2,21,22 and the data summarized in
Paganetti et al.’s review.1 Some experiments summa-
rized in the particle irradiation data ensemble (PIDE)
were also summarized in Paganetti’s review article, but
since these authors used slightly different methods to
aggregate the data,the reported results are not identical.
For these cases, in an effort to maintain as much con-

sistency as possible, we used the data reported in the
PIDE, because this single source contains data across
a large number of experiments that were all reana-
lyzed using similar methods. The total number of paired
survival experiments (cell line/LET combinations) within
this combined dataset was n = 471.

From this combined database, we filtered out data
that rendered our analyses untrustworthy or impossible
as follows. We excluded data where β ≤ 0 (n = 42
paired datasets) for three reasons: (i) negative β values
are often non-physical, resulting often from fitting noise
(but mostly linear) survival data to the LQM without any
constraints; (ii) for all survival curves we calculated the
mean inactivation dose and the L2 norm between the
predicted and measured survival curves, and negative
β values cause these integrals to diverge; and (iii) null
β values cause the ratio of α/β to diverge, which is an
important quantity in many other empirical models. We
excluded data where the cells were exposed under
hypoxic conditions (n = 7 paired datasets). This is
because under hypoxic conditions, the RBE values are
considerably larger than those in normoxic conditions
due to the additional effect of the oxygen enhancement
ratio (OER), and these considerably larger RBE values
may bias our fits (and goodness-of -fit assessments)
toward a relatively small subset of the training data.
Also, under hypoxic conditions, cells are often extremely
radioresistant, and given that the extent to which we
can use the LQM to model cell survival above 15 Gy
is unclear,23 estimating important biological endpoints
(e.g., D10%) from the predicted α and β values under
these conditions may have considerably greater uncer-
tainty than can be accounted for. For this same reason,
we also excluded data for the cell line HTB140 (n = 8
paired datasets), whose D10% values are >40 Gy. We
further excluded data where the survival was assessed
by viability assays as opposed to clonogenic survival
assays (n = 7 datasets) to ensure more consistency
between experiments. Additionally, similarly to Mairani
et al.,7 we further excluded data for proton LET val-
ues >37.8 keV/µm (n = 2 paired datasets), because
these LET values are much higher than those of clin-
ical relevance, and the resulting large RBE values
may bias our goodness-of -fit assessments. Finally,
we excluded datasets for which the reference photon
radiation source was listed with a nominal energy <200
kVp (n = 19 paired datasets). This was done as very
low-energy x-ray sources may be more biologically
effective than high energy photon sources (e.g., 6
MV x-rays or Co-60), which comprise the majority of
the reference photon data. In total, this resulted in us
including 397 cell line/LET combinations in our training
dataset (81% of the available data). Note that some
data were excluded from our dataset for failing multiple
criteria.

More details about the data included in our training
dataset including their survival curve parameters can be
found in Note S1.
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2.3 Statistical analyses

All statistical analyses were performed in MATLAB
2020 (Mathworks, Natick, MA) and Graph Pad Prism
7 (Graph Pad, San Diego, CA). For our radiosensitiv-
ity metrics (e.g., D10%), the error bars represent the
standard error propagated from the fitted survival curve
parameters (α and β), including their covariance, to
the radiosensitivity parameters estimated from them.
The confidence intervals in the measured survival
curves represent the uncertainty from our fit parameters,
including their covariance, propagated into our predic-
tive function,calculating the 95% confidence intervals as
±1.96 times the standard error of the prediction. Addi-
tional details related to fitting our model are given in
Note S2.

2.4 Assessment of linear correlations
between radiosensitivity to protons and
x-rays

To assess the correlations between radiosensitivity to
protons and x-rays,we computed the following radiosen-
sitivity metrics for each radiation quality: D5%, D10%,
D20%,D37%,D50%,and SF2Gy.For each metric,we quan-
tified the correlation between radiation qualities via the
Pearson correlation coefficient (r).

2.5 Parameterization of the LET
dependence of the linear correlations

To assess the LET dependence of the linear correlations
we noted that since radiosensitivity parameters such
as D10% are linearly correlated, we can write a general
expression of the form:

D10%,proton = D10%,x−ray ⋅ slope (LET) + intercept (LET)
(1)

describing the slopes’and intercepts’proton LET depen-
dence. Using this general expression, the faithfulness
of any LET-dependent functions describing the slope
or intercept of the linear correlations can be assessed
using paired survival data which need not share a com-
mon proton LET. In this way, we assessed the accuracy
of selected several candidate slope and intercept func-
tions against the whole training dataset, calculating the
Bayesian information criterion (BIC)24 associated with
each function’s fit of the data to quantify which parame-
terization best described the underlying trends without
the inclusion of unnecessary free parameters. These
functions are summarized in Table 1 (see Note S3 for
more details).

2.6 General model of proton RBE

As many endpoints’ responses can be modeled by pre-
dictive functions similar to Equation (1) (e.g., D5%, D20%,
D37%, D50%, and SF2Gy), a set of endpoints can be pre-
dicted that allows for the αproton and βproton values to
be determined from fitting the predicted data to the
LQM.

However, explicitly performing a nonlinear fit (which
can be computationally expensive) is unnecessary, as
our formalism can be reduced into an expression for
αproton and βproton that requires only the LET of the pro-
ton beam and the αx-ray and βx-ray values for the cell line
of interest as input parameters, as well as the model
parameters associated with whatever endpoints, i, are
selected. The following general expressions give αproton
and βproton in terms of the DSF values given by Equa-
tion (1) for whatever survival endpoints, SF, are selected
(see Note S4 for more details):

𝛼proton =

∑
i D4

SF,i
∑

i DSF,i log(SFi )−
∑

i D3
SF,i

∑
i D2

SF,i log(SFi )∑
i D3

SF,i
∑

i D3
SF,i−

∑
i D2

SF,i
∑

i D4
SF,i

(2)
and

𝛽proton =

∑
i D2

SF,i
∑

i D2
SF,i log(SFi )−

∑
i D3

SF,i
∑

i DSF,i log(SFi )∑
i D3

SF,i
∑

i D3
SF,i−

∑
i D2

SF,i
∑

i D4
SF,i

(3)

2.7 Constraining α ≥ 0 and β ≥ 0

Equations (2) and (3) minimize the distance between
the set of predicted endpoints and the survival curve
described by αproton and βproton. However, when α and β
are close to zero, occasionally their values will be found
to be negative. This becomes an issue as we wish to
compute the distance between the predicted and mea-
sured curves using the L2 norm, and having a negative
β value will result in a divergent integral. Thus, for cases
where α or β were predicted to be negative, we imposed
upon them a null value, and solved for α or β alone as
follows:

𝛼proton (𝛽=0) = −

∑
i DSF,i log(SFi )∑

i D2
SF,i

(4)

and

𝛽proton (𝛼=0) = −

∑
i D2

SF,i log(SFi )∑
i D4

SF,i

(5)

This is analogous to fitting survival data to the
LQM under the common constraint that α ≥ 0 and
β ≥ 0.
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TABLE 1 Candidate slope and intercept functions with free parameters c, f, g, h, k, m, p, q, and s, chosen to assess the linear energy transfer
(LET) dependence of the slope and intercept of the linear correlation between proton and x-ray radiosensitivity. The functions were chosen to
either increase (intercept) or decrease (slope) with increasing LET, but with additional functions chosen to allow for non-monotonic behavior

Slope Intercept
Function Behavior Function Behavior

c ⋅ e−f ⋅LET Slope decreases exponentially with LET,
asymptotically approaching zero.

m Intercept has the same
constant value for all
LET values.

c ⋅ e−f ⋅LET + g Slope decreases exponentially with LET
and asymptotes to a non-zero value.

p ⋅ LET Intercept increases linearly
with LET.

c ⋅ e−f ⋅LET−h⋅LET2
+ g Slope follows a Gaussian dependence

on LET, allowing non-monotonic
behavior but decreasing exponentially
for high LET values.

m + p ⋅ LET Intercept increases linearly
with LET with a constant
offset.

(c + h ⋅ LET) ⋅ e−f ⋅LET + g Slope depends on the product of an
increasing linear and decreasing
exponential dependence on LET,
allowing for non-monotonic behavior
that ultimately decreases
exponentially for high LET values.

m + p ⋅ LET +

q ⋅ LET2
Intercept increases

quadratically with LET,
allowing for
non-monotonic behavior.

c ⋅ ln(LET − h) ⋅ e−f ⋅LET + g Slope depends on the product of an
increasing logarithmic and decreasing
exponential dependence on LET,
allowing for non-monotonic behavior
that ultimately decreases
exponentially for high LET values.

q ⋅ es⋅LET Intercept increases
exponentially with LET.

c

Γ(f ⋅LET+h+1)
+ g Slope decreases via an inverse gamma

dependence on LET—this is
motivated by the Poisson-like
distribution described below, but with
fewer free parameters.

q ⋅ es⋅LET + m Intercept increases
exponentially with LET,
beginning at a small
positive value.

c kf ⋅(LET−h)⋅e−k

Γ(f ⋅(LET−h)+1)
+ g Slope follows a Poisson-like (functionally

similar, but continuous) LET
dependence, allowing for
non-monotonic LET dependence
while being parameterized by a
function of particular relevance to
radiation biology.

q ⋅ e−s⋅LET + p ⋅
LET + m

Intercept initially decreases
exponentially with LET
before increasing
linearly at higher LET
values, allowing for
non-monotonic behavior.

2.8 Choice of endpoints to incorporate
in our model

Equations (1)-(5) are valid for any number of arbitrar-
ily chosen endpoints. The use of additional endpoints
will improve the accuracy of the predicted αproton and
βproton values at the cost of increased complexity of the
model. To weigh how much more faithfully the model
reproduces the data against the informational cost of
including additional parameters, we created predictive
functions for each of D5%, D10%, D20%, D37%, D50%,
and SF2Gy, and calculated the BIC associated with
each possible combination of endpoints used to con-
struct a model, using the sum of L2 norms between
the predicted and measured survival curves (normal-
ized by the mean inactivation dose) as the distance
metric. Further details of these analyses are given in
Note S5.

2.9 Assessment of model accuracy

To assess the general accuracy of our six-parameter
model, we performed leave-one-out cross-validation
across the whole training dataset, excluding each data-
point individually, retraining the model on the remaining
data, and predicting the response of the excluded
datapoint. At the 0.5, 1, 2, and 5 dose levels, we cal-
culated the deviations in our model’s RBE predictions
and bootstrapped them to estimate prediction intervals
associated with our model.

2.10 Comparison to other empirical
proton RBE models

We compared the accuracy of our model with the empir-
ical models proposed by Wedenberg et al.,2 McNamara
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et al.,6 and Mairani et al.7 We retrained these models
using our training dataset to ensure that the success of
any particular model did not depend on the data used in
its creation. This retraining was performed in two ways:
(i) by minimizing the residual sum of squares (RSS)
between the predicted and measured RBE values at the
2 Gy dose level and (ii) by minimizing the L2 norms
between the predicted and measured survival curves
normalized by the mean inactivation dose (as described
in Note S5). This first method produces models opti-
mized to predict the RBE for a proton dose of 2 Gy which
is approximately the dose per fraction delivered com-
monly in clinical settings. The second method, which is
analogous to minimizing the sum-of-squares distance
between the predicted and measured survival curves
across all dose levels, produces the models that are the
most robust across all dose levels. We computed two
metrics to quantify the goodness-of -fit of the models: (i)
the BIC associated with the fit for both minimizations and
(ii) the reduced chi-squared statistic,χ2/ν,when minimiz-
ing the RSS. These metrics both weigh the accuracy of
the models’ predictions against the number of parame-
ters that are used in their creation, with the BIC using a
much greater penalty for the inclusion of additional free
parameters. The explicit parameterizations used for the
Wedenberg et al.,2 McNamara et al.,6 and Mairani et al.7

models are given in Note S6 along with the parameter
values found.

Notably, the models by Wedenberg et al.2 and McNa-
mara et al.6 were originally trained on data spanning
different ranges of LET values, considering only LET
values up to 30 and 20 keV/μm, respectively. To ensure
our analyses were not biased toward the inclusion of
very high LET data, we compared the models’ perfor-
mance again, but after filtering the data to these LET
ranges (see Note S7).McNamara et al.6 further excluded
data where (α/β)x-rays > 30 Gy; however, because nei-
ther Wedenberg et al.2 nor Mairani et al.7 made this
distinction despite their models containing (α/β)x-rays as
a parameter, and because our model gives no special
importance to α/β, we did not exclude these data from
our dataset.

2.11 Implementation in clinical plan
evaluation workflow

Expressing our model via Equations (2)-(5) allows it to
be incorporated into the workflow to evaluate a clinical
treatment plan alongside other empirical RBE mod-
els. To demonstrate this, we implemented a version
of our model within a validated25 GPU-implemented26

track-repeating fast Monte Carlo (FMC) algorithm27 to
rapidly score the dose and LET distributions in vox-
elized computed tomography (CT) datasets from proton
therapy treatment fields. The FMC infrastructure then
allows these data to be exported to and displayed in a

treatment planning system.In this manner,we retrospec-
tively calculated 3D RBE-weighted dose distributions for
a patient treatment plan according to our model’s pre-
dictions alongside those of the Wedenberg et al.2 and
McNamara et al.6 models. The plan we selected was
for a patient who received a 54 GyRBE (27 fractions)
course of intensity modulated proton therapy deliv-
ered from four beam directions for cancer of the anal
canal.

3 RESULTS

3.1 The linear correlation between
x-ray and proton radiosensitivity

Similar to Suzuki et al.’s19 observation that D10% is lin-
early correlated between x-rays and carbon ions, our
in-house data show that this is also true for protons
and that this correlation holds regardless of the choice
of endpoint selected to characterize cell radiosensitivity
(Figure 1). In addition to this, regardless of the choice of
radiosensitivity endpoint, the slope of these correlations
decreases for increasing particle LET (Figure 1d,h,l) and
the intercept may also vary with LET. However, because
we acquired data at only three distinct LET values, it is
difficult to justify any particular parameterization of the
slopes’and intercepts’LET dependence based solely on
these data.

3.2 Choice of LET-dependent function
to parameterize the slope and intercept of
the linear correlations

To better assess these LET dependencies of the slope
and intercept, we used Equation (1) to test the accu-
racy of several slope(LET) and intercept(LET) functions
(Table 1) against the whole training dataset. For every
combination of slope and intercept function, we created
a predictive function similar to Equation (1) to predict
each of D5%, D10%, D20%, D37%, D50%, and SF2Gy, fit-
ting the resulting sets of free parameters to the training
dataset using MATLAB’s lsqnonlin function to minimize
the relative square distance between the predicted and
measured endpoint.We calculated the BIC24 associated
with each fit to determine which parameterizations best
reproduced the underlying trends in the data. Table 2
shows these data for the endpoint D10% (data for the
other endpoints can be found in Note S3). From these
data, the function of the form:

Slope (LET) = c ⋅ e−f⋅LET (6)

minimizes the BIC values, and thus is the best choice of
function to model the slope’s LET dependence.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

F IGURE 1 Linear correlation between proton and x-ray radiosensitivity for the radiosensitivity, parameterized by the dose required to
reduce cell survival to 10%, D10% (a–d); 37%, D37% (e–h); and 50%, D50% (i–l), for cells exposed to 6 MV x-rays and protons with dose-weighted
linear energy transfer (LET) values of 1.2 keV/µm (a, e, i), 2.6 keV/µm (b, f, j) or 9.9 keV/µm (c, g, k). The values of the correlations’ slopes (black)
and intercepts (blue) are given in panels (d), (h), and (l), with the dashed lines showing exponential fits of the data. Numbers indicate the cell
lines as follows: 1 = H460, 2 = H1299, 3 = M059K, 4 = M059J, 5 = BxPC3, 6 = HT1080, 7 = HT1080-shRad51IND, and
8 = HT1080-shDNAPKcs. Trends for other radiosensitivity parameters are given in Note S7
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TABLE 2 Bayesian information criteria (BIC) values determined by fitting the function created by combining the candidate slope and
intercept functions to the training dataset’s D10% values. Each cell corresponds to the BIC value associated with a given slope and intercept
function combination. Green cells indicate smaller BIC values (better performing functions) while red cells indicate larger BIC values (poorer
performing functions). BIC values for D5%, D20%, D37%, D50%, and SF2Gy can be found in Note S2

Bayesian information criterion (BIC) value associated with the function predicting D10%

Intercept������slope m p ⋅ LET m + p ⋅ LET
m + p ⋅ LET +

q ⋅ LET2 q ⋅ es⋅LET q ⋅ es⋅LET + m
q ⋅ es⋅LET +

p ⋅ LET + m

c ⋅ e−f ⋅LET −155.6 −146.6 −153.4 −147.4 −152.3 −146.4 −141.4

c ⋅ e−f ⋅LET + g −149.9 −140.6 −147.4 −141.4 −146.4 −140.4 −135.4

c ⋅ e−f ⋅LET−h⋅LET2
+ g −144.1 −142.5 −142.7 −136.7 −142.0 −136.1 −130.7

(c + h ⋅ LET) ⋅ e−f ⋅LET + g −144.0 −140.8 −142.4 −136.5 −141.5 −135.5 −130.5

c ⋅ ln(LET − h) ⋅ e−f ⋅LET + g −144.0 −139.6 −142.2 −136.2 −141.2 −135.9 −130.2
c

Γ(f ⋅ LET + h + 1)
+ g −144.1 −141.9 −142.6 −136.6 −141.8 −135.8 −130.7

c 𝜆f ⋅(LET−h) ⋅ e−k

Γ(f ⋅ (LET − h) + 1)
+ g −138.1 −136.4 −136.7 −130.7 −15.2 −130.0 −127.4

For the intercept, there are several candidate func-
tions that provide comparable descriptions of the data,
namely, the constant function, the linear function, or the
exponential function with no vertical offset (Table 1). As
is described in the sections below, further comparisons
made by combining multiple endpoints into a single pre-
dictive model suggest that the linear function with no
offset offers a suitable description of the data when
predicting αproton and βproton using multiple endpoints:

Intercept (LET) = p ⋅ LET (7)

3.3 Predicting survival curves under
our formalism

Since a wide range of biological endpoints can be pre-
dicted by equations similar to Equation (1) (e.g., D5%,
D10%, D20%, D37%, D50%, and SF2Gy), the survival curve
(αproton and βproton) can be estimated from the curve
that best describes the predicted endpoints, that is, via
Equations (2)-(5). To demonstrate this, we trained func-
tions similar to Equation (1) to predict each of the
following endpoints: D5%, D10%, D20%, D37%, D50%, and
SF2Gy. We then used these functions to predict these
radiosensitivity endpoints for the survival curves we
collected, after excluding each predicted curve when
training the functions. We then fit these predictions to
the LQM to determine the predicted αproton and βproton
values, with the confidence intervals on the predicted
curves being determined from the fitting uncertainties
in αproton and βproton. These predictions are shown in
Figure 2. Note that the predictions for the SF2Gy end-
point were much less accurate and much less reliable
than the prediction of endpoints of the form DN%, proton.
Consequently, the relative uncertainties in predicting
SF2Gy are much larger than the other endpoints, and
there is much more scatter of this particular endpoint

around the estimated trendline than the other predicted
endpoints.

3.4 Optimal choice endpoints to use
for our model

Since Equations (2)-(5) are compatible with any sub-
set of endpoints, it is not obvious how many and which
endpoints are needed to make sufficiently accurate pre-
dictions. To address this question, for every combination
of two to six endpoints, we predicted the αproton and
βproton values according to Equations (2)-(6), and calcu-
lated the BIC value associated with the fit of the training
data,using the L2 norms normalized by the mean inacti-
vation dose as the distance metric. Since it was unclear
which function best described the LET dependence of
the intercepts from our initial fitting of the candidate
functions (Table 2), we performed these analyses in
parallel using several possible parameterizations of the
intercept’s LET dependence (constant, linear, and expo-
nential) to determine which parameterization yielded the
best description of the data in the context of predicting
αproton and βproton. In general, we saw that regardless of
parameterization, the best description of the data were
the ones using the fewest parameters, that is, only two
endpoints and either the constant intercept, or a linearly
increasing intercept with no vertical offset (Table 3).

When looking at the specific combinations of 2-
endpoint functions, we noted that the specific choice of
endpoints that minimize the BIC tends to favor lower
survival levels, with the combinations incorporating D5%
yielding the lowest BIC values (Table 4). Comparing
the different intercept parameterizations, when two low-
survival levels are chosen, a constant tends to be the
best parameterization, but when higher survival levels
are chosen, the linear function offers better predictive
power (Table 4).
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F IGURE 2 Predicted (orange, with 95% confidence interval) and measured (black, with 95% confidence interval) survival curve for M059K
and M059J cells (a, f, k), H460 and H1299 cells (b, m, g), HT1080 and HT1080-shDNA-PKcs cells (c, h, n), HT1080-shRad51IND cells (d, i, o), and
BxPC-3 cells (e, j, p) exposed to protons with dose-weighted linear energy transfer (LET) values of 1.2 (a–e), 2.6 (f–j), and 9.9 keV/µm (l–p).
Shaded areas are 95% confidence intervals. The curves were predicted after creating predictive functions for D5%, D10%, D20%, D37%, D50%, and
SF2Gy and fitting these functions to the combined data, excluding the data to be predicted. The confidence intervals were calculated based on
the uncertainty in the predicted α and β values, which were determined from the residuals of the fit and the associated covariance matrix. These
were determined by inverse-variance-weighted fits of the experimental data to the linear-quadratic model (LQM) in GraphPad prism, or by fitting
and the predicted endpoints to the LQM using MATLAB’s lsqnonlin function

TABLE 3 Bayesian information criteria (BIC) values associated with different formulations of our model created by combining the predictive
functions of two endpoints among D5%, D10%, D20%, D37%, D50%, and SF2Gy. Values reported are the smallest BIC value among combinations of
a given number of endpoints used to create the model

Minimum BIC values across combinations
Endpoints used

�����������������Intercept parameterization 2 3 4 5 6

m −736.3 −714.4 −692.0 −670.8 −650.4

p ⋅ LET −731.0 −714.9 −694.5 −673.6 −652.4

m + p ⋅ LET −727.6 −701.5 −674.6 −648.3 −622.5

q es⋅LET −726.5 −699.9 −672.7 −646.1 −620.2
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TABLE 4 Bayesian information criteria (BIC) values associated with specific 2-endpoint combinations of our model for the endpoints D5%,
D10%, D20%, D37%, D50%, and SF2Gy, parameterizing the intercept with either a constant or linear function. Redundant combinations are omitted
for ease of interpretation

BIC values
Intercept parameterizations Intercept(LET) = m Intercept(LET) = p ⋅ LET
Endpoints D10% D20% D37% D50% SF2Gy D10% D20% D37% D50% SF2Gy

D5% −736.3 −731.4 −723.2 −716.1 −664.3 −731.0 −729.0 −725.2 −721.4 −678.9

D10% −726.9 −719.3 −713.0 −645.2 −726.3 −721.9 −718.1 −606.7

D20% −714.0 −708.6 −657.7 −717.5 −713.4 −656.4

D37% −702.2 −704.2 −706.3 −711.7

D50% −685.9 −688.3

As we wished our model to be the most robust across
dose and survival levels,we wished to incorporate both a
lower and a higher survival endpoint into the final param-
eterization so that the survival curve estimated from
them would not be biased toward lower or higher doses.
To achieve this, we selected D5% and D37% as the end-
points to use in our formalism as they would also allow
us to simplify our final model’s construction as described
below. Then, as the linear function with no vertical offset
(Equation 7) results in the smaller BIC value when esti-
mating αproton and βproton using the endpoints D5% and
D37% (Table 4), we used this intercept parameterization
in our model.

3.5 Final model parameterization

The resulting parameterization encoded into our model
was (e.g., for D37%):

D37%,proton = c ⋅ e−f ⋅LET ⋅ D37%,x−rays + p ⋅ LET (8)

with free parameters c, f, and p. Our model’s final con-
struction incorporated two endpoints, SF1 = e–1 (∼37%)
and SF2 = e–3 (∼5%) as those specific choices sim-
plify Equations (2)-(5) by removing the logarithmic terms.
This resulted in a six-parameter model which reduces to
the following expressions predicting αproton and βproton:

𝛼proton =

(
D3

e−1 + D3
e−3

)(
D2

e−1 + 3D2
e−3

)
−
(

D4
e−1 + D4

e−3

)
(De−1 + 3De−3 )

(
D3

e−1 + D3
e−3

)2

−
(

D2
e−1 + D2

e−3

)(
D4

e−1 + D4
e−3

)

(9a)

or

𝛼proton (𝛽=0) =
De−1+ 3 De−3

D2
e−1+D2

e−3
(9b)

and

𝛽proton =

(
D3

e−1 + D3
e−3

)
(De−1 + 3De−3 ) −

(
D2

e−1 + D2
e−3

)(
D2

e−1 + 3D2
e−3

)

(
D3

e−1 + D3
e−3

)2

−
(

D2
e−1 + D2

e−3

)(
D4

e−1 + D4
e−3

)

(10a)

or

𝛽proton (𝛼=0) =
D2

e−1+3 D2
e−3

D4
e−1+D4

e−3

, (10b)

where the D values are given by equations similar to
Equation (8), with free parameters, c1, f1, and g1, asso-
ciated with SF1; and c2, f2, and g2 associated with SF2.
To determine our model’s free parameter values, we fit
these functions to our training dataset, minimizing the
L2 norms between the predicted and measured survival
curves (normalized by the mean inactivation dose) (as
described in Note S5). The parameters resulting from
this fit are given in Table 5.

3.6 Accuracy of our six-parameter
model

To quantify the accuracy of our model, we performed
leave-one-out cross-validation on the training data to
estimate our model’s prediction intervals (Figure 3).The
approximate range of the 68.3% prediction intervals
were on the order of ∼15%–30%, which suggests our
model predicts proton RBE within ±15%–30% at the
68.3% confidence level. However, note that our model’s
accuracy depends strongly on the dose level selected,
yielding smaller confidence intervals for higher dose lev-
els than lower dose levels (Figure 3). The accuracy of
our model for different dose/survival levels is tabulated
in Note S9.
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TABLE 5 Our model’s free parameter values, their uncertainties,
and their covariances when minimizing the L2 norm between the
predicted and measured curves

Parameter Value Uncertainty

c1 1.041543E+00 2.439889E-02

f1 4.708586E-02 7.931656E-03

p1 2.376115E-02 9.021992E-03

c2 1.045578E+00 5.593340E-02

f2 3.213278E-02 1.341988E-02

p2 6.550494E-02 3.257196E-02

covc1,f1 1.072615E-04 N/A

covc1,p1 6.169650E-05 N/A

covc1,c2 1.783393E-04 N/A

covc1,f2 −2.609667E-05 N/A

covc1,p2 −8.508367E-05 N/A

covf1,p1 6.242400E-05 N/A

covf1,c2 −4.298168E-05 N/A

covf1,f2 −2.548386E-05 N/A

covf1,p2 −6.796549E-05 N/A

covp1,c2 −6.503621E-05 N/A

covp1,f2 −2.627735E-05 N/A

covp1,p2 −7.880709E-05 N/A

covc2,f2 3.983314E-04 N/A

covc2,p2 6.113882E-04 N/A

covf2,p2 4.084385E-04 N/A

TABLE 6 The reduced chi-squared statistic (χ2/µ), and Bayesian
information criteria (BIC) as goodness-of -fit metrics for different
models fit to our training dataset, minimizing either the residual
sum-of-squares in the relative biological effectiveness (RBE) for a
proton dose of 2 Gy (RBE2Gy), or the L2 norm between the predicted
and measured survival curves

Model Χ2/ν (RBE2Gy) BIC (RBE2Gy) BIC (L2 norm)

Wedenberg et al.2 0.0802 263.5 −719.4

McNamara et al.6 0.0731 247.7 −707.9

Mairani et al.7 0.0715 261.1 −696.1

Our model 0.0689 239.7 −739.5

3.7 Performance relative to other RBE
models

To quantify the relative performance of our model com-
pared to other RBE models we calculated the BIC and
χ2/ν values associated with each model’s description of
the in vitro training dataset. As shown in Table 6, among
the Wedenberg et al.,2 McNamara et al.,6 or Mairani
et al.7 models, our model yields the smallest goodness-
of -fit metrics to the training data, regardless of metric
or minimization performed, implying that our model pro-
vides the most accurate description of the dataset.
Furthermore, the considerably smaller BIC values our
model yields (which contain a very large penalty for the
inclusion of additional free parameters), implies that this

(a) (b)

(c) (d)

F IGURE 3 Frequency distribution of the percent deviations between the measured relative biological effectiveness (RBE) values and those
predicted by our model trained on the data excluding the predicted point for RBE defined at the (a) 0.5 Gy, (b) 1 Gy, (c) 2 Gy, and (d) 5 Gy dose
levels. The red and blue lines show asymmetric 68% and 95% confidence intervals determined by bootstrapping
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F IGURE 4 Fast Monte Carlo calculated relative biological effectiveness (RBE) -weighted dose distributions shown in the Eclipse treatment
planning system, calculated retrospectively for a patient treated with protons for (a) our model, (b) McNamara et al.6 model, and (c) Wedenberg
et al.2 model. The red, navy, and magenta contour lines indicate the gross tumor volume (GTV), the PTV54, and the genitalia, respectively. The
arithmetic difference between these models and the assumption that RBE = 1.1 is shown in panels (d–f). The arithmetic difference between our
model and the Wedenberg and McNamara models is shown in panels (g) and (h), while the difference between the Wedenberg et al.2 and
McNamara et al.6 models is shown in panel (i)

is not a result of overfitting. Finally, even when the LET
range investigated was constrained to those used in the
original works by Wedenberg et al.2 (<30 keV/µm) and
McNamara et al.6 (<20 keV/µm), our model consistently
provided the most accurate description of the experi-
mental data (see Note S7 for details). Thus, we believe
that among the tested models, our model provides the
most robust description of proton RBE for an arbitrarily
selected condition.

3.8 Implementation in clinical
treatment plan evaluation workflow

As a proof-of -principle, we implemented our model
within a clinical treatment plan evaluation workflow
to calculate the RBE-weighted doses associated with
a patient treatment plan (Figure 4). Similar to the
Wedenberg et al.2 and McNamara et al.6 models, our
model predicts higher RBE-weighted doses compared
to RBE = 1.1 at the distal edges of each field, but
our model’s predictions were the greatest among them.
For instance, the maximum RBE-weighted doses to
the genitalia (immediately distal to the treatment vol-
ume) predicted via our model was 150.7% of the
prescribed dose, compared to 129.8% and 127.1% for
the Wedenberg et al.2 and McNamara et al.6 mod-
els, respectively. However, these data serve only to

demonstrate the feasibility of implementing our model
within a clinical plan evaluation workflow, and future
work must be done to establish if any differences
between these models’ predictions might be clinically
relevant.

4 DISCUSSION

Aside from the physical contribution of beam quality
parameters such as LET to RBE, other biological fac-
tors are known to modulate cell radiosensitivity as well,
including histologic type and genotype,12,13,28,29 DNA
repair capacity,12,13,29–31 anatomic site, tumorigenicity,
and species of origin. Despite these biological factors
driving cell radiosensitivity, we still observed strong lin-
ear correlations between radiosensitivity to protons and
x-rays even in the presence of great biological differ-
ences in these characteristics across cell lines. Notably,
within the data we collected were cell lines with dra-
matically different DNA repair capacities, including the
M059K and M059J cell lines which are nonhomolo-
gous end-joining (NHEJ) repair proficient and deficient,
respectively; and the HT1080-shDNA-PKcs, HT1080-
shRAD51IND, and HT1080 wild-type cell lines which are
deficient in NHEJ, homologous recombination, or pro-
ficient in both, respectively. Although one might expect
these differences in DNA repair capacity to have a
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differential impact between radiation qualities since
DNA repair capacity is known to greatly affect cell
radiosensitivity and the way RBE depends on proton
LET,13 remarkably, their presence does not seem to per-
turb the linear trends we observed (Figure 1). However,
it is important to note that the absence (or presence)
of DNA repair proteins affects cell radiosensitivity to
both protons and photons. In a recent publication, we
showed that the relative spread in cell radiosensitiv-
ity, even among cells with differing DNA-repair status,
is indistinguishable between photon, proton, and even
much higher LET carbon ion radiation, and also that the
relative importance of DNA repair capacity in determin-
ing cell radiosensitivity is not significantly diminished for
higher LET carbon ions.12 In light of these findings, it
may be expected that differential DNA-repair capacity
does not perturb the linear relationship between pro-
ton and x-ray survival endpoints (e.g., D10%, proton and
D10%, x-ray), as it implies that if differential DNA-repair
capacity renders cells differentially radiosensitive to x-
rays, it would do so by the same relative amount for
protons,which would in turn preserve the proportionality
of these endpoints.

That a simple proportionality relationship governs
the RBE for a given dose-weighted LET regardless
of these biological differences implies that whatever
the contribution from these biological factors to a
cell’s intrinsic radiosensitivity, when considering a cell’s
radiosensitivity to protons, the physical component dic-
tated by the beam quality does not depend strongly
on these other factors—the same proportionality rela-
tionship applies to all cell lines, independent of biology,
at each dose-weighted LET. Therefore, our work sug-
gests a nuanced relationship between the biological
factors governing a cell’s intrinsic radiosensitivity and
the physical factors governing the LET effect in deter-
mining a cell’s radiosensitivity to protons: biological
factors determine a cell’s intrinsic radiosensitivity (e.g.,
D10%, x-ray); physical factors determine generally how
cell radiosensitivity depends on LET (e.g., the slope
of D10%,proton and D10%,x-ray); but biological factors, in
determining a particular cell’s intrinsic radiosensitivity,
largely dictate how that cell’s radiosensitivity will vary
with LET.

In line with this, one of the consequences of the
trends underpinning our model is that they predict
a non-linear relationship between proton RBE and
photon radiosensitivity, which follows from the linear
relationship between radiosensitivity to protons and x-
rays. This can be seen by rearranging Equation (8) to
describe how RBE depends on the slope and inter-
cept functions and a cell’s radiosensitivity to x-rays, for
example:

RBED10% =
1

c ⋅ e−f ⋅LET +
p⋅LET

D10%,x−rays

(11)

This relationship predicts higher RBE values for radiore-
sistant cells, lower RBE values for radiosensitive cells,
and, to the best of our knowledge, unique among
empirical models, it predicts sub-unity RBE values for
extraordinarily radiosensitive cells. Similar observations
have been made in the context of heavier ions as
well as protons, with near (and sometimes sub-) unity
RBE for radiosensitive cells deficient in DNA repair
pathways13,29,32–34 and comparatively large RBE val-
ues for radioresistant cells.13,35–37 Notably, here, while
other empirical models suggest that the shape of the
survival curve dictates its LET dependence (e.g., via
α/β), ours suggests that a cell’s intrinsic radiosensitiv-
ity (e.g., D10%) may also greatly influence that cell’s LET
dependence.

The major difference of our model relative to other
empirical approaches stems from differences in the
quantities whose LET dependence was characterized.
Notably, rather than characterizing how the cell survival
curve parameters, for example, the LQM parameters α
and β, vary with LET, our formalism relies on character-
izing how radiosensitivity metrics that are derived from
them, for example, D10%, vary between radiation quali-
ties. The uncertainty in estimating the LQM parameters
from cell survival data is relatively large. Thus, charac-
terizing the LET dependence of α and β suffers greatly
from the noise in the experimental data. However, even
though the estimation of radiosensitivity metrics such as
D10% from cell survival data rely on the estimation of the
LQM parameters,the covariance of α and β as estimated
from a cell survival curve tend to be strongly nega-
tive. Consequently, because of how these covariance
terms are incorporated into the standard error prop-
agation formula,38 the negative covariances between
α and β lead to smaller overall uncertainties in esti-
mating radiosensitivity metrics such as D10%. Thus, the
relative uncertainty in estimating survival levels (e.g.,
D10%) is much less than the relative uncertainty in esti-
mating α or β alone. This means that by modeling the
LET dependence of radiosensitivity metrics such as
D10%, as opposed to the LET dependence of the LQM
parameters α and β, our approach is able to charac-
terize underlying trends in data that are inherently less
noisy than the trends accounted for by other empirical
approaches, which greatly contributes to the improved
accuracy of our approach.

A limitation of this work is that even though our model
was trained over a large range of LET values (up to
37.8 keV/μm), the LET range over which we evalu-
ated the linear correlations between proton and x-ray
radiosensitivity within a consistent experimental frame-
work was limited (up to 9.9 keV/μm). This limitation was
because very high LET values for protons can only be
achieved at the end of their range, where very high
dose and LET gradients make measuring survival dif-
ficult. Thus, to ensure the robustness of our dataset, we
chose to limit our highest LET values to 9.9 keV/µm
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to minimize these dosimetric uncertainties arising from
the experimental setup. A more thorough characteriza-
tion of these trends at higher LET values might provide
insight into the optimal choice of functions describ-
ing the LET dependence of the correlations’ slope and
intercept. This may be of particular importance to the
intercept’s parameterization since the large noise within
the literature data renders it challenging to convincingly
determine which function best models how (or whether)
the intercept of these linear correlations vary with LET.

An additional limitation of this work is with respect to
inconsistencies in how LET is reported among literature
data, in many cases with the dose-weighted LET (LETd)
not being reported at all. In Paganetti’s review,1 for cases
where the LET values were not reported, he approxi-
mated the irradiation conditions and performed Monte
Carlo to estimate the LETd values for the described radi-
ation conditions.1 For the PIDE database, in such cases,
the LET values were calculated using the stopping
power code ATIMA.39 While these different approaches
to calculate LETd may contribute to the noise in the train-
ing dataset, they do not confound our conclusions with
respect to the relative strengths of different models, as
all models were retrained and tested against the same
data.

There are several limitations with regards to the ulti-
mate applicability of our model in a clinical setting.
First, although our preliminary findings may imply that
the RBE values in the distal edge of clinically real-
istic proton beams can be much greater than 1.1, a
more detailed clinical study is needed to establish under
what circumstances these differences may be sufficient
to warrant the departure from RBE = 1.1 in a clinical
context.

Second, our model requires photon survival data as
an input parameter; in a clinical setting, this type of sur-
vival data is not available. Nevertheless, this limitation
is not specific to our model, as most empirical mod-
els describe how cell survival varies from its photon
baseline. In the case of our model, given that the linear
relationship between proton and photon radiosensitivity
is observed in cell lines of various histologic subtypes,
anatomic sites, DNA repair capacities, and genotypes,
we suspect that the universality of this phenomenon
implies that this is likely the only input we need to
characterize an individual cell line’s biological response.

Finally, the extent to which our model can be used to
predict tumor response in vivo is unknown. In vivo, addi-
tional factors contribute to a tumor’s response to radi-
ation, including tumor z factors,40 tumor oxygenation,41

and involvement of the immune system,42 none of
which our model makes any attempt to account for.
Because our model accounts for the variability in intrin-
sic radiosensitivity, which some suggest is the driving
factor in dictating tumor response to radiation,43 we
suspect that our model will largely be compatible with
predicting the response of tumors via their intrinsic

radiosensitivity response. Nevertheless, future work is
still needed to clarify the extent to which our model can
be translated in vivo.

As a final note, because the phenomenon underpin-
ning our model were first observed by Suzuki et al.19

for carbon ions, we believe that our model can proba-
bly be extended to ions other than protons. If our model
is to be extended to heavier ions, then future work is
needed to determine to what extent dose-weighted LET
is sufficient as a beam quality specifier in the context
of our model, specifically, whether we can reconcile the
response to different ions by using an ion-independent
substitute for beam quality such as the Q factor pro-
posed by Luhr et al.,44 or whether we might simply need
to model the response to different ions separately.

5 CONCLUSION

Our findings show that radiosensitivity to protons is
strongly correlated to radiosensitivity to x-rays, and that
this relationship can be used to model radiosensitivity,
RBE and the survival curve of cells exposed to protons
based on their response to photons.We showed that this
model can be used to predict the proton response of
cells, even those with vastly different intrinsic radiosen-
sitivities or DNA repair deficiencies, within 15%–30%,
and that our model is more accurate than previously
established empirical proton RBE models.Our data may
further suggest that biological factors, in addition to
physical factors, have important roles in determining
how cell radiosensitivity varies with LET.

ACKNOWLEDGMENTS
This work was supported in part by funds from: the Can-
cer Prevention and Research Institute of Texas grant
RP170040 (GOS); the University Cancer Foundation
via the Sister Institution Network Fund at The Uni-
versity of Texas MD Anderson Cancer Center (GOS);
The University of Texas MD Anderson Cancer Center
Institutional Research Grant (IRG) program (GOS and
SFS); the Department of Radiation Physics (Depart-
ment chair funds from Dr.Mary K.Martel),The University
of Texas MD Anderson Cancer Center; the Cancer
Center Support (Core) Grant CA016672 to The Univer-
sity of Texas MD Anderson; R21CA252411 (SFS and
GOS); P01CA261669; and Emerson Collective (SFS).
The authors thank Christine F. Wogan of the Division
of Radiation Oncology at MD Anderson for editing the
manuscript.

CONFL ICT OF INTEREST
Gabriel O. Sawakuchi and Simona F. Shaitelman have
received research funds from TAE Life Sciences, Artios
Pharma and Alpha Tau Medical. Simona F. Shaitel-
man has received research funds from Varian Medical
Systems, Inc.



AN EMPIRICAL MODEL OF PROTON RBE 6235

REFERENCES
1. Paganetti H. Relative biological effectiveness (RBE) values

for proton beam therapy. Variations as a function of biologi-
cal endpoint, dose, and linear energy transfer. Phys Med Biol.
2014;59(22):R419-R472.

2. Wedenberg M, Lind BK, Hardemark B. A model for the relative
biological effectiveness of protons: the tissue specific parame-
ter alpha/beta of photons is a predictor for the sensitivity to LET
changes. Acta Oncol. 2013;52(3): 580-588.

3. Elsasser T, Weyrather WK, Friedrich T, et al. Quantification of the
relative biological effectiveness for ion beam radiotherapy: direct
experimental comparison of proton and carbon ion beams and
a novel approach for treatment planning. Int J Radiat Oncol Biol
Phys. 2010;78(4):1177-1183.

4. Hawkins RB. A microdosimetric-kinetic model for the effect of
non-Poisson distribution of lethal lesions on the variation of RBE
with LET. Radiat Res. 2003;160(1):61-69.

5. Carlson DJ, Stewart RD, Semenenko VA, Sandison GA. Com-
bined use of Monte Carlo DNA damage simulations and
deterministic repair models to examine putative mechanisms of
cell killing. Radiat Res. 2008;169(4):447-459.

6. McNamara AL, Schuemann J, Paganetti H. A phenomenological
relative biological effectiveness (RBE) model for proton therapy
based on all published in vitro cell survival data. Phys Med Biol.
2015;60(21):8399-8416.

7. Mairani A, Dokic I, Magro G, et al. A phenomenological relative
biological effectiveness approach for proton therapy based on an
improved description of the mixed radiation field. Phys Med Biol.
2017;62(4):1378-1395.

8. Guan F, Geng C, Ma D, et al. RBE model-based biological
dose optimization for proton radiobiology studies. Int J Part Ther.
2018;5(1):160-171.

9. Paganetti H, Blakely E, Carabe-Fernandez A, et al. Report of the
AAPM TG-256 on the relative biological effectiveness of proton
beams in radiation therapy. Med Phys. 2019;46(3):e53-e78.

10. McMahon SJ. Proton RBE models: commonalities and differ-
ences. Phys Med Biol. 2021;66(4):04NT02.

11. Paganetti H,Niemierko A,Ancukiewicz M,et al.Relative biological
effectiveness (RBE) values for proton beam therapy. Int J Radiat
Oncol Biol Phys. 2002;53(2):407-421.

12. Flint DB, Bright SJ, McFadden CH, et al. Cell lines of the same
anatomic site and histologic type show large variability in intrin-
sic radiosensitivity and relative biological effectiveness to protons
and carbon ions. Med Phys. 2021;48(6):3243-3261.

13. Bright SJ, Flint DB, Chakraborty S, et al. Nonhomologous end
joining is more important than proton linear energy trans-
fer in dictating cell death. Int J Radiat Oncol Biol Phys.
2019;105(5):1119-1125.

14. Kalospyros SA, Nikitaki Z, Kyriakou I, Kokkoris M, Emfietzoglou
D,Georgakilas AG.A mathematical radiobiological model (MRM)
to predict complex DNA damage and cell survival for ionizing
particle radiations of varying quality. Molecules. 2021;26(4):840.

15. McMahon SJ, McNamara AL, Schuemann J, Paganetti H, Prise
KM. A general mechanistic model enables predictions of the bio-
logical effectiveness of different qualities of radiation. Sci Rep.
2017;7(1):10790.

16. McMahon SJ, Prise KM. Mechanistic modelling of radiation
responses. Cancers. 2019;11(2):205.

17. Carabe-Fernandez A, Dale RG, Jones B. The incorporation of
the concept of minimum RBE (RbEmin) into the linear-quadratic
model and the potential for improved radiobiological analysis of
high-LET treatments. Int J Radiat Biol. 2007;83(1):27-39.

18. Wilkens JJ, Oelfke U. A phenomenological model for the relative
biological effectiveness in therapeutic proton beams. Phys Med
Biol. 2004;49(13):2811-2825.

19. Suzuki M, Kase Y, Yamaguchi H, Kanai T, Ando K. Relative
biological effectiveness for cell-killing effect on various human

cell lines irradiated with heavy-ion medical accelerator in Chiba
(HIMAC) carbon-ion beams. Int J Radiat Oncol Biol Phys.
2000;48(1):241-250.

20. Liu Q, Ghosh P, Magpayo N, et al. Lung cancer cell line screen
links fanconi anemia/BRCA pathway defects to increased relative
biological effectiveness of proton radiation. Int J Radiat Oncol Biol
Phys. 2015;91(5):1081-1089.

21. Friedrich T, Scholz U, Elsasser T, Durante M, Scholz M. System-
atic analysis of RBE and related quantities using a database of
cell survival experiments with ion beam irradiation. J Radiat Res.
2013;54(3):494-514.

22. Friedrich T, Pfuhl T, Scholz M. Update of the particle irradi-
ation data ensemble (PIDE) for cell survival. J Radiat Res.
2021;62(4):645-655.

23. Brenner DJ. The linear-quadratic model is an appropriate
methodology for determining isoeffective doses at large doses
per fraction. Semin Radiat Oncol. 2008;18(4):234-239.

24. Spiess AN, Neumeyer N. An evaluation of R2 as an inade-
quate measure for nonlinear models in pharmacological and
biochemical research:a Monte Carlo approach.BMC Pharmacol.
2010;10:6.

25. Yepes PP, Eley JG, Liu A, et al. Validation of a track repeating
algorithm for intensity modulated proton therapy: clinical cases
study. Phys Med Biol. 2016;61(7):2633-2645.

26. Yepes PP, Mirkovic D, Taddei PJ. A GPU implementation
of a track-repeating algorithm for proton radiotherapy dose
calculations. Phys Med Biol. 2010;55(23):7107-7120.

27. Yepes P, Randeniya S, Taddei PJ, Newhauser WD. A track-
repeating algorithm for fast Monte Carlo dose calculations of
proton radiotherapy. Nucl Technol. 2009;168(3):736-740.

28. Williams JR, Zhang Y, Zhou H, et al. A quantitative overview of
radiosensitivity of human tumor cells across histological type and
TP53 status. Int J Radiat Biol. 2008;84(4):253-264.

29. Karger CP, Peshke P. RBE and related modeling in carbon-
ion therapy.Phys Med Biol.2017;63(1):01TR02.https://doi.org/10.
1088/1361-6560/aa9102

30. Genet SC, Maeda J, Fujisawa H, et al. Comparison of cellular
lethality in DNA repair-proficient or -deficient cell lines resulting
from exposure to 70 MeV/n protons or 290 MeV/n carbon ions.
Oncol Rep. 2012;28(5):1591-1596.

31. Okayasu R. Repair of DNA damage induced by accelerated
heavy ions–a mini review. Int J Cancer. 2012;130(5):991-1000.

32. Eguchi-Kasai K, Murakami M, Itsukaichi H, et al. Repair of DNA
double-strand breaks and cell killing by charged particles. Adv
Space Res. 1998;22(4):543-549.

33. Takahashi A, Kubo M, Ma H, et al. Nonhomologous end-joining
repair plays a more important role than homologous recombina-
tion repair in defining radiosensitivity after exposure to high-LET
radiation. Radiat Res. 2014;182(3):338-344.

34. Weyrather WK, Ritter S, Scholz M, Kraft G. RBE for carbon track-
segment irradiation in cell lines of differing repair capacity. Int J
Radiat Biol. 1999;75(11):1357-1364.

35. Hamada N,Hara T,Omura-Minamisawa M,et al.Energetic heavy
ions overcome tumor radioresistance caused by overexpression
of Bcl-2. Radiother Oncol. 2008;89(2):231-236.

36. Jin XD, Gong L, Guo CL, et al. Survivin expressions in human
hepatoma HepG2 cells exposed to ionizing radiation of different
LET. Radiat Environ Biophys. 2008;47(3):399-404.

37. Tsuboi K,Tsuchida Y,Nose T,Ando K.Cytotoxic effect of acceler-
ated carbon beams on glioblastoma cell lines with p53 mutation:
clonogenic survival and cell-cycle analysis. Int J Radiat Biol.
1998;74(1):71-79.

38. Ku HH. Notes on the use of propagation of error formulas. J Res
Nat Bur Stand. 1966;70(4):263-273.

39. Geissel H, Weick H, Scheidenberger C, Bimbot R, Gardes D.
Experimental studies of heavy-ion slowing down in matter. Nucl
Instrum Methods Phys Res., Sect B. 2002;195(1-2):3-54.

https://doi.org/10.1088/1361-6560/aa9102
https://doi.org/10.1088/1361-6560/aa9102


6236 AN EMPIRICAL MODEL OF PROTON RBE

40. Karar J, Maity A. Modulating the tumor microenvironment
to increase radiation responsiveness. Cancer Biol Ther.
2009;8(21):1994-2001.

41. Nakano T, Suzuki Y, Ohno T, et al. Carbon beam therapy
overcomes the radiation resistance of uterine cervical cancer
originating from hypoxia.Clin Cancer Res.2006;12(7):2185-2190.

42. Park B, Yee C, Lee KM. The effect of radiation on the immune
response to cancers. Int J Mol Sci. 2014;15(1):927-943.

43. Gerweck LE,Vijayappa S,Kurimasa A,Ogawa K,Chen DJ.Tumor
cell radiosensitivity is a major determinant of tumor response to
radiation. Cancer Res. 2006;66(17):8352-8355.

44. Luhr A, von Neubeck C, Helmbrecht S, Baumann M, Enghardt
W, Krause M. Modeling in vivo relative biological effectiveness
in particle therapy for clinically relevant endpoints. Acta Oncol.
2017;56(11):1392-1398.

SU P P ORTI NG I NF OR M ATI ON
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Flint DB, Ruff CE,
Bright SJ, et al. An empirical model of proton
RBE based on the linear correlation between
x-ray and proton radiosensitivity. Med Phys.
2022;49:6221–6236.
https://doi.org/10.1002/mp.15850

https://doi.org/10.1002/mp.15850

	An empirical model of proton RBE based on the linear correlation between x-ray and proton radiosensitivity
	Abstract
	1 | INTRODUCTION
	2 | MATERIALS AND METHODS
	2.1 | In-house survival experiments
	2.2 | Compilation of training dataset
	2.3 | Statistical analyses
	2.4 | Assessment of linear correlations between radiosensitivity to protons and x-rays
	2.5 | Parameterization of the LET dependence of the linear correlations
	2.6 | General model of proton RBE
	2.7 | Constraining &#x03B1; &#x2265; 0 and &#x03B2; &#x2265; 0
	2.8 | Choice of endpoints to incorporate in our model
	2.9 | Assessment of model accuracy
	2.10 | Comparison to other empirical proton RBE models
	2.11 | Implementation in clinical plan evaluation workflow

	3 | RESULTS
	3.1 | The linear correlation between x-ray and proton radiosensitivity
	3.2 | Choice of LET-dependent function to parameterize the slope and intercept of the linear correlations
	3.3 | Predicting survival curves under our formalism
	3.4 | Optimal choice endpoints to use for our model
	3.5 | Final model parameterization
	3.6 | Accuracy of our six-parameter model
	3.7 | Performance relative to other RBE models
	3.8 | Implementation in clinical treatment plan evaluation workflow

	4 | DISCUSSION
	5 | CONCLUSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	REFERENCES
	SUPPORTING INFORMATION


